Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Advancements in COVID-19 Testing: An In-depth Overview

Author(s): Rajesh Kumar, Seetha Harilal, Abdullah G. Al-Sehemi, Mehboobali Pannipara, Githa Elizabeth Mathew and Bijo Mathew*

Volume 24, Issue 9, 2023

Published on: 03 November, 2022

Page: [1122 - 1148] Pages: 27

DOI: 10.2174/1389201023666220921144150

Price: $65

Abstract

COVID-19 rapidly evolved as a pandemic, killing and hospitalising millions of people, and creating unprecedented hurdles for communities and health care systems worldwide. The rapidly evolving pandemic prompted the head of the World Health Organisation to deliver a critical message: "test, test, test." The response from the diagnostic industry and researchers worldwide was overwhelming, resulting in more than a thousand commercial tests being available worldwide. Several sampling approaches and diagnostic techniques have been employed from the early stages of the pandemic, such as SARS-CoV-2 detection by targeting the viral RNA or protein indirectly via antibody testing, biochemical estimation, and various imaging techniques, and many are still in the various stages of development and yet to be marketed. Accurate testing techniques and appropriate sampling are the need of the hour to manage, diagnose and treat the pandemic, especially in the current crisis where SARS-CoV-2 undergoes constant mutation, evolving into various strains, which are pretty challenging. The article discusses various testing techniques as well as screening methods for detection, treatment, and management of COVID-19 transmissions, such as NAAT, PCR, isothermal detection including RT-LAMP, RPA, NASBA, RCA, SDA, NEAR, and TMA, CRISPR strategy, nanotechnology approach, metagenomic profiling, point of care tests, virus neutralization test, ELISA, biomarker estimation, utilization of imaging techniques such as CT, ultrasonography, brain MRI in COVID-19 complications, and other novel strategies including microarray methods, microfluidic methods and artificial intelligence with an emphasis on advancements in the testing strategies for the diagnosis, management, and prevention of COVID-19.

Keywords: COVID-19 testing, diagnostic testing, antigen testing, serological testing, NAAT, SARS-CoV-2.

Graphical Abstract
[1]
Zhou, P.; Yang, XL.; Wang, XG.; Hu, B.; Zhang, L.; Zhang, W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-3.
[2]
Kumar, R.; Harilal, S.; Al-Sehemi, A.G.; Mathew, G.E.; Carradori, S.; Mathew, B. The chronicle of COVID-19 and possible strategies to curb the pandemic. Curr. Med. Chem., 2021, 28(15), 2852-2886.
[http://dx.doi.org/10.2174/0929867327666200702151018] [PMID: 32614740]
[3]
Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020, 296(2), E32-E40.
[http://dx.doi.org/10.1148/radiol.2020200642] [PMID: 32101510]
[4]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[5]
Kumar, R.; Harilal, S.; Al-Sehemi, A.G.; Pannipara, M.; Behl, T.; Mathew, G.E.; Mathew, B. COVID-19 and domestic animals: Exploring the species barrier crossing, zoonotic and reverse zoonotic transmission of SARS-CoV-2. Curr. Pharm. Des., 2021, 27(9), 1194-1201.
[http://dx.doi.org/10.2174/1381612826666201118112203] [PMID: 33213323]
[6]
Nouvellet, P.; Bhatia, S.; Cori, A.; Ainslie, K.E.C.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Brazeau, N.F.; Cattarino, L.; Cooper, L.V.; Coupland, H.; Cucunuba, Z.M.; Cuomo, D.G.; Dighe, A.; Djaafara, B.A.; Dorigatti, I.; Eales, O.D.; Elsland, S.L.; Nascimento, F.F.; FitzJohn, R.G.; Gaythorpe, K.A.M.; Geidelberg, L.; Green, W.D.; Hamlet, A.; Hauck, K.; Hinsley, W.; Imai, N.; Jeffrey, B.; Knock, E.; Laydon, D.J.; Lees, J.A.; Mangal, T.; Mellan, T.A.; Nedjati, G.G.; Parag, K.V.; Pons, S.M.; Ragonnet, C.M.; Riley, S.; Unwin, H.J.T.; Verity, R.; Vollmer, M.A.C.; Volz, E.; Walker, P.G.T.; Walters, C.E.; Wang, H.; Watson, O.J.; Whittaker, C.; Whittles, L.K.; Xi, X.; Ferguson, N.M.; Donnelly, C.A. Reduction in mobility and COVID-19 transmission. Nat. Commun., 2021, 12(1), 1090.
[http://dx.doi.org/10.1038/s41467-021-21358-2] [PMID: 33597546]
[7]
Zhao, H.; Lu, X.; Deng, Y.; Tang, Y.; Lu, J. COVID-19: Asymptomatic carrier transmission is an underestimated problem. Epidemiol. Infect., 2020, 148e116
[http://dx.doi.org/10.1017/S0950268820001235] [PMID: 32525469]
[8]
Kobayashi, T.; Jung, S. mok; Linton, N.M.; Kinoshita, R.; Hayashi, K.; Miyama, T. Communicating the risk of death from novel coronavirus disease (COVID-19). J. Clin. Med., 2020, 9, 580.
[9]
Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, Yokohama, Japan, 2020. Euro Surveill., 2020, 25(10)2000180
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.10.2000180] [PMID: 32183930]
[10]
Liu, Y.; Gayle, A.A.; Wilder, S.A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med., 2020, 27(2)taaa021
[http://dx.doi.org/10.1093/jtm/taaa021] [PMID: 32052846]
[11]
CDC. Coronavirus Disease 2019 (COVID-19) – Symptoms. Centers for disease control and prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (Accessed on: 2020 Apr 2)
[12]
Kumar, R.; Harilal, S. M, S.; Pappachan, L.K.; P R, R.; Mathew, B. Current perspective of COVID-19 on neurology: A mechanistic insight. Comb. Chem. High Throughput Screen., 2022, 25(5), 763-767.
[http://dx.doi.org/10.2174/1386207324666210805121828] [PMID: 34353250]
[13]
Li, X.; Zai, J.; Wang, X.; Li, Y. Potential of large “first generation” human-to-human transmission of 2019-nCoV. J. Med. Virol., 2020, 92(4), 448-454.
[http://dx.doi.org/10.1002/jmv.25693] [PMID: 31997390]
[14]
Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd, S.J.O.; Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[15]
FDA combating COVID-19 with therapeutics. FDA, 2020. http://www.fda.gov/media/136832/download
[16]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272]
[17]
Commissioner O of the. Emergency Use Authorization. FDA 2021. Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization (Accessed on: 2021 Dec 17)
[18]
Statement on therapies for high-risk, nonhospitalized patients. COVID-19 Treatment Guidelines. National Institute of Health, 2022. Available from: https://www.covid19treatmentguidelines. nih.gov/therapies/statement-on-therapies-for-high-risk-nonhospitalized-patients/ (Accessed on: 2022 Jan 5)
[19]
Hospitalized adults: Therapeutic management. COVID-19 treatment guidelines. National Institute of Health, 2022. Available from:https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/hospitalized-adults--therapeutic-management/ (Accessed on: 2022 Jan 5)
[20]
Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J. Med. Virol., 2020, 92(4), 455-459.
[http://dx.doi.org/10.1002/jmv.25688] [PMID: 31994738]
[21]
Bai, Z.; Cao, Y.; Liu, W.; Li, J. The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses, 2021, 13(6), 1115.
[http://dx.doi.org/10.3390/v13061115] [PMID: 34200602]
[22]
McBride, R.; van Zyl, M.; Fielding, B. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[23]
Tripp, R.A.; Tompkins, S.M. Roles of Host Gene and Non-coding RNA Expression in Virus Infection, 1st Ed.; Springer:: NY, 2018, 419, p. 280.
[http://dx.doi.org/10.1007/978-3-030-05369-7]
[24]
Sawicki, S.G.; Sawicki, D.L. Coronavirus transcription: A perspective. Curr. Top. Microbiol. Immunol., 2005, 287, 31-55.
[25]
Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; Guo, D. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(9), 5288-5295.
[http://dx.doi.org/10.1128/JVI.79.9.5288-5295.2005] [PMID: 15827143]
[26]
Perrier, A.; Bonnin, A.; Desmarets, L.; Danneels, A.; Goffard, A.; Rouillé, Y.; Dubuisson, J.; Belouzard, S. The C-terminal domain of the MERS coronavirus M protein contains a trans-golgi network localization signal. J. Biol. Chem., 2019, 294(39), 14406-14421.
[http://dx.doi.org/10.1074/jbc.RA119.008964] [PMID: 31399512]
[27]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[28]
CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc. gov/coronavirus/2019-ncov/index.html (Accessed on: 2020 May 16)
[29]
CDC. What you need to know about variants. Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc. gov/coronavirus/2019-ncov/variants/about-variants.html (Accessed on: 2021 Dec 17)
[30]
Choi, J.Y.; Smith, D.M. SARS-CoV-2 variants of concern. Yonsei Med. J., 2021, 62(11), 961-968.
[http://dx.doi.org/10.3349/ymj.2021.62.11.961] [PMID: 34672129]
[31]
Peeling, R.W.; Heymann, D.L.; Teo, Y.Y.; Garcia, P.J. Innovations in COVID-19 testing: The road from pandemic response to control. Lancet Infect. Dis., 2021, 21(10), 1334-1335.
[http://dx.doi.org/10.1016/S1473-3099(21)00291-7] [PMID: 34942102]
[32]
Campbell, F.; Archer, B.; Laurenson, S.H.; Jinnai, Y.; Konings, F.; Batra, N.; Pavlin, B.; Vandemaele, K.; Kerkhove, M.D.; Jombart, T.; Morgan, O.; Polain, W.O. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill., 2021, 26(24)2100509
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.24.2100509] [PMID: 34142653]
[33]
Lopez, B.J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; Myers, R.; Campbell, C.N.J.; Amirthalingam, G.; Edmunds, M.; Zambon, M.; Brown, K.E.; Hopkins, S.; Chand, M.; Ramsay, M. Effectiveness of COVID-19 vaccines against the B. 1.617. 2 (Delta) variant. N. Engl. J. Med., 2021, 385(7), 585-594.
[http://dx.doi.org/10.1056/NEJMoa2108891] [PMID: 34289274]
[34]
Garcia, B.W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; Sigal, A.; Schmidt, A.G.; Iafrate, A.J.; Naranbhai, V.; Balazs, A.B. Multiple SARS-CoV-2 variants escape neutralization by vaccine induced humoral immunity. Cell, 2021, 184(9), 2372-2383.e9.
[http://dx.doi.org/10.1016/j.cell.2021.03.013] [PMID: 33743213]
[36]
Do COVID-19 tests still work against omicron, delta, and other variants? PATH, 2021. Available from: https://www.path.org/articles/new-variants-will-covid-19-tests-still-work/ (Accessed on: 2022 Jan 12)
[37]
CDC. Centers for disease control and prevention. Centers for Disease Control and Prevention, 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/naats.html (Accessed on: 2021 Dec 17)
[38]
Chau, C.H.; Strope, J.D.; Figg, W.D. COVID-19 clinical diagnostics and testing technology. Pharmacotherapy, 2020, 40(8), 857-868.
[http://dx.doi.org/10.1002/phar.2439] [PMID: 32643218]
[39]
Sheikhzadeh, E.; Eissa, S.; Ismail, A.; Zourob, M. Diagnostic techniques for COVID-19 and new developments. Talanta, 2020, 220121392
[http://dx.doi.org/10.1016/j.talanta.2020.121392] [PMID: 32928412]
[40]
Bohn, M.K.; Lippi, G.; Horvath, A.; Sethi, S.; Koch, D.; Ferrari, M.; Wang, C.B.; Mancini, N.; Steele, S.; Adeli, K. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence. Clin. Chem. Lab. Med., 2020, 58(7), 1037-1052.
[http://dx.doi.org/10.1515/cclm-2020-0722] [PMID: 32459192]
[41]
Lippi, G.; Horvath, A.R.; Adeli, K. Editorial and executive summary: IFCC Interim guidelines on clinical laboratory testing during the COVID-19 pandemic. Clin. Chem. Lab. Med., 2020, 58(12), 1965-1969.
[http://dx.doi.org/10.1515/cclm-2020-1415] [PMID: 33027045]
[42]
PCNA. Cardiac Biomarkers and COVID-19. Preventive Cardiovascular Nurse Association. 2021. Available from: https://pcna.net/biomarkers-and-covid-19/ (Accessed on: 2022 Jan 6)
[43]
Bertolini, A.; Peppel, I.P.; Bodewes, F.A.J.A.; Moshage, H.; Fantin, A.; Farinati, F.; Fiorotto, R.; Jonker, J.W.; Strazzabosco, M.; Verkade, H.J.; Peserico, G. Abnormal liver function tests in patients with COVID-19: Relevance and potential pathogenesis. Hepatology, 2020, 72(5), 1864-1872.
[http://dx.doi.org/10.1002/hep.31480] [PMID: 32702162]
[44]
Dong, D.; Tang, Z.; Wang, S.; Hui, H.; Gong, L.; Lu, Y.; Xue, Z.; Liao, H.; Chen, F.; Yang, F.; Jin, R.; Wang, K.; Liu, Z.; Wei, J.; Mu, W.; Zhang, H.; Jiang, J.; Tian, J.; Li, H. The role of imaging in the detection and management of COVID-19: A review. IEEE Rev. Biomed. Eng., 2021, 14, 16-29.
[http://dx.doi.org/10.1109/RBME.2020.2990959] [PMID: 32356760]
[45]
Aljondi, R.; Alghamdi, S. Diagnostic value of imaging modalities for COVID-19: Scoping review. J. Med. Internet Res., 2020, 22(8)e19673
[http://dx.doi.org/10.2196/19673] [PMID: 32716893]
[46]
Mawaddah, A.; Gendeh, H.S.; Lum, S.G.; Marina, M.B. Upper respiratory tract sampling in COVID-19. Malays. J. Pathol., 2020, 42(1), 23-35.
[PMID: 32342928]
[47]
Tian, R.R.; Yang, C.X.; Zhang, M.; Feng, X.L.; Luo, R.H.; Duan, Z.L.; Li, J.J.; Liu, J.F.; Yu, D.D.; Xu, L.; Zheng, H.Y.; Li, M.H.; Fan, H.L.; Wang, J.L.; Dong, X.Q.; Zheng, Y.T. Lower respiratory tract samples are reliable for severe acute respiratory syndrome coronavirus 2 nucleic acid diagnosis and animal model study. Zool. Res., 2021, 42(2), 161-169.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2020.329] [PMID: 33554485]
[48]
Baron, A.; Hachem, M.; Tran, V.N.J.; Botterel, F.; Fourati, S.; Carteaux, G.; De Prost, N.; Maitre, B.; Mekontso, D.A.; Schlemmer, F. Bronchoalveolar lavage in patients with COVID-19 with invasive mechanical ventilation for acute respiratory distress syndrome. Ann. Am. Thorac. Soc., 2021, 18(4), 723-726.
[http://dx.doi.org/10.1513/AnnalsATS.202007-868RL] [PMID: 33233944]
[49]
Lai, C.K.C.; Lam, W. Laboratory testing for the diagnosis of COVID-19. Biochem. Biophys. Res. Commun., 2021, 538, 226-230.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.069] [PMID: 33139015]
[50]
Levine, S.J. An approach to the diagnosis of pulmonary infections in immunosuppressed patients. 1992, 7(2), 81-95. http://pubmed.ncbi.nlm.nih.gov/1439323/
[51]
Petruzzi, G.; Virgilio, A.; Pichi, B.; Mazzola, F.; Zocchi, J.; Mercante, G.; Spriano, G.; Pellini, R. COVID-19: Nasal and oropharyngeal swab. Head Neck, 2020, 42(6), 1303-1304.
[http://dx.doi.org/10.1002/hed.26212] [PMID: 32352180]
[52]
Kevadiya, B.D.; Machhi, J.; Herskovitz, J.; Oleynikov, M.D.; Blomberg, W.R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; Senan, A.M.; Gorantla, S.; McMillan, J.; Edagwa, B.; Eisenberg, R.; Gurumurthy, C.B.; Reid, S.P.M.; Punyadeera, C.; Chang, L.; Gendelman, H.E. Diagnostics for SARS-CoV-2 infections. Nat. Mater., 2021, 20(5), 593-605.
[http://dx.doi.org/10.1038/s41563-020-00906-z] [PMID: 33589798]
[53]
Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections – the state of the art. Emerg. Microbes Infect., 2020, 9(1), 747-756.
[http://dx.doi.org/10.1080/22221751.2020.1745095] [PMID: 32196430]
[54]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[55]
Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Carinci, F.; Maurino, V.; Rossi, A.; Tagliabue, A.; Baj, A. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect., 2020, 81(1), e45-e50.
[http://dx.doi.org/10.1016/j.jinf.2020.04.005] [PMID: 32298676]
[56]
Punyadeera, C.; Dimeski, G.; Kostner, K.; Beyerlein, P.; Cooper, W.J. One-step homogeneous C-reactive protein assay for saliva. J. Immunol. Methods, 2011, 373(1-2), 19-25.
[http://dx.doi.org/10.1016/j.jim.2011.07.013] [PMID: 21821037]
[57]
Wyllie, A.L.; Fournier, J.; Casanovas, M.A.; Campbell, M.; Tokuyama, M.; Vijayakumar, P. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.16.20067835]
[58]
Pfaffe, T.; Cooper, W.J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: Current state and future applications. Clin. Chem., 2011, 57(5), 675-687.
[http://dx.doi.org/10.1373/clinchem.2010.153767] [PMID: 21383043]
[59]
Kim, Y gon; Yun, S.G.; Kim, M.Y.; Park, K.; Cho, C.H.; Yoon, S.Y. Comparison between saliva and nasopharyngeal swab specimens for detection of respiratory viruses by multiplex reverse transcription-PCR. J. Clin. Microbiol., 2017, 55(1), 226-233.
[60]
Sheridan, C. Coronavirus and the race to distribute reliable diagnostics. Nat. Biotechnol., 2020, 38(4), 382-384.
[http://dx.doi.org/10.1038/d41587-020-00002-2] [PMID: 32265548]
[61]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[62]
Miller, S.; Chiu, C.; Rodino, K.G.; Miller, M.B. Point-counterpoint: Should we be performing metagenomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J. Clin. Microbiol., 2020, 58(3), e01739-e19.
[http://dx.doi.org/10.1128/JCM.01739-19] [PMID: 31619533]
[63]
Gomes, C. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Braz. J. Implantol. Health Sci., 2020, 2(3), 1-40.
[64]
CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR diagnostic panel; division of viral diseases, U.S. centers for disease control and prevention: Atlanta, GA. 2019. Available from: https://www.fda.gov/media/134922/download (Accessed on: 2020 Dec 25)
[65]
Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and potential. Biotechniques, 1999, 26(1), 112-125-124-125.
[http://dx.doi.org/10.2144/99261rv01] [PMID: 9894600]
[66]
Kageyama, T.; Kojima, S.; Shinohara, M.; Uchida, K.; Fukushi, S.; Hoshino, F.B.; Takeda, N.; Katayama, K. Broadly reactive and highly sensitive assay for norwalk like viruses based on real time quantitative reverse transcription-PCR. J. Clin. Microbiol., 2003, 41(4), 1548-1557.
[http://dx.doi.org/10.1128/JCM.41.4.1548-1557.2003] [PMID: 12682144]
[67]
Wong, M.L.; Medrano, J.F. Real time PCR for mRNA quantitation. Biotechniques, 2005, 39(1), 75-85.
[http://dx.doi.org/10.2144/05391RV01] [PMID: 16060372]
[68]
Bustin, S.A. AZ of quantitative PCR;, International University Line La Jolla: CA, 2004, 882. Available at: https://books.google. com.pk/books/about/A_Z_of_Quantitative_PCR.html?id=Ozt1QgAACAAJ&redir_esc=y
[69]
Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 2020, 323(18), 1843-1844.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[70]
Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H.L.; Peiris, M.; Wu, J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 2020, 382(12), 1177-1179.
[http://dx.doi.org/10.1056/NEJMc2001737] [PMID: 32074444]
[71]
Charlton, C.L.; Babady, E.; Ginocchio, C.C.; Hatchette, T.F.; Jerris, R.C.; Li, Y.; Loeffelholz, M.; McCarter, Y.S.; Miller, M.B.; Novak, W.S.; Schuetz, A.N.; Tang, Y.W.; Widen, R.; Drews, S.J. Practical guidance for clinical microbiology laboratories: Viruses causing acute respiratory tract infections. Clin. Microbiol. Rev., 2018, 32(1), e00042-e18.
[http://dx.doi.org/10.1128/CMR.00042-18] [PMID: 30541871]
[72]
He, X.; Lau, E.H.Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; Mo, X.; Chen, Y.; Liao, B.; Chen, W.; Hu, F.; Zhang, Q.; Zhong, M.; Wu, Y.; Zhao, L.; Zhang, F.; Cowling, B.J.; Li, F.; Leung, G.M. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med., 2020, 26(5), 672-675.
[http://dx.doi.org/10.1038/s41591-020-0869-5] [PMID: 32296168]
[73]
To, K.K.W.; Tsang, O.T.Y.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.Y.; Cai, J.P.; Chan, J.M.C.; Chik, T.S.H.; Lau, D.P.L.; Choi, C.Y.C.; Chen, L.L.; Chan, W.M.; Chan, K.H.; Ip, J.D.; Ng, A.C.K.; Poon, R.W.S.; Luo, C.T.; Cheng, V.C.C.; Chan, J.F.W.; Hung, I.F.N.; Chen, Z.; Chen, H.; Yuen, K.Y. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis., 2020, 20(5), 565-574.
[http://dx.doi.org/10.1016/S1473-3099(20)30196-1] [PMID: 32213337]
[74]
Technical guidance publications. WHO. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications (Accessed on: 2020 Dec 26)
[75]
World Health Organization. (2020). Laboratory testing for coronavirus disease ( COVID-19) in suspected human cases: interim guidance, 2020, 1-7.
[76]
Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis., 2020, 20(4), 411-412.
[http://dx.doi.org/10.1016/S1473-3099(20)30113-4] [PMID: 32105638]
[77]
Yang, Y.; Yang, M.; Yuan, J.; Wang, F.; Wang, Z.; Li, J.; Zhang, M.; Xing, L.; Wei, J.; Peng, L.; Wong, G.; Zheng, H.; Wu, W.; Shen, C.; Liao, M.; Feng, K.; Li, J.; Yang, Q.; Zhao, J.; Liu, L.; Liu, Y. Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innovation, 2020, 1(3)100061
[http://dx.doi.org/10.1016/j.xinn.2020.100061] [PMID: 33169119]
[78]
Winichakoon, P.; Chaiwarith, R.; Liwsrisakun, C.; Salee, P.; Goonna, A.; Limsukon, A.; Kaewpoowat, Q. Negative nasopharyngeal and oropharyngeal swabs do not rule out COVID-19. J. Clin. Microbiol., 2020, 58(5), e00297-e20.
[http://dx.doi.org/10.1128/JCM.00297-20] [PMID: 32102856]
[79]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.J.C.; Haagmans, B.L.; Veer, B.; Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.G.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3)2000045
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[80]
Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; Peiris, M.; Poon, L.L.M. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem., 2020, 66(4), 549-555.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[81]
Corman, V.; Bleicker, T.; Brünink, S.; Drosten, C.; Zambon, M. Diagnostic detection of Wuhan coronavirus 2019 by real-time RT-PCR. Geneva World Health Organ., 2020, (1), 13.
[82]
Baker, M. Digital PCR hits its stride. Nat. Methods, 2012, 9(6), 541-544.
[http://dx.doi.org/10.1038/nmeth.2027]
[83]
Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods, 2013, 10(10), 1003-1005.
[http://dx.doi.org/10.1038/nmeth.2633] [PMID: 23995387]
[84]
Dong, L.; Zhou, J.; Niu, C.; Wang, Q.; Pan, Y.; Sheng, S.; Wang, X.; Zhang, Y.; Yang, J.; Liu, M.; Zhao, Y.; Zhang, X.; Zhu, T.; Peng, T.; Xie, J.; Gao, Y.; Wang, D.; Dai, X.; Fang, X. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta, 2021, 224121726
[http://dx.doi.org/10.1016/j.talanta.2020.121726] [PMID: 33379001]
[85]
Lu, R.; Wang, J.; Li, M.; Wang, Y.; Dong, J.; Cai, W. SARS-CoV-2 detection using digital PCR for COVID-19 diagnosis, treatment monitoring and criteria for discharge. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.24.20042689]
[86]
Khan, P.; Aufdembrink, L.M.; Engelhart, A.E. Isothermal SARS-CoV-2 diagnostics: Tools for enabling distributed pandemic testing as a means of supporting safe reopenings. ACS Synth. Biol., 2020, 9(11), 2861-2880.
[http://dx.doi.org/10.1021/acssynbio.0c00359] [PMID: 32966744]
[87]
Cue™ COVID-19 Test Instructions For Use. 2021. Available from: https://www.fda.gov/media/138826/download (Accessed on: 2021 Dec 16)
[88]
Biosystems, A. iAMP COVID-19 Detection Kit. 2020. Available from: https://www.fda.gov/media/136870/download (Accessed on: 2021 Dec 16)
[89]
Biomaterials, S. AQ-TOPTM COVID-19 Rapid Detection Kit. 2020. (Accessed on: 2021 Dec 16)
[90]
Moulahoum, H.; Ghorbanizamani, F.; Zihnioglu, F.; Turhan, K.; Timur, S. How should diagnostic kits development adapt quickly in COVID 19-like pandemic models? Pros and cons of sensory platforms used in COVID-19 sensing. Talanta, 2021, 222121534
[http://dx.doi.org/10.1016/j.talanta.2020.121534] [PMID: 33167242]
[91]
Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; Xing, M.; Chen, H.; Wang, Y. Multiplex reverse transcription loop mediated isothermal amplification combined with nanoparticle based lateral flow biosensor for the diagnosis of COVID-19. Biosens. Bioelectron., 2020, 166112437
[http://dx.doi.org/10.1016/j.bios.2020.112437] [PMID: 32692666]
[92]
Augustine, R.; Hasan, A.; Das, S.; Ahmed, R.; Mori, Y.; Notomi, T.; Kevadiya, B.; Thakor, A. Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology, 2020, 9(8), 182.
[http://dx.doi.org/10.3390/biology9080182] [PMID: 32707972]
[93]
El-Tholoth, M.; Bau, H.H.; Song, J. A single and two stage, closed tube, molecular test for the 2019 novel coronavirus (COVID-19) at home, clinic, and points of entry. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.11860137.v1]
[94]
Hong, S.; Samson, A.A.S.; Song, J.M. Application of fluorescence resonance energy transfer to bioprinting. Trends Analyt. Chem., 2020, 122115749
[http://dx.doi.org/10.1016/j.trac.2019.115749]
[95]
Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Analyt. Chem., 2018, 98, 19-35.
[http://dx.doi.org/10.1016/j.trac.2017.10.015] [PMID: 32287544]
[96]
Li, J.; Macdonald, J.; Stetten, F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst (Lond.), 2019, 144(1), 31-67.
[http://dx.doi.org/10.1039/C8AN01621F] [PMID: 30426974]
[97]
Ménová, P.; Raindlová, V.; Hocek, M. Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base modified oligonucleotides and primers for PCR. Bioconjug. Chem., 2013, 24(6), 1081-1093.
[http://dx.doi.org/10.1021/bc400149q] [PMID: 23682869]
[98]
Xia, S.; Chen, X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT–RPA. Cell Discov., 2020, 6(1), 37.
[http://dx.doi.org/10.1038/s41421-020-0175-x] [PMID: 32528725]
[99]
Schneider, P.; Wolters, L.; Schoone, G.; Schallig, H.; Sillekens, P.; Hermsen, R.; Sauerwein, R. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J. Clin. Microbiol., 2005, 43(1), 402-405.
[http://dx.doi.org/10.1128/JCM.43.1.402-405.2005] [PMID: 15635001]
[100]
Böhmer, A.; Schildgen, V.; Lüsebrink, J.; Ziegler, S.; Tillmann, R.L.; Kleines, M.; Schildgen, O. Novel application for isothermal nucleic acid sequence based amplification (NASBA). J. Virol. Methods, 2009, 158(1-2), 199-201.
[http://dx.doi.org/10.1016/j.jviromet.2009.02.010] [PMID: 19428591]
[101]
Compton, J. Nucleic acid sequence based amplification. Nature, 1991, 350(6313), 91-92.
[http://dx.doi.org/10.1038/350091a0] [PMID: 1706072]
[102]
Keightley, M.C.; Sillekens, P.; Schippers, W.; Rinaldo, C.; George, K.S. Real time NASBA detection of SARS-associated coronavirus and comparison with real time reverse transcription-PCR. J. Med. Virol., 2005, 77(4), 602-608.
[http://dx.doi.org/10.1002/jmv.20498] [PMID: 16254971]
[103]
Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev., 2014, 43(10), 3324-3341.
[http://dx.doi.org/10.1039/c3cs60439j] [PMID: 24643375]
[104]
Mohsen, M.G.; Kool, E.T. The discovery of rolling circle amplification and rolling circle transcription. Acc. Chem. Res., 2016, 49(11), 2540-2550.
[http://dx.doi.org/10.1021/acs.accounts.6b00417] [PMID: 27797171]
[105]
Nilsson, M. Lock and roll: Single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem. Cell Biol., 2006, 126(2), 159-164.
[http://dx.doi.org/10.1007/s00418-006-0213-2] [PMID: 16807721]
[106]
Tian, B.; Gao, F.; Fock, J.; Dufva, M.; Hansen, M.F. Homogeneous circle-to-circle amplification for real time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens. Bioelectron., 2020, 165112356
[http://dx.doi.org/10.1016/j.bios.2020.112356] [PMID: 32510339]
[107]
Huang, W.; Hsu, H.; Ting, J.; Su, J.; Fang, M.; Misaki, T. Room temperature isothermal colorimetric padlock probe rolling circle amplification for viral RNA detection. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.12.128876]
[109]
Zhang, C.; Zheng, T.; Fan, H.; Zhang, T.; Han, D. Aligner-mediated cleavage-based isothermal amplification for SARS-CoV-2 RNA detection. ACS Appl. Bio Mater., 2021, 4(5), 3805-3810.
[http://dx.doi.org/10.1021/acsabm.0c01674] [PMID: 35006810]
[110]
Varlamov, D.A.; Blagodatskikh, K.A.; Smirnova, E.V.; Kramarov, V.M.; Ignatov, K.B. Combinations of PCR and isothermal amplification techniques are suitable for fast and sensitive detection of SARS-CoV-2 Viral RNA. Front. Bioeng. Biotechnol., 2020, 8604793
[http://dx.doi.org/10.3389/fbioe.2020.604793] [PMID: 33251206]
[111]
Wang, L.; Qian, C.; Wu, H.; Qian, W.; Wang, R.; Wu, J. Technical aspects of nicking enzyme assisted amplification. Analyst (Lond.), 2018, 143(6), 1444-1453.
[http://dx.doi.org/10.1039/C7AN02037F] [PMID: 29469149]
[112]
Brentano, S.T.; Mcdonough, S.H. Isothermal amplification of RNA by transcription-mediated amplification (TMA). Nonradioactive Analysis of Biomolecules; Berlin, Heidelberg, Springer, 2000, pp. 374-380.
[http://dx.doi.org/10.1007/978-3-642-57206-7_31]
[113]
Nye, M.B.; Schwebke, J.R.; Body, B.A. Comparison of APTIMA Trichomonas vaginalis transcription-mediated amplification to wet mount microscopy, culture, and polymerase chain reaction for diagnosis of trichomoniasis in men and women. Am. J. Obstet. Gynecol., 2009, 200(2), 188.e1-188.e7.
[http://dx.doi.org/10.1016/j.ajog.2008.10.005] [PMID: 19185101]
[114]
Kamisango, K.; Kamogawa, C.; Sumi, M.; Goto, S.; Hirao, A.; Gonzales, F.; Yasuda, K.; Iino, S. Quantitative detection of hepatitis B virus by transcription mediated amplification and hybridization protection assay. J. Clin. Microbiol., 1999, 37(2), 310-314.
[http://dx.doi.org/10.1128/JCM.37.2.310-314.1999] [PMID: 9889209]
[115]
Sarrazin, C.; Teuber, G.; Kokka, R.; Rabenau, H.; Zeuzem, S. Detection of residual hepatitis C virus RNA by transcription-mediated amplification in patients with complete virologic response according to polymerase chain reaction-based assays. Hepatology, 2000, 32(4), 818-823.
[http://dx.doi.org/10.1053/jhep.2000.17709] [PMID: 11003628]
[116]
Pham, J.; Meyer, S.; Nguyen, C.; Williams, A.; Hunsicker, M.; McHardy, I.; Gendlina, I.; Goldstein, D.Y.; Fox, A.S.; Hudson, A.; Darby, P.; Hovey, P.; Morales, J.; Mitchell, J.; Harrington, K.; Majlessi, M.; Moberly, J.; Shah, A.; Worlock, A.; Walcher, M.; Eaton, B.; Getman, D.; Clark, C. Performance characteristics of a high-throughput automated transcription mediated amplification test for SARS-CoV-2 detection. J. Clin. Microbiol., 2020, 58(10), e01669-e20.
[http://dx.doi.org/10.1128/JCM.01669-20] [PMID: 32727828]
[117]
für den US-Export N. AptimaTM SARS-CoV-2 Assay (PantherTM System). HOLOGIC, 2020. Available at: https://www.fda.gov/media/138096/download
[118]
Zhen, W.; Manji, R.; Smith, E.; Berry, G.J. Comparison of four molecular in vitro diagnostic assays for the detection of SARS-CoV-2 in nasopharyngeal specimens. J. Clin. Microbiol., 2020, 58(8), e00743-e20.
[http://dx.doi.org/10.1128/JCM.00743-20] [PMID: 32341143]
[119]
Gorzalski, A.J.; Tian, H.; Laverdure, C.; Morzunov, S.; Verma, S.C.; VanHooser, S.; Pandori, M.W. high-throughput transcription-mediated amplification on the hologic panther is a highly sensitive method of detection for SARS-CoV-2. J. Clin. Virol., 2020, 129104501
[http://dx.doi.org/10.1016/j.jcv.2020.104501] [PMID: 32619959]
[120]
Dara, M.; Talebzadeh, M. CRISPR/Cas as a potential diagnosis technique for COVID-19. Avicenna J. Med. Biotechnol., 2020, 12(3), 201-202.
[PMID: 32695284]
[121]
Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; Myhrvold, C.; Bhattacharyya, R.P.; Livny, J.; Regev, A.; Koonin, E.V.; Hung, D.T.; Sabeti, P.C.; Collins, J.J.; Zhang, F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336), 438-442.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[122]
Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc., 2019, 14(10), 2986-3012.
[http://dx.doi.org/10.1038/s41596-019-0210-2] [PMID: 31548639]
[123]
Ioannidis, J.P.A. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull. World Health Organ., 2021, 99(1), 19-33F.
[http://dx.doi.org/10.2471/BLT.20.265892] [PMID: 33716331]
[124]
Ackerman, C.M.; Myhrvold, C.; Thakku, S.G.; Freije, C.A.; Metsky, H.C.; Yang, D.K.; Ye, S.H.; Boehm, C.K.; Kosoko-Thoroddsen, T.S.F.; Kehe, J.; Nguyen, T.G.; Carter, A.; Kulesa, A.; Barnes, J.R.; Dugan, V.G.; Hung, D.T.; Blainey, P.C.; Sabeti, P.C. Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, 582(7811), 277-282.
[http://dx.doi.org/10.1038/s41586-020-2279-8] [PMID: 32349121]
[125]
Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single stranded DNAse activity. Science, 2018, 360(6387), 436-439.
[http://dx.doi.org/10.1126/science.aar6245] [PMID: 29449511]
[126]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C.Y.; Guevara, H.; Wadford, D.A.; Chen, J.S.; Chiu, C.Y. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol., 2020, 38(7), 870-874.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[127]
Chacón-Torres, J.C.; Reinoso, C.; Navas-León, D.G.; Briceño, S.; González, G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries’ needs in the detection and control of SARS-CoV-2. Sci. Rep., 2020, 10(1), 19004.
[http://dx.doi.org/10.1038/s41598-020-75798-9] [PMID: 33149153]
[128]
Hildebrandt, N.; Spillmann, C.M.; Algar, W.R.; Pons, T.; Stewart, M.H.; Oh, E.; Susumu, K.; Díaz, S.A.; Delehanty, J.B.; Medintz, I.L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev., 2017, 117(2), 536-711.
[http://dx.doi.org/10.1021/acs.chemrev.6b00030] [PMID: 27359326]
[129]
Oh, E.; Hong, M.Y.; Lee, D.; Nam, S.H.; Yoon, H.C.; Kim, H.S. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc., 2005, 127(10), 3270-3271.
[http://dx.doi.org/10.1021/ja0433323] [PMID: 15755131]
[130]
Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective naked eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 2020, 14(6), 7617-7627.
[http://dx.doi.org/10.1021/acsnano.0c03822] [PMID: 32437124]
[131]
Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta, 2020, 206120201
[http://dx.doi.org/10.1016/j.talanta.2019.120201] [PMID: 31514868]
[132]
Talebian, S.; Wallace, G.G.; Schroeder, A.; Stellacci, F.; Conde, J. Nanotechnology based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol., 2020, 15(8), 618-621.
[http://dx.doi.org/10.1038/s41565-020-0751-0] [PMID: 32728083]
[133]
Tymm, C.; Zhou, J.; Tadimety, A.; Burklund, A.; Zhang, J.X.J. Scalable COVID-19 detection enabled by lab on chip biosensors. Cell. Mol. Bioeng., 2020, 13(4), 313-329.
[http://dx.doi.org/10.1007/s12195-020-00642-z] [PMID: 32837587]
[134]
Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Kaushik, A.; Manickam, P.; Ghoreishi, S.A. Functionalized terahertz plasmonic metasensors: Femtomolar level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron., 2021, 177112971
[http://dx.doi.org/10.1016/j.bios.2021.112971] [PMID: 33434777]
[135]
Huang, L.; Ding, L.; Zhou, J.; Chen, S.; Chen, F.; Zhao, C.; Xu, J.; Hu, W.; Ji, J.; Xu, H.; Liu, G.L. One step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point of care device. Biosens. Bioelectron., 2021, 171112685
[http://dx.doi.org/10.1016/j.bios.2020.112685] [PMID: 33113383]
[136]
Yanik, A.A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T.W.; Connor, J.H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett., 2010, 10(12), 4962-4969.
[http://dx.doi.org/10.1021/nl103025u] [PMID: 21053965]
[137]
Dang, T.; Hu, W.; Zhang, W.; Song, Z.; Wang, Y.; Chen, M.; Xu, H.; Liu, G.L. Protein binding kinetics quantification via coupled plasmonic photonic resonance nanosensors in generic microplate reader. Biosens. Bioelectron., 2019, 142111494
[http://dx.doi.org/10.1016/j.bios.2019.111494] [PMID: 31319329]
[138]
Shan, B.; Broza, Y.Y.; Li, W.; Wang, Y.; Wu, S.; Liu, Z.; Wang, J.; Gui, S.; Wang, L.; Zhang, Z.; Liu, W.; Zhou, S.; Jin, W.; Zhang, Q.; Hu, D.; Lin, L.; Zhang, Q.; Li, W.; Wang, J.; Liu, H.; Pan, Y.; Haick, H. Multiplexed nanomaterial based sensor array for detection of COVID-19 in exhaled breath. ACS Nano, 2020, 14(9), 12125-12132.
[http://dx.doi.org/10.1021/acsnano.0c05657] [PMID: 32808759]
[139]
Tromberg, B.J.; Schwetz, T.A.; Pérez-Stable, E.J.; Hodes, R.J.; Woychik, R.P.; Bright, R.A.; Fleurence, R.L.; Collins, F.S. Rapid scaling up of COVID-19 diagnostic testing in the United States the NIH RADx initiative. N. Engl. J. Med., 2020, 383(11), 1071-1077.
[http://dx.doi.org/10.1056/NEJMsr2022263] [PMID: 32706958]
[140]
Lee, J.O.; So, H.M.; Jeon, E.K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem., 2008, 390(4), 1023-1032.
[http://dx.doi.org/10.1007/s00216-007-1643-y] [PMID: 17955221]
[141]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field effect transistor based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[142]
Jayamohan, H.; Lambert, C.J.; Sant, H.J.; Jafek, A.; Patel, D.; Feng, H. SARS-CoV-2 pandemic: A review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal. Bioanal. Chem., 2020, 1-23.
[PMID: 33073312]
[143]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak, U.G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[144]
Klangprapan, S.; Choke, A.B.; Lieberzeit, P.A.; Choowongkomon, K. Sensing the classical swine fever virus with molecularly imprinted polymer on quartz crystal microbalance. Heliyon, 2020, 6(6)e04137
[http://dx.doi.org/10.1016/j.heliyon.2020.e04137] [PMID: 32548329]
[145]
Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim. Acta, 2019, 186(4), 224.
[http://dx.doi.org/10.1007/s00604-019-3345-5] [PMID: 30847572]
[146]
Tripathy, S.; Singh, S.G. Label free electrochemical detection of DNA hybridization: A method for COVID-19 diagnosis. Trans. Indian Nat. Acad. Eng., 2020, 5(2), 205-209.
[http://dx.doi.org/10.1007/s41403-020-00103-z]
[147]
Su, D.; Wu, K.; Krishna, V.D.; Klein, T.; Liu, J.; Feng, Y.; Perez, A.M.; Cheeran, M.C.J.; Wang, J.P. Detection of influenza a virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system. Front. Microbiol., 2019, 10, 1077.
[http://dx.doi.org/10.3389/fmicb.2019.01077] [PMID: 31164877]
[148]
Poschenrieder, A.; Thaler, M.; Junker, R.; Luppa, P.B. Recent advances in immunodiagnostics based on biosensor technologies—from central laboratory to the point of care. Anal. Bioanal. Chem., 2019, 411(29), 7607-7621.
[http://dx.doi.org/10.1007/s00216-019-01915-x] [PMID: 31152226]
[149]
Roche receives FDA emergency use authorization for the cobas SARS-CoV-2 & Influenza A/B Test for use on the cobas 6800/8800 Systems. 2020. Available from: https://www.roche.com/media/releases/med-cor-2020-09-04.htm (Accessed on: 2021 Jan 9)
[150]
Cellex cleared to market antibody test for Covid-19 | NC Biotech. 2020. Available from: https://www.ncbiotech.org/news/cellex-cleared-market-antibody-test-covid-19 (Accessed on: 2021 Jan 9)
[151]
Peddu, V.; Shean, R.C.; Xie, H.; Shrestha, L.; Perchetti, G.A.; Minot, S.S.; Roychoudhury, P.; Huang, M.L.; Nalla, A.; Reddy, S.B.; Phung, Q.; Reinhardt, A.; Jerome, K.R.; Greninger, A.L. Metagenomic analysis reveals clinical SARS-CoV-2 infection and bacterial or viral superinfection and colonization. Clin. Chem., 2020, 66(7), 966-972.
[http://dx.doi.org/10.1093/clinchem/hvaa106] [PMID: 32379863]
[152]
Van, T.L.; Thi, T.H.N.; My, N.N.; Tan, T.T.; Thanh, L.V.; Anh, N.L.; Nguyen, T.N.L.; Thi, N.H.N.; Ngoc, Q.M.N.; Nguyen, M.H.D.; Thi, T.H.V.; Nguyen, Q.K.P.; Chanh, X.T.; Thanh, P.N.; Nguyen, H.T.T.; Tinh, H.T.; Manh, H.L.; Thanh, T.N.; Min, Y.L.; Thanh, D.N.; Thwaites, G.; Van, V.C.N. SARS-CoV-2 and co-infections detection in nasopharyngeal throat swabs of COVID-19 patients by metagenomics. J. Infect., 2020, 81(2), e175-e177.
[http://dx.doi.org/10.1016/j.jinf.2020.06.033] [PMID: 32562797]
[153]
Mora, M; Egamberdieva, D; Krause, R; Martinez, JL; Cernava, T; Berg, G Highly matching coronavirus-like short sequences can be retrieved from environmental metagenomes. 2020.
[http://dx.doi.org/10.21203/rs.3.rs-44155/v1]
[154]
Moore, S.C.; Penrice, R.R.; Alruwaili, M.; Dong, X.; Pullan, S.T.; Carter, D. Amplicon based MinION sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from patients with COVID-19. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.05.20032011]
[155]
Xiang, J.; Yan, M.; Li, H.; Liu, T.; Lin, C.; Huang, S. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.27.20028787]
[156]
Huang, P.; Wang, H.; Cao, Z.; Jin, H.; Chi, H.; Zhao, J.; Yu, B.; Yan, F.; Hu, X.; Wu, F.; Jiao, C.; Hou, P.; Xu, S.; Zhao, Y.; Feng, N.; Wang, J.; Sun, W.; Wang, T.; Gao, Y.; Yang, S.; Xia, X. A rapid and specific assay for the detection of MERS-CoV. Front. Microbiol., 2018, 9, 1101.
[http://dx.doi.org/10.3389/fmicb.2018.01101] [PMID: 29896174]
[157]
Spengler, M.; Adler, M.; Niemeyer, C.M. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: Immuno-PCR and other emerging techniques. Analyst (Lond.), 2015, 140(18), 6175-6194.
[http://dx.doi.org/10.1039/C5AN00822K] [PMID: 26196036]
[158]
Foudeh, A.M.; Fatanat Didar, T.; Veres, T.; Tabrizian, M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip, 2012, 12(18), 3249-3266.
[http://dx.doi.org/10.1039/c2lc40630f] [PMID: 22859057]
[159]
Laksanasopin, T.; Guo, TW.; Nayak, S.; Sridhara, AA.; Xie, S.; Olowookere, OO. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci. Transl. Med., 2015, 7(273)273re1
[http://dx.doi.org/10.1126/scitranslmed.aaa0056]
[160]
Lassaunière, R.; Frische, A.; Harboe, Z.B.; Nielsen, A.C.; Fomsgaard, A.; Krogfelt, K.A. Evaluation of nine commercial SARS-CoV-2 immunoassays. MedRxiv, 2020.
[161]
Weissleder, R.; Lee, H.; Ko, J.; Pittet, M.J. COVID-19 diagnostics in context. Sci. Transl. Med., 2020, 12(546), eabc1931.
[http://dx.doi.org/10.1126/scitranslmed.abc1931] [PMID: 32493791]
[162]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[163]
Feng, W.; Newbigging, A.M.; Le, C.; Pang, B.; Peng, H.; Cao, Y.; Wu, J.; Abbas, G.; Song, J.; Wang, D.B.; Cui, M.; Tao, J.; Tyrrell, D.L.; Zhang, X.E.; Zhang, H.; Le, X.C. Molecular diagnosis of COVID-19: Challenges and research needs. Anal. Chem., 2020, 92(15), 10196-10209.
[http://dx.doi.org/10.1021/acs.analchem.0c02060] [PMID: 32573207]
[164]
SARS-CoV-2 Antigen ELISA Kit (DEIA2020) - Creative Diagnostics. Available from: https://www.creative-diagnostics.com/SARS-CoV-2-Antigen-ELISA-Kit-104189-466.htm (Accessed on: 2020 Dec 27)
[165]
Che, X.Y.; Qiu, L.W.; Pan, Y.X.; Wen, K.; Hao, W.; Zhang, L.Y. Sensitive and specific monoclonal antibody-based capture enzyme immunoassay for detection of nucleocapsid antigen in sera from patients with severe acute respiratory syndrome. J. Clin. Microbiol., 2004, 42(6), 2629-2635.
[166]
Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900.
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[167]
Zhang, G.; Pomplun, S.; Loftis, A.R.; Loas, A.; Pentelute, B.L. The first-in-class peptide binder to the SARS-CoV-2 spike protein. bioRxiv, 2020.
[168]
Chen, Z.; Wu, Q.; Chen, J.; Ni, X.; Dai, J. A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein. Virol. Sin., 2020, 35(3), 351-354.
[http://dx.doi.org/10.1007/s12250-020-00236-z] [PMID: 32451881]
[169]
Advice on the use of point-of-care immunodiagnostic tests for COVID-19. Available from: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19 (Accessed on: 2021 Dec 16)
[170]
Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; Su, K.; Zhang, F.; Gong, J.; Wu, B.; Liu, X.M.; Li, J.J.; Qiu, J.F.; Chen, J.; Huang, A.L. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med., 2020, 26(8), 1200-1204.
[http://dx.doi.org/10.1038/s41591-020-0965-6] [PMID: 32555424]
[171]
GenMark Diagnostics, Inc. GenMark diagnostics announces submission of emergency use authorization for its eSensor® SARSCoV-2 test. GlobeNewswire News Room,, 2020. Available from: https://www.globenewswire.com/en/news-release/2020/08/17/2079181/0/en/GenMark-Diagnostics-Announces-Submission-of-Emergency-Use-Authorization-for-its-eSensor-SARS-CoV-2-Test.html (Accessed on: 2021 Dec 16)
[172]
BioFire® FilmArray® Respiratory 2.1 Panel. BioFire Diagnostics,, Available from: https://www.biofiredx.com/products/the-filmarray-panels/filmarrayrp/ (Accessed on: 2021 Dec 16)
[173]
Xpert® Xpress SARS-CoV-2 has received FDA Emergency Use Authorization Available from: https://www.cepheid.com/ coronavirus (Accessed on: 2021 Dec 16)
[174]
Abbott’s Fast, $5, 15-Minute, easy-to-use COVID-19 antigen test receives FDA emergency use authorization; mobile app displays test results to help our return to daily life; ramping production to 50 million tests a month. Available from: https://abbott.mediaroom.com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-Mobile-App-Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-Million-Tests-a-Month (Accessed on: 2021 Dec 16)
[175]
Meridian Bioscience Inc. Meridian bioscience simplifies COVID-19 sample prep and eliminates dependence on reagents in short supply. 2020. Available from: https://www.globenewswire.com/fr/news-release/2020/04/27/2022648/0/en/Meridian-Bioscience-Simplifies-COVID-19-Sample-Prep-and-Eliminates-Dependence-on-Reagents-in-Short-Supply.html (Accessed on: 2021 Dec 16)
[176]
Lv, H.; Wu, N.C.; Tsang, O.T.Y.; Yuan, M.; Perera, R.A.P.M.; Leung, W.S.; So, R.T.Y.; Chan, J.M.C.; Yip, G.K.; Chik, T.S.H.; Wang, Y.; Choi, C.Y.C.; Lin, Y.; Ng, W.W.; Zhao, J.; Poon, L.L.M.; Peiris, J.S.M.; Wilson, I.A.; Mok, C.K.P. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep., 2020, 31(9)107725
[http://dx.doi.org/10.1016/j.celrep.2020.107725]
[177]
Hou, H.; Wang, T.; Zhang, B.; Luo, Y.; Mao, L.; Wang, F.; Wu, S.; Sun, Z. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin. Transl. Immunology, 2020, 9(5)e01136
[http://dx.doi.org/10.1002/cti2.1136] [PMID: 32382418]
[178]
Padoan, A.; Sciacovelli, L.; Basso, D.; Negrini, D.; Zuin, S.; Cosma, C.; Faggian, D.; Matricardi, P.; Plebani, M. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study. Clin. Chim. Acta, 2020, 507, 164-166.
[http://dx.doi.org/10.1016/j.cca.2020.04.026] [PMID: 32343948]
[179]
Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; Wang, D.Q.; Hu, Y.; Ren, J.H.; Tang, N.; Xu, Y.Y.; Yu, L.H.; Mo, Z.; Gong, F.; Zhang, X.L.; Tian, W.G.; Hu, L.; Zhang, X.X.; Xiang, J.L.; Du, H.X.; Liu, H.W.; Lang, C.H.; Luo, X.H.; Wu, S.B.; Cui, X.P.; Zhou, Z.; Zhu, M.M.; Wang, J.; Xue, C.J.; Li, X.F.; Wang, L.; Li, Z.J.; Wang, K.; Niu, C.C.; Yang, Q.J.; Tang, X.J.; Zhang, Y.; Liu, X.M.; Li, J.J.; Zhang, D.C.; Zhang, F.; Liu, P.; Yuan, J.; Li, Q.; Hu, J.L.; Chen, J.; Huang, A.L. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med., 2020, 26(6), 845-848.
[http://dx.doi.org/10.1038/s41591-020-0897-1] [PMID: 32350462]
[180]
Varadhachary, A.; Chatterjee, D.; Garza, J.; Garr, R.P.; Foley, C.; Letkeman, A. Salivary anti-SARS-CoV-2 IgA as an accessible biomarker of mucosal immunity against COVID-19. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.08.07.20170258]
[181]
Pisanic, N.; Randad, P.R.; Kruczynski, K.; Manabe, Y.C.; Thomas, D.L.; Pekosz, A.; Klein, S.L.; Betenbaugh, M.J.; Clarke, W.A.; Laeyendecker, O.; Caturegli, P.P.; Larman, H.B.; Detrick, B.; Fairley, J.K.; Sherman, A.C.; Rouphael, N.; Edupuganti, S.; Granger, D.A.; Granger, S.W.; Collins, M.H.; Heaney, C.D. COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. J. Clin. Microbiol., 2020, 59(1), e02204-e02220.
[http://dx.doi.org/10.1128/JCM.02204-20] [PMID: 33067270]
[182]
Petherick, A. Developing antibody tests for SARS-CoV-2. Lancet, 2020, 395(10230), 1101-1102.
[http://dx.doi.org/10.1016/S0140-6736(20)30788-1] [PMID: 32247384]
[183]
Wolters, F.; Bovenkamp, J.; Bosch, B.; van den Brink, S.; Broeders, M.; Chung, N.H.; Favié, B.; Goderski, G.; Kuijpers, J.; Overdevest, I.; Rahamat-Langedoen, J.; Wijsman, L.; Melchers, W.J.G.; Meijer, A. Multi-center evaluation of cepheid xpert® xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. J. Clin. Virol., 2020, 128104426
[http://dx.doi.org/10.1016/j.jcv.2020.104426] [PMID: 32417674]
[184]
Green, K.; Graziadio, S.; Turner, P.; Fanshawe, T.; Allen, J. Molecular and antibody point-of-care tests to support the screening, diagnosis and monitoring of COVID-19. Cent Evid-Based Med, 2020. Available at: https://www.cebm.net/wp-content/uploads/2020/04/POCT-Covid19.pdf
[185]
Zhang, W.; Du, R.H.; Li, B.; Zheng, X.S.; Yang, X.L.; Hu, B.; Wang, Y.Y.; Xiao, G.F.; Yan, B.; Shi, Z.L.; Zhou, P. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect., 2020, 9(1), 386-389.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[186]
Cai, X.; Chen, J.; Hu, J.; Long, Q.; Deng, H.; Fan, K. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of corona virus disease 2019 (COVID-19). medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.22.20026617]
[187]
Guan, W. jie; Ni, Z. yi; Hu, Y.; Liang, W. hua; Ou, C. quan; He, J. xing Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.pubmed.ncbi.nlm.nih.gov/32109013/
[188]
Suthar, M.S.; Zimmerman, M.G.; Kauffman, R.C.; Mantus, G.; Linderman, S.L.; Hudson, W.H.; Vanderheiden, A.; Nyhoff, L.; Davis, C.W.; Adekunle, O.; Affer, M.; Sherman, M.; Reynolds, S.; Verkerke, H.P.; Alter, D.N.; Guarner, J.; Bryksin, J.; Horwath, M.C.; Arthur, C.M.; Saakadze, N.; Smith, G.H.; Edupuganti, S.; Scherer, E.M.; Hellmeister, K.; Cheng, A.; Morales, J.A.; Neish, A.S.; Stowell, S.R.; Frank, F.; Ortlund, E.; Anderson, E.J.; Menachery, V.D.; Rouphael, N.; Mehta, A.K.; Stephens, D.S.; Ahmed, R.; Roback, J.D.; Wrammert, J. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep. Med., 2020, 1(3)100040
[http://dx.doi.org/10.1016/j.xcrm.2020.100040] [PMID: 32835303]
[189]
Wang, C.; Li, W.; Drabek, D.; Okba, N.M.A.; van Haperen, R.; Osterhaus, A.D.M.E.; Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B.J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun., 2020, 11(1), 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 31911652]
[190]
Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Fan, C.; Huang, W.; Xu, M.; Wang, Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect., 2020, 9(1), 680-686.
[http://dx.doi.org/10.1080/22221751.2020.1743767] [PMID: 32207377]
[191]
Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv, 2020.
[192]
Luo, Z.; Ang, M.J.Y.; Chan, S.Y.; Yi, Z.; Goh, Y.Y.; Yan, S. Combating the coronavirus pandemic: Early detection, medical treatment, and a concerted effort by the global community; Research; , 2020, 2020, . spj.sciencemag.org/journals/research/2020/6925296/#www.ago-online.de
[193]
Kabir, M.D.A.; Ahmed, R.; Iqbal, S.M.A.; Chowdhury, R.; Paulmurugan, R.; Demirci, U.; Asghar, W. Diagnosis for COVID-19: Current status and future prospects. Expert Rev. Mol. Diagn., 2021, 21(3), 269-288.
[http://dx.doi.org/10.1080/14737159.2021.1894930] [PMID: 33621145]
[194]
Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C. GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; Yazdanpanah, Y.; Le Hingrat, Q.; Descamps, D.; Houhou, F.N.; Reusken, C.B.E.M.; Bosch, B.J.; Drosten, C.; Koopmans, M.P.G.; Haagmans, B.L. Severe acute respiratory syndrome coronavirus 2- specific antibody responses in coronavirus disease patients. Emerg. Infect. Dis., 2020, 26(7), 1478-1488.
[http://dx.doi.org/10.3201/eid2607.200841] [PMID: 32267220]
[195]
Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S.; Xiong, Z.; Zheng, S. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J. Clin. Microbiol., 2020, 58(6), e00461-e20.
[http://dx.doi.org/10.1128/JCM.00461-20] [PMID: 32229605]
[196]
SIEMENS Healthineers. SARS-CoV-2 Total Assay. Available from: https://www.siemens-healthineers.com/en-ca/laboratory-diagnostics/assays-by-diseases-conditions/infectious-disease-assays/cov2t-assay (Accessed on: 2021 Dec 16)
[197]
SIEMENS. SARS-CoV-2 Total Antibody assay (CV2T). 2022. Available from: https://www.fda.gov/media/138757/download (Accessed on: 2021 Dec 16)
[198]
Platelia SARS-CoV-2 Total Ab 202. 2020. Available from: https://commerce.bio-rad.com/webroot/web/pdf/inserts/CDG/en/16008267_2020_04_EN.pdf (Accessed on: 2021 Dec 16).
[199]
US Food and Drug Administration: EUA authorized serology. Available from: https://scholar.google.com/scholar_lookup? hl=en&publication_year=2020&author=Food+U%2C+Administration+D&title=EUA+authorized+serology+test+performance (Accessed on: 2021 Dec 16)
[200]
Younes, N.; Al-Sadeq, D.W. AL-Jighefee, H.; Younes, S.; Al-Jamal, O.; Daas, H.I.; Yassine, H.M.; Nasrallah, G.K. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses, 2020, 12(6), 582.
[http://dx.doi.org/10.3390/v12060582] [PMID: 32466458]
[201]
Liu, L.; Liu, W.; Zheng, Y.; Jiang, X.; Kou, G.; Ding, J.; Wang, Q.; Huang, Q.; Ding, Y.; Ni, W.; Wu, W.; Tang, S.; Tan, L.; Hu, Z.; Xu, W.; Zhang, Y.; Zhang, B.; Tang, Z.; Zhang, X.; Li, H.; Rao, Z.; Jiang, H.; Ren, X.; Wang, S.; Zheng, S. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. Microbes Infect., 2020, 22(4-5), 206-211.
[http://dx.doi.org/10.1016/j.micinf.2020.05.008] [PMID: 32425648]
[202]
HORIBA Medical white paper provides a review of hematology biomarkers for COVID-19 assessment. 2020. Available from: https://www.news-medical.net/news/20200626/HORIBA-Medical-white-paper-provides-a-review-of-hematology-biomarkers-for-COVID-19-assessment.aspx (Accessed on: 2022 Jan 14)
[203]
Rodriguez, M.A.J.; Cardona, O.J.A.; Gutiérrez, O.E.; Villamizar, P.R.; Holguin, R.Y.; Escalera, A.J.P.; Alvarado, A.L.E.; Bonilla, D.K.; Franco, P.C.; Henao, M.A.F.; Paniz, M.A.; Lagos, G.G.J.; Ramírez, V.E.; Suárez, J.A.; Zambrano, L.I.; Villamil, G.W.E.; Balbin, R.G.J.; Rabaan, A.A.; Harapan, H.; Dhama, K.; Nishiura, H.; Kataoka, H.; Ahmad, T.; Sah, R. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta analysis. Travel Med. Infect. Dis., 2020, 34101623
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[204]
Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 transmission, current treatment, and future therapeutic strategies. Mol. Pharm., 2021, 18(3), 754-771.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00608] [PMID: 33464914]
[205]
Chen, L.; Liu, H.G.; Liu, W.; Liu, J.; Liu, K.; Shang, J.; Deng, Y.; Wei, S. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43(0), E005-E005.
[PMID: 32026671]
[206]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[207]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[208]
Yang, W.; Yan, F. Patients with RT-PCR-confirmed COVID-19 and normal chest CT. Radiology, 2020, 295(2), E3-E3.
[http://dx.doi.org/10.1148/radiol.2020200702] [PMID: 32142398]
[209]
Whiting, P.; Singatullina, N.; Rosser, J.H. Computed tomography of the chest: I. Basic principles. BJA Educ., 2015, 15(6), 299-304.
[http://dx.doi.org/10.1093/bjaceaccp/mku063]
[210]
Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z.A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K.; Li, S.; Shan, H.; Jacobi, A.; Chung, M. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology, 2020, 295(3)200463
[http://dx.doi.org/10.1148/radiol.2020200463] [PMID: 32077789]
[211]
Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology, 2020, 295(3)
[http://dx.doi.org/10.1148/radiol.2020200370]
[212]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[213]
Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing. Radiology, 2020.200343
[214]
Poggiali, E.; Dacrema, A.; Bastoni, D.; Tinelli, V.; Demichele, E.; Mateo Ramos, P.; Marcianò, T.; Silva, M.; Vercelli, A.; Magnacavallo, A. Can lung US help critical care clinicians in the early diagnosis of novel coronavirus (COVID-19) pneumonia? Radiology, 2020, 295(3), E6-E6.
[http://dx.doi.org/10.1148/radiol.2020200847] [PMID: 32167853]
[215]
Kremer, S.; Lersy, F.; de Sèze, J.; Ferré, J.C.; Maamar, A.; Carsin-Nicol, B.; Collange, O.; Bonneville, F.; Adam, G.; Martin-Blondel, G.; Rafiq, M.; Geeraerts, T.; Delamarre, L.; Grand, S.; Krainik, A.; Kremer, S.; Adam, G.; Alleg, M.; Anheim, M.; Anxionnat, R.; Ardellier, F.D.; Baloglu, S.; Bapst, B.; Benzakoun, J.; Berge, J.; Bolognini, F.; Bonneville, F.; Bornet, G.; Boulay, C.; Boulouis, G.; Boutet, C.; Brisset, J.C.; Caillard, S.; Carré, S.; Carsin-Nicol, B.; Collange, O.; Comby, P.O.; Constans, J.M.; David, J-S.; de Beaurepaire, I.; de Sèze, J.; Delamarre, L.; Desal, H.; Edjlali, G.M.; Fabre, X.; Fafi-Kremer, S.; Ferré, J.C.; Feuerstein, P.; Henry Feugeas, M-C.; Forestier, G.; Gaudemer, A.; Geeraerts, T.; Grand, S.; Hansmann, Y.; Heintz, A.; Helms, J.; Hemmert, C.; Hmeydia, G.; Jager, L.; Kazémi, A.; Kerleroux, B.; Khalil, A.; Krainik, A.; Lacalm, A.; Lecler, A.; Lecocq, C.; Lefèbvre, N.; Lersy, F.; Maamar, A.; Martin, B.G.; Matthieu, M.; Megdiche, I.; Mertes, P.M.; Messié, J.; Metanbou, S.; Meyer, N.; Meziani, F.; Mutschler, V.; Nesser, P.; Oesterlé, H.; Ohana, M.; Oppenheim, C.; Pyatigorskaya, N.; Rafiq, M.; Ricolfi, F.; Saleme, S.; Schenck, M.; Schmitt, E.; Schneider, F.; Sebag, N.; Talla Mba, Y.; Thouant, P.; Willaume, T.; Zhu, F.; Zorn, P.E.; Cotton, F. Brain MRI findings in severe COVID-19: A retrospective observational study. Radiology, 2020, 297(2), E242-E251.
[http://dx.doi.org/10.1148/radiol.2020202222] [PMID: 32544034]
[216]
Fitsiori, A.; Pugin, D.; Thieffry, C.; Lalive, P.; Vargas, M.I. Unusual microbleeds in brain MRI of COVID-19 patients. J. Neuroimaging, 2020.
[http://dx.doi.org/10.1111/jon.12755]
[217]
Politi, L.S.; Salsano, E.; Grimaldi, M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol., 2020, 77(8), 1028-1029.
[http://dx.doi.org/10.1001/jamaneurol.2020.2125] [PMID: 32469400]
[218]
CDC. Healthcare workers. Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html (Accessed on: 2022 Jan 12)
[219]
Xiao, F.; Sun, J.; Xu, Y.; Li, F.; Huang, X.; Li, H.; Zhao, J.; Huang, J.; Zhao, J. Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerg. Infect. Dis., 2020, 26(8), 1920-1922.
[http://dx.doi.org/10.3201/eid2608.200681] [PMID: 32421494]
[220]
Yongchen, Z.; Shen, H.; Wang, X.; Shi, X.; Li, Y.; Yan, J.; Chen, Y.; Gu, B. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg. Microbes Infect., 2020, 9(1), 833-836.
[http://dx.doi.org/10.1080/22221751.2020.1756699] [PMID: 32306864]
[221]
Nobel, Y.R.; Phipps, M.; Zucker, J.; Lebwohl, B.; Wang, T.C.; Sobieszczyk, M.E.; Freedberg, D.E. Gastrointestinal symptoms and coronavirus disease 2019: A case-control study from the United States. Gastroenterology, 2020, 159(1), 373-375.e2.
[http://dx.doi.org/10.1053/j.gastro.2020.04.017] [PMID: 32294477]
[222]
Scientists are looking at sewage and wastewater to track the spread of coronavirus - The Washington Post. Available from: https://www.washingtonpost.com/climate-environment/2020/05/01/coronavirus-sewage-wastewater/ (Accessed on: 2021 Dec 16)
[223]
Bloise, I.; Gómez, A.B.; García, R.J.; Montero, V.M.D.; Romero, M.P.; García, B.S. Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory. J. Hosp. Infect., 2020, 105(4), 784-786.
[http://dx.doi.org/10.1016/j.jhin.2020.05.017] [PMID: 32422312]
[224]
World Health Organization. Surface sampling of coronavirus disease (COVID-19): A practical “how to” protocol for health care and public health professionals, 18 February 2020; World Health Organization, 2020.
[225]
Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA, 2020, 323(16), 1610-1612.
[http://dx.doi.org/10.1001/jama.2020.3227] [PMID: 32129805]
[226]
Lee, S.E.; Lee, D.Y.; Lee, W.G.; Kang, B.; Jang, Y.S.; Ryu, B.; Lee, S.; Bahk, H.; Lee, E. Detection of novel coronavirus on the surface of environmental materials contaminated by COVID-19 patients in the Republic of Korea. Osong Public Health Res. Perspect., 2020, 11(3), 128-132.
[http://dx.doi.org/10.24171/j.phrp.2020.11.3.03] [PMID: 32528818]
[227]
Ye, G.; Lin, H.; Chen, S.; Wang, S.; Zeng, Z.; Wang, W.; Zhang, S.; Rebmann, T.; Li, Y.; Pan, Z.; Yang, Z.; Wang, Y.; Wang, F.; Qian, Z.; Wang, X. Environmental contamination of SARS-CoV-2 in healthcare premises. J. Infect., 2020, 81(2), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.04.034] [PMID: 32360881]
[228]
Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brünink, S.; Schneider, J.; Ehmann, R.; Zwirglmaier, K.; Drosten, C.; Wendtner, C. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809), 465-469.
[http://dx.doi.org/10.1038/s41586-020-2196-x] [PMID: 32235945]
[229]
Chen, Y.; Chen, L.; Deng, Q.; Zhang, G.; Wu, K.; Ni, L.; Yang, Y.; Liu, B.; Wang, W.; Wei, C.; Yang, J.; Ye, G.; Cheng, Z. The presence of SARS-;CoV-2 RNA in the feces of COVID-19 patients. J. Med. Virol., 2020, 92(7), 833-840.
[http://dx.doi.org/10.1002/jmv.25825] [PMID: 32243607]
[230]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[231]
Xu, Y.; Li, X.; Zhu, B.; Liang, H.; Fang, C.; Gong, Y.; Guo, Q.; Sun, X.; Zhao, D.; Shen, J.; Zhang, H.; Liu, H.; Xia, H.; Tang, J.; Zhang, K.; Gong, S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med., 2020, 26(4), 502-505.
[http://dx.doi.org/10.1038/s41591-020-0817-4] [PMID: 32284613]
[232]
CDC. National Wastewater Surveillance System. Centers for Disease Control and Prevention. 2021. Available from: https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/wastewater-surveillance.html (Accessed on: 2021 Dec 16)
[233]
Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; Tscharke, B.; Verhagen, R.; Smith, W.J.M.; Zaugg, J.; Dierens, L.; Hugenholtz, P.; Thomas, K.V.; Mueller, J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ., 2020, 728138764
[http://dx.doi.org/10.1016/j.scitotenv.2020.138764] [PMID: 32387778]
[234]
La Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno, F.G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ., 2020, 736139652
[http://dx.doi.org/10.1016/j.scitotenv.2020.139652] [PMID: 32464333]
[235]
Randazzo, W.; Truchado, P.; Cuevas, F.E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res., 2020, 181115942
[http://dx.doi.org/10.1016/j.watres.2020.115942] [PMID: 32425251]
[236]
Bivins, A.; North, D.; Ahmad, A.; Ahmed, W.; Alm, E.; Been, F.; Bhattacharya, P.; Bijlsma, L.; Boehm, A.B.; Brown, J.; Buttiglieri, G.; Calabro, V.; Carducci, A.; Castiglioni, S.; Cetecioglu, G.Z.; Chakraborty, S.; Costa, F.; Curcio, S. de, R.F.L., III; Delgado Vela, J.; Farkas, K.; Fernandez, C.X.; Gerba, C.; Gerrity, D.; Girones, R.; Gonzalez, R.; Haramoto, E.; Harris, A.; Holden, P.A.; Islam, M.T.; Jones, D.L.; Kasprzyk, H.B.; Kitajima, M.; Kotlarz, N.; Kumar, M.; Kuroda, K.; La Rosa, G.; Malpei, F.; Mautus, M.; McLellan, S.L.; Medema, G.; Meschke, J.S.; Mueller, J.; Newton, R.J.; Nilsson, D.; Noble, R.T.; van Nuijs, A.; Peccia, J.; Perkins, T.A.; Pickering, A.J.; Rose, J.; Sanchez, G.; Smith, A.; Stadler, L.; Stauber, C.; Thomas, K.; van, V.D.T.; Wigginton, K.; Zhu, K.; Bibby, K. Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against COVID-19. Environ. Sci. Technol., 2020, 54(13), 7754-7757.
[http://dx.doi.org/10.1021/acs.est.0c02388] [PMID: 32530639]
[237]
Mao, K.; Zhang, H.; Yang, Z. Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology? Environ. Sci. Technol., 2020, 54(7), 3733-3735.
[http://dx.doi.org/10.1021/acs.est.0c01174] [PMID: 32202421]
[238]
Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. Trends Analyt. Chem., 2020, 125115842
[http://dx.doi.org/10.1016/j.trac.2020.115842]
[239]
Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip, 2012, 12(14), 2469-2486.
[http://dx.doi.org/10.1039/c2lc40100b] [PMID: 22592150]
[240]
Lamb, L.E.; Bartolone, S.N.; Ward, E.; Chancellor, M.B. Rapid detection of novel coronavirus (covid19) by reverse transcription-loop-mediated isothermal amplification. SSRN Elec. J., 2020, 1-19.
[http://dx.doi.org/10.2139/ssrn.3539654]
[241]
Yu, L.; Wu, S.; Hao, X.; Li, X.; Liu, X.; Ye, S. Rapid colorimetric detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic plat-form: ILACO. medRxiv, 2020.
[242]
Zhang, Y.; Odiwuor, N.; Xiong, J.; Sun, L.; Nyaruaba, R.O.; Wei, H. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.26.20028373]
[243]
Yang, W.; Dang, X.; Wang, Q.; Xu, M.; Zhao, Q.; Zhou, Y. Rapid detection of SARS-CoV-2 using reverse transcription RT-LAMP method. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.02.20030130]
[244]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12), 63e-63.
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[245]
Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun., 2001, 289(1), 150-154.
[http://dx.doi.org/10.1006/bbrc.2001.5921] [PMID: 11708792]
[246]
Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev., 2000, 13(4), 559-570.
[http://dx.doi.org/10.1128/CMR.13.4.559] [PMID: 11023957]
[247]
Udugama, B.; Kadhiresan, P.; Samarakoon, A.; Chan, W.C.W. Simplifying assays by tableting reagents. J. Am. Chem. Soc., 2017, 139(48), 17341-17349.
[http://dx.doi.org/10.1021/jacs.7b07055] [PMID: 29172470]
[248]
O’Connell, M.R. Molecular mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR–Cas systems. J. Mol. Biol., 2019, 431(1), 66-87.
[http://dx.doi.org/10.1016/j.jmb.2018.06.029] [PMID: 29940185]
[249]
Zhang, F; Abudayyeh, OO; Gootenberg, JS A protocol for detection of COVID-19 using CRISPR diagnostics. 2020, 14(10), 2986-3012.
[250]
Hou, T.; Zeng, W.; Yang, M.; Chen, W.; Ren, L.; Ai, J. Development and evaluation of a CRISPR-based diagnostic for 2019-novel coronavirus. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.22.20025460]
[251]
Rowe, T.; Abernathy, R.A.; Hu-Primmer, J.; Thompson, W.W.; Lu, X.; Lim, W.; Fukuda, K.; Cox, N.J.; Katz, J.M. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol., 1999, 37(4), 937-943.
[http://dx.doi.org/10.1128/JCM.37.4.937-943.1999] [PMID: 10074505]
[252]
Imai, M.; Ninomiya, A.; Minekawa, H.; Notomi, T.; Ishizaki, T.; Van Tu, P.; Tien, N.T.K.; Tashiro, M.; Odagiri, T. Rapid diagnosis of H5N1 avian influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated isothermal amplification method. J. Virol. Methods, 2007, 141(2), 173-180.
[http://dx.doi.org/10.1016/j.jviromet.2006.12.004] [PMID: 17218021]
[253]
Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; Ferrell, E.P.; Randall, J.D.; Provuncher, G.K.; Walt, D.R.; Duffy, D.C. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol., 2010, 28(6), 595-599.
[http://dx.doi.org/10.1038/nbt.1641] [PMID: 20495550]
[254]
Shirato, K.; Nishimura, H.; Saijo, M.; Okamoto, M.; Noda, M.; Tashiro, M.; Taguchi, F. Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification. J. Virol. Methods, 2007, 139(1), 78-84.
[http://dx.doi.org/10.1016/j.jviromet.2006.09.014] [PMID: 17052763]
[255]
Bosch, I.; de Puig, H.; Hiley, M.; Carré-Camps, M.; Perdomo, C.F.; Narváez, C.F.; Salgado, D.M.; Senthoor, D.; O’Grady, M.; Phillips, E.; Durbin, A.; Fandos, D.; Miyazaki, H.; Yen, C.W.; Gélvez, R.M.; Warke, R.V.; Ribeiro, L.S.; Teixeira, M.M.; Almeida, R.P.; Muñóz, M.J.E.; Ludert, J.E.; Nogueira, M.L.; Colombo, T.E.; Terzian, A.C.B.; Bozza, P.T.; Calheiros, A.S.; Vieira, Y.R.; Barbosa-Lima, G.; Vizzoni, A.; Cerbino-Neto, J.; Bozza, F.A.; Souza, T.M.L.; Trugilho, M.R.O.; Filippis, A.M.B.; de Sequeira, P.C.; Marques, E.T.A.; Magalhaes, T.; Díaz, F.J.; Restrepo, B.N.; Marín, K.; Mattar, S.; Olson, D.; Asturias, E.J.; Lucera, M.; Singla, M.; Medigeshi, G.R.; de Bosch, N.; Tam, J.; Gómez, M.J.; Clavet, C.; Villar, L.; Hamad, S.K.; Gehrke, L. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med., 2017, 9(409), eaan1589.
[256]
Wat, D.; Gelder, C.; Hibbitts, S.; Cafferty, F.; Bowler, I.; Pierrepoint, M.; Evans, R.; Doull, I. The role of respiratory viruses in cystic fibrosis. J. Cyst. Fibros., 2008, 7(4), 320-328.
[http://dx.doi.org/10.1016/j.jcf.2007.12.002] [PMID: 18255355]
[257]
Amer, H.M.; Abd El Wahed, A.; Shalaby, M.A.; Almajhdi, F.N.; Hufert, F.T.; Weidmann, M. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J. Virol. Methods, 2013, 193(2), 337-340.
[http://dx.doi.org/10.1016/j.jviromet.2013.06.027] [PMID: 23811231]
[258]
Martel, N.; Gomes, S.A.; Chemin, I.; Trépo, C.; Kay, A. Improved rolling circle amplification (RCA) of hepatitis B virus (HBV) relaxed-circular serum DNA (RC-DNA). J. Virol. Methods, 2013, 193(2), 653-659.
[http://dx.doi.org/10.1016/j.jviromet.2013.07.045] [PMID: 23928222]
[259]
Thaxton, C.S.; Elghanian, R.; Thomas, A.D.; Stoeva, S.I.; Lee, J.S.; Smith, N.D.; Schaeffer, A.J.; Klocker, H.; Horninger, W.; Bartsch, G.; Mirkin, C.A. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. USA, 2009, 106(44), 18437-18442.
[http://dx.doi.org/10.1073/pnas.0904719106] [PMID: 19841273]
[260]
Nilsson, H.O.; Aleljung, P.; Nilsson, I.; Tyszkiewicz, T.; Wadström, T. Immunomagnetic bead enrichment and PCR for detection of Helicobacter pylori in human stools. J. Microbiol. Methods, 1996, 27(1), 73-79.
[http://dx.doi.org/10.1016/0167-7012(96)00930-X]
[261]
Kim, J.; Biondi, M.J.; Feld, J.J.; Chan, W.C.W. Clinical validation of quantum dot barcode diagnostic technology. ACS Nano, 2016, 10(4), 4742-4753.
[http://dx.doi.org/10.1021/acsnano.6b01254] [PMID: 27035744]
[262]
Bicart-See, A.; Rottman, M.; Cartwright, M.; Seiler, B.; Gamini, N.; Rodas, M.; Penary, M.; Giordano, G.; Oswald, E.; Super, M.; Ingber, D.E. Rapid isolation of Staphylococcus aureus pathogens from infected clinical samples using magnetic beads coated with Fc-mannose binding lectin. PLoS One, 2016, 11(6)e0156287
[http://dx.doi.org/10.1371/journal.pone.0156287] [PMID: 27275840]
[263]
Aytur, T.; Foley, J.; Anwar, M.; Boser, B.; Harris, E.; Beatty, P.R. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Methods, 2006, 314(1-2), 21-29.
[http://dx.doi.org/10.1016/j.jim.2006.05.006] [PMID: 16842813]
[264]
Wang, X.; Xiong, E.; Tian, T.; Cheng, M.; Lin, W.; Wang, H.; Zhang, G.; Sun, J.; Zhou, X. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano, 2020, 14(2), 2497-2508.
[http://dx.doi.org/10.1021/acsnano.0c00022] [PMID: 32045522]
[265]
Dhar, B.C. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal. Bioanal. Chem., 2022, 414(9), 2903-2934.
[http://dx.doi.org/10.1007/s00216-022-03918-7] [PMID: 35211785]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy