Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

WTAP Mediated the N6-methyladenosine Modification of PDK4 to Regulate the Malignant Behaviors of Colorectal Cancer Cells In Vitro and In Vivo

Author(s): Xiaoyu Dai*, Ke Chen and Yangyang Xie

Volume 30, Issue 29, 2023

Published on: 28 November, 2022

Page: [3368 - 3381] Pages: 14

DOI: 10.2174/0929867329666220922102949

Price: $65

conference banner
Abstract

Background: The role of WT1-associated protein (WTAP) in mediating the N6-methyladenosine (m6A) modification of pyruvate dehydrogenase kinase 4 (PDK4) in colorectal cancer (CRC) has been previously reported.

Objective: This research manages to unveil the function and mechanism of WTAP mediating the m6A modification in CRC.

Methods: Expressions of PDK4 and WTAP in CRC were assessed by bioinformatics analysis and verified by Western blot. After the transfection with short hairpin RNAs (shRNAs) for WTAP (shWTAP) and PDK4 (shPDK4) to manipulate the expressions of PDK4 and WTAP, the viability, proliferation, migration, invasion, and levels of m6A, PDK4 and WTAP in CRC cells were determined by cell counting kit-8 (CCK-8), colony formation, transwell, Western blot, or M6A-RNA immunoprecipitation (MeRIP)-qPCR assays. M6A binding sites in PDK4 were additionally predicted through bioinformatics analysis, and the interaction of PDK4 and WTAP was confirmed using an RNA pull-down assay. Tumor volume and weight in the constructed xenograft-tumor mouse model were recorded.

Results: PDK4 expression was low, yet WTAP and m6A expressions were high in CRC cells. WTAP bound with the m6A binding sites in PDK4. PDK4 silencing facilitated the viability, proliferation, migration and invasion, inhibited the expression of PDK4 in CRC cells, and accelerated the growth of xenografts in vivo. However, the depletion of WTAP4 exerted the opposite effects and further offset the impact of PDK4 silencing.

Conclusion: WTAP mediates the m6A modification of PDK4 to regulate the malignant behaviors of CRC cells in vitro and in vivo.

Keywords: Colorectal cancer, N6-methyladenosine, WTAP, PDK4, xenograft-tumor, bioinformatics.

« Previous
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Katona, B.W.; Weiss, J.M. Chemoprevention of colorectal cancer. Gastroenterology, 2020, 158(2), 368-388.
[http://dx.doi.org/10.1053/j.gastro.2019.06.047] [PMID: 31563626]
[3]
Modest, D.P.; Pant, S.; Sartore-Bianchi, A. Treatment sequencing in metastatic colorectal cancer. Eur. J. Cancer, 2019, 109, 70-83.
[http://dx.doi.org/10.1016/j.ejca.2018.12.019] [PMID: 30690295]
[4]
Buccafusca, G.; Proserpio, I.; Tralongo, A.C.; Rametta Giuliano, S.; Tralongo, P. Early colorectal cancer: Diagnosis, treatment and survivorship care. Crit. Rev. Oncol. Hematol., 2019, 136, 20-30.
[http://dx.doi.org/10.1016/j.critrevonc.2019.01.023] [PMID: 30878125]
[5]
Penner-Goeke, S.; Binder, E.B. Epigenetics and depression. Dialogues Clin. Neurosci., 2019, 21(4), 397-405.
[http://dx.doi.org/10.31887/DCNS.2019.21.4/ebinder] [PMID: 31949407]
[6]
Cao, J.; Yan, Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer, 2020, 6(7), 580-592.
[http://dx.doi.org/10.1016/j.trecan.2020.02.003] [PMID: 32610068]
[7]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet., 2018, 14(6), e1007362.
[http://dx.doi.org/10.1371/journal.pgen.1007362] [PMID: 29879107]
[8]
Skvortsova, K.; Stirzaker, C.; Taberlay, P. The DNA methylation landscape in cancer. Essays Biochem., 2019, 63(6), 797-811.
[http://dx.doi.org/10.1042/EBC20190037] [PMID: 31845735]
[9]
He, L.; Li, H.; Wu, A.; Peng, Y.; Shu, G.; Yin, G. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer, 2019, 18(1), 176.
[http://dx.doi.org/10.1186/s12943-019-1109-9] [PMID: 31801551]
[10]
Deng, J.; Zhang, J.; Ye, Y.; Liu, K.; Zeng, L.; Huang, J.; Pan, L.; Li, M.; Bai, R.; Zhuang, L.; Huang, X.; Wu, G.; Wei, L.; Zheng, Y.; Su, J.; Zhang, S.; Chen, R.; Lin, D.; Zheng, J. N6 -methyladenosine–mediated upregulation of WTAPP1 Promotes WTAP translation and Wnt signaling to facilitate pancreatic cancer progression. Cancer Res., 2021, 81(20), 5268-5283.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0494] [PMID: 34362795]
[11]
Li, H.; Su, Q.; Li, B.; Lan, L.; Wang, C.; Li, W.; Wang, G.; Chen, W.; He, Y.; Zhang, C. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour‐associated T lymphocyte infiltration. J. Cell. Mol. Med., 2020, 24(8), 4452-4465.
[http://dx.doi.org/10.1111/jcmm.15104] [PMID: 32176425]
[12]
Li, Q.; Wang, C.; Dong, W.; Su, Y.; Ma, Z. WTAP facilitates progression of endometrial cancer via CAV‐1/NF‐κB axis. Cell Biol. Int., 2021, 45(6), 1269-1277.
[http://dx.doi.org/10.1002/cbin.11570] [PMID: 33559954]
[13]
Weng, L.; Qiu, K.; Gao, W.; Shi, C.; Shu, F. LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulm. Med., 2020, 20(1), 213.
[http://dx.doi.org/10.1186/s12890-020-01240-5] [PMID: 32787827]
[14]
Yu, H.; Zhao, K.; Zeng, H.; Li, Z.; Chen, K.; Zhang, Z.; Li, E.; Wu, Z. N6-methyladenosine (m6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability. Biomed. Pharmacother., 2021, 133, 111075.
[http://dx.doi.org/10.1016/j.biopha.2020.111075] [PMID: 33378974]
[15]
Yu, H.L.; Ma, X.D.; Tong, J.F.; Li, J.Q.; Guan, X.J.; Yang, J. WTAP is a prognostic marker of high-grade serous ovarian cancer and regulates the progression of ovarian cancer cells. OncoTargets Ther., 2019, 12, 6191-6201.
[http://dx.doi.org/10.2147/OTT.S205730] [PMID: 31496724]
[16]
Liang, H.; Lin, Z.; Ye, Y.; Luo, R.; Zeng, L. ARRB2 promotes colorectal cancer growth through triggering WTAP. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 53(1), 85-93.
[http://dx.doi.org/10.1093/abbs/gmaa151] [PMID: 33367479]
[17]
Liu, X.; Liu, L.; Dong, Z.; Li, J.; Yu, Y.; Chen, X.; Ren, F.; Cui, G.; Sun, R. Expression patterns and prognostic value of m6A-related genes in colorectal cancer. Am. J. Transl. Res., 2019, 11(7), 3972-3991.
[PMID: 31396313]
[18]
Guda, M.R.; Asuthkar, S.; Labak, C.M.; Tsung, A.J.; Alexandrov, I.; Mackenzie, M.J.; Prasad, D.V.; Velpula, K.K. Targeting PDK4 inhibits breast cancer metabolism. Am. J. Cancer Res., 2018, 8(9), 1725-1738.
[PMID: 30323966]
[19]
Liu, B.; Zhang, Y.; Suo, J. Increased expression of PDK4 was displayed in gastric cancer and exhibited an association with glucose metabolism. Front. Genet., 2021, 12, 689585.
[http://dx.doi.org/10.3389/fgene.2021.689585] [PMID: 34220962]
[20]
Oberhuber, M.; Pecoraro, M.; Rusz, M.; Oberhuber, G.; Wieselberg, M.; Haslinger, P.; Gurnhofer, E.; Schlederer, M.; Limberger, T.; Lagger, S.; Pencik, J.; Kodajova, P.; Högler, S.; Stockmaier, G.; Grund-Gröschke, S.; Aberger, F.; Bolis, M.; Theurillat, J.P.; Wiebringhaus, R.; Weiss, T.; Haitel, A.; Brehme, M.; Wadsak, W.; Griss, J.; Mohr, T.; Hofer, A.; Jäger, A.; Pollheimer, J.; Egger, G.; Koellensperger, G.; Mann, M.; Hantusch, B.; Kenner, L. STAT 3 ‐dependent analysis reveals PDK4 as independent predictor of recurrence in prostate cancer. Mol. Syst. Biol., 2020, 16(4), e9247.
[http://dx.doi.org/10.15252/msb.20199247] [PMID: 32323921]
[21]
Deng, Y.H.; Deng, Z.H.; Hao, H.; Wu, X.L.; Gao, H.; Tang, S.H.; Tang, H. MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp. Cell Res., 2018, 373(1-2), 171-179.
[http://dx.doi.org/10.1016/j.yexcr.2018.10.010] [PMID: 30342991]
[22]
Li, Z.; Peng, Y.; Li, J.; Chen, Z.; Chen, F.; Tu, J.; Lin, S.; Wang, H. N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat. Commun., 2020, 11(1), 2578.
[http://dx.doi.org/10.1038/s41467-020-16306-5] [PMID: 32444598]
[23]
Leclerc, D.; Pham, D.N.T.; Lévesque, N.; Truongcao, M.; Foulkes, W.D.; Sapienza, C.; Rozen, R. Oncogenic role of PDK4 in human colon cancer cells. Br. J. Cancer, 2017, 116(7), 930-936.
[http://dx.doi.org/10.1038/bjc.2017.38] [PMID: 28208156]
[24]
Chen, R.X.; Chen, X.; Xia, L.P.; Zhang, J.X.; Pan, Z.Z.; Ma, X.D.; Han, K.; Chen, J.W.; Judde, J.G.; Deas, O.; Wang, F.; Ma, N.F.; Guan, X.; Yun, J.P.; Wang, F.W.; Xu, R.H.; Dan, Xie N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun., 2019, 10(1), 4695.
[http://dx.doi.org/10.1038/s41467-019-12651-2] [PMID: 31619685]
[25]
Yang, J.; Liu, J.; Zhao, S.; Tian, F. N6-Methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract. Mol. Ther. Nucleic Acids, 2020, 20, 111-116.
[http://dx.doi.org/10.1016/j.omtn.2020.02.002] [PMID: 32163892]
[26]
Chen, S.; Li, Y.; Zhi, S.; Ding, Z.; Wang, W.; Peng, Y.; Huang, Y.; Zheng, R.; Yu, H.; Wang, J.; Hu, M.; Miao, J.; Li, J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m6A-dependent manner. Cell Death Dis., 2020, 11(8), 659.
[http://dx.doi.org/10.1038/s41419-020-02847-6] [PMID: 32814762]
[27]
Li, T.; Hu, P.S.; Zuo, Z.; Lin, J.F.; Li, X.; Wu, Q.N.; Chen, Z.H.; Zeng, Z.L.; Wang, F.; Zheng, J.; Chen, D.; Li, B.; Kang, T.B.; Xie, D.; Lin, D.; Ju, H.Q.; Xu, R.H. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol. Cancer, 2019, 18(1), 112.
[http://dx.doi.org/10.1186/s12943-019-1038-7] [PMID: 31230592]
[28]
Yang, N.; Wang, T.; Li, Q.; Han, F.; Wang, Z.; Zhu, R.; Zhou, J. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3‐mediated m6A modification of HIF‐1α. J. Cell. Physiol., 2021, 236(5), 3863-3880.
[http://dx.doi.org/10.1002/jcp.30128] [PMID: 33305825]
[29]
Zhang, M.; Weng, W.; Zhang, Q.; Wu, Y.; Ni, S.; Tan, C.; Xu, M.; Sun, H.; Liu, C.; Wei, P.; Du, X. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol., 2018, 11(1), 113.
[http://dx.doi.org/10.1186/s13045-018-0656-7] [PMID: 30185232]
[30]
Chen, Y.; Peng, C.; Chen, J.; Chen, D.; Yang, B.; He, B.; Hu, W.; Zhang, Y.; Liu, H.; Dai, L.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol. Cancer, 2019, 18(1), 127.
[http://dx.doi.org/10.1186/s12943-019-1053-8] [PMID: 31438961]
[31]
Dong, X.F.; Wang, Y.; Tang, C.H.; Huang, B.F.; Du, Z.; Wang, Q.; Shao, J.K.; Lu, H.J.; Wang, C.Q. Upregulated WTAP expression in colorectal cancer correlates with tumor site and differentiation. PLoS One, 2022, 17(2), e0263749.
[http://dx.doi.org/10.1371/journal.pone.0263749] [PMID: 35143566]
[32]
Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; Zou, T.; Yin, P. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature, 2016, 534(7608), 575-578.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[33]
Ping, X.L.; Sun, B.F.; Wang, L.; Xiao, W.; Yang, X.; Wang, W.J.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y.S.; Zhao, X.; Li, A.; Yang, Y.; Dahal, U.; Lou, X.M.; Liu, X.; Huang, J.; Yuan, W.P.; Zhu, X.F.; Cheng, T.; Zhao, Y.L.; Wang, X.; Danielsen, J.M.R.; Liu, F.; Yang, Y.G. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res., 2014, 24(2), 177-189.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[34]
Wei, W.; Sun, J.; Zhang, H.; Xiao, X.; Huang, C.; Wang, L.; Zhong, H.; Jiang, Y.; Zhang, X.; Jiang, G. Circ0008399 interaction with WTAP promotes assembly and activity of the m6A methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res., 2021, 81(24), 6142-6156.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1518] [PMID: 34702726]
[35]
Fu, Y.; Jia, X.C. WTAP-mediated N6-methyladenosine modification on EGR3 in different types of epithelial ovarian cancer. J. Biol. Regul. Homeost. Agents, 2020, 34(4), 1505-1512.
[PMID: 32893607]
[36]
Ou, B.; Liu, Y.; Yang, X.; Xu, X.; Yan, Y.; Zhang, J. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis., 2021, 12(8), 737.
[http://dx.doi.org/10.1038/s41419-021-04028-5] [PMID: 34312368]
[37]
Zhang, Y.; Geng, X.; Li, Q.; Xu, J.; Tan, Y.; Xiao, M.; Song, J.; Liu, F.; Fang, C.; Wang, H. m6A modification in RNA: Biogenesis, functions and roles in gliomas. J. Exp. Clin. Cancer Res., 2020, 39(1), 192.
[http://dx.doi.org/10.1186/s13046-020-01706-8] [PMID: 32943100]
[38]
Yuan, L.; Zhang, K.; Zhou, M.M.; Wasan, H.S.; Tao, F.F.; Yan, Q.Y.; Feng, G.; Tang, Y.S.; Shen, M.H.; Ma, S.L.; Ruan, S.M. Jiedu sangen decoction reverses epithelial-to-mesenchymal transition and inhibits invasion and metastasis of colon cancer via AKT/GSK-3β signaling pathway. J. Cancer, 2019, 10(25), 6439-6456.
[http://dx.doi.org/10.7150/jca.32873] [PMID: 31772677]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy