Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biomarkers in Hypertension and Hypertension-related Disorders

Author(s): Patrícia de Carvalho Ribeiro, Lucas Felipe Oliveira, Daniel Mendes Filho, Ricardo Cambraia Parreira, Mariana Sousa Vieira, Bruno Lemes Marques, Elis Marra da Madeira Freitas, Walison N. Silva, Helton da Costa Santiago, Alexander Birbrair, Henning Ulrich, Valdo José Dias da Silva and Rodrigo R. Resende*

Volume 30, Issue 34, 2023

Published on: 28 December, 2022

Page: [3846 - 3879] Pages: 34

DOI: 10.2174/0929867329666220921113403

Price: $65

Open Access Journals Promotions 2
Abstract

Systemic arterial hypertension (SAH) is a major risk factor for several secondary diseases, especially cardiovascular and renal conditions. SAH has a high prevalence worldwide, and its precise and early recognition is important to prevent the development of secondary outcomes. In this field, the study of biomarkers represents an important approach to diagnosing and predicting the disease and its associated conditions. The use of biomarkers in hypertension and hypertension-related disorders, such as ischemic stroke, intracerebral hemorrhage, transient ischemic attack, acute myocardial infarction, angina pectoris and chronic kidney disease, are discussed in this review. Establishing a potential pool of biomarkers may contribute to a non-invasive and improved approach for their diagnosis, prognosis, risk assessment, therapy management and pharmacological responses to a therapeutic intervention to improve patients' quality of life and prevent unfavorable outcomes.

Keywords: Systemic arterial hypertension, hypertension, cardiovascular disease, biomarkers, genomics, transcriptomics, proteomics, metabolomics.

[1]
Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; Kahan, T.; Mahfoud, F.; Redon, J.; Ruilope, L.; Zanchetti, A.; Kerins, M.; Kjeldsen, S.E.; Kreutz, R.; Laurent, S.; Lip, G.Y.H.; McManus, R.; Narkiewicz, K.; Ruschitzka, F.; Schmieder, R.E.; Shlyakhto, E.; Tsioufis, C.; Aboyans, V.; Desormais, I. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). G. Ital. Cardiol. (Rome), 2018, 19(11), 3S-73S.
[PMID: 30520455]
[2]
Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; Kazmi, K.; Lanas, F.; Wei, L.; Lopez-Jaramillo, P.; Fanghong, L.; Ismail, N.H.; Puoane, T.; Rosengren, A.; Szuba, A.; Temizhan, A.; Wielgosz, A.; Yusuf, R.; Yusufali, A.; McKee, M.; Liu, L.; Mony, P.; Yusuf, S. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA, 2013, 310(9), 959-968.
[http://dx.doi.org/10.1001/jama.2013.184182] [PMID: 24002282]
[3]
Zhou, B.; Bentham, J.; Di Cesare, M.; Bixby, H.; Danaei, G.; Hajifathalian, K.; Taddei, C.; Carrillo-Larco, R.M.; Djalalinia, S.; Khatibzadeh, S.; Lugero, C.; Peykari, N.; Zhang, W.Z.; Bennett, J.; Bilano, V.; Stevens, G.A.; Cowan, M.J.; Riley, L.M.; Chen, Z.; Hambleton, I.R.; Jackson, R.T.; Kengne, A.P.; Khang, Y-H.; Laxmaiah, A.; Liu, J.; Malekzadeh, R.; Neuhauser, H.K.; Sorić, M.; Starc, G.; Sundström, J.; Woodward, M.; Ezzati, M.; Abarca-Gómez, L.; Abdeen, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; Agyemang, C.; Ahmad, N.A.; Ahmadvand, A.; Ahrens, W.; Ajlouni, K.; Akhtaeva, N.; Al-Raddadi, R.; Ali, M.M.; Ali, O.; Alkerwi, A.; Aly, E.; Amarapurkar, D.N.; Amouyel, P.; Amuzu, A.; Andersen, L.B.; Anderssen, S.A.; Ängquist, L.H.; Anjana, R.M.; Ansong, D.; Aounallah-Skhiri, H.; Araújo, J.; Ariansen, I.; Aris, T.; Arlappa, N.; Arveiler, D.; Aryal, K.K.; Aspelund, T.; Assah, F.K.; Assunção, M.C.F.; Avdicová, M.; Azevedo, A.; Azizi, F.; Babu, B.V.; Bahijri, S.; Balakrishna, N.; Bamoshmoosh, M.; Banach, M.; Bandosz, P.; Banegas, J.R.; Barbagallo, C.M.; Barceló, A.; Barkat, A.; Barros, A.J.D.; Barros, M.V.; Bata, I.; Batieha, A.M.; Batyrbek, A.; Baur, L.A.; Beaglehole, R.; Romdhane, H.B.; Benet, M.; Benson, L.S.; Bernabe-Ortiz, A.; Bernotiene, G.; Bettiol, H.; Bhagyalaxmi, A.; Bharadwaj, S.; Bhargava, S.K.; Bi, Y.; Bikbov, M.; Bista, B.; Bjerregaard, P.; Bjertness, E.; Bjertness, M.B.; Björkelund, C.; Blokstra, A.; Bo, S.; Bobak, M.; Boeing, H.; Boggia, J.G.; Boissonnet, C.P.; Bongard, V.; Borchini, R.; Bovet, P.; Braeckman, L.; Brajkovich, I.; Branca, F.; Breckenkamp, J.; Brenner, H.; Brewster, L.M.; Bruno, G.; Bueno-de-Mesquita, H.B.; Bugge, A.; Burns, C.; Bursztyn, M.; de León, A.C.; Cacciottolo, J.; Cai, H.; Cameron, C.; Can, G.; Cândido, A.P.C.; Capuano, V.; Cardoso, V.C.; Carlsson, A.C.; Carvalho, M.J.; Casanueva, F.F.; Casas, J-P.; Caserta, C.A.; Chamukuttan, S.; Chan, A.W.; Chan, Q.; Chaturvedi, H.K.; Chaturvedi, N.; Chen, C-J.; Chen, F.; Chen, H.; Chen, S.; Chen, Z.; Cheng, C-Y.; Dekkaki, I.C.; Chetrit, A.; Chiolero, A.; Chiou, S-T.; Chirita-Emandi, A.; Chirlaque, M-D.; Cho, B.; Cho, Y.; Christofaro, D.G.; Chudek, J.; Cifkova, R.; Cinteza, E.; Claessens, F.; Clays, E.; Concin, H.; Cooper, C.; Cooper, R.; Coppinger, T.C.; Costanzo, S.; Cottel, D.; Cowell, C.; Craig, C.L.; Crujeiras, A.B.; Cruz, J.J.; D’Arrigo, G.; d’Orsi, E.; Dallongeville, J.; Damasceno, A.; Danaei, G.; Dankner, R.; Dantoft, T.M.; Dauchet, L.; Davletov, K.; De Backer, G.; De Bacquer, D.; de Gaetano, G.; De Henauw, S.; de Oliveira, P.D.; De Smedt, D.; Deepa, M.; Dehghan, A.; Delisle, H.; Deschamps, V.; Dhana, K.; Di Castelnuovo, A.F.; Dias-da-Costa, J.S.; Diaz, A.; Dickerson, T.T.; Djalalinia, S.; Do, H.T.P.; Donfrancesco, C.; Donoso, S.P.; Döring, A.; Dorobantu, M.; Doua, K.; Drygas, W.; Dulskiene, V.; Džakula, A.; Dzerve, V.; Dziankowska-Zaborszczyk, E.; Eggertsen, R.; Ekelund, U.; El Ati, J.; Elliott, P.; Elosua, R.; Erasmus, R.T.; Erem, C.; Eriksen, L.; Eriksson, J.G.; Escobedo-de la Peña, J.; Evans, A.; Faeh, D.; Fall, C.H.; Farzadfar, F.; Felix-Redondo, F.J.; Ferguson, T.S.; Fernandes, R.A.; Fernández-Bergés, D.; Ferrante, D.; Ferrari, M.; Ferreccio, C.; Ferrieres, J.; Finn, J.D.; Fischer, K.; Föger, B.; Foo, L.H.; Forslund, A-S.; Forsner, M.; Fouad, H.M.; Francis, D.K.; do Carmo Franco, M.; Franco, O.H.; Frontera, G.; Fuchs, F.D.; Fuchs, S.C.; Fujita, Y.; Furusawa, T.; Gaciong, Z.; Galvano, F.; Garcia-de-la-Hera, M.; Gareta, D.; Garnett, S.P.; Gaspoz, J-M.; Gasull, M.; Gates, L.; Geleijnse, J.M.; Ghasemian, A.; Ghimire, A.; Giampaoli, S.; Gianfagna, F.; Gill, T.K.; Giovannelli, J.; Goldsmith, R.A.; Gonçalves, H.; Gonzalez-Gross, M.; González-Rivas, J.P.; Gorbea, M.B.; Gottrand, F.; Graff-Iversen, S.; Grafnetter, D.; Grajda, A.; Grammatikopoulou, M.G.; Gregor, R.D.; Grodzicki, T.; Grøntved, A.; Grosso, G.; Gruden, G.; Grujic, V.; Gu, D.; Guan, O.P.; Gudmundsson, E.F.; Gudnason, V.; Guerrero, R.; Guessous, I.; Guimaraes, A.L.; Gulliford, M.C.; Gunnlaugsdottir, J.; Gunter, M.; Gupta, P.C.; Gupta, R.; Gureje, O.; Gurzkowska, B.; Gutierrez, L.; Gutzwiller, F.; Hadaegh, F.; Halkjær, J.; Hambleton, I.R.; Hardy, R.; Hari Kumar, R.; Hata, J.; Hayes, A.J.; He, J.; He, Y.; Elisabeth, M.; Henriques, A.; Cadena, L.H.; Herrala, S.; Heshmat, R.; Hihtaniemi, I.T.; Ho, S.Y.; Ho, S.C.; Hobbs, M.; Hofman, A.; Dinc, G.H.; Horimoto, A.R.V.R.; Hormiga, C.M.; Horta, B.L.; Houti, L.; Howitt, C.; Htay, T.T.; Htet, A.S.; Than Htike, M.M.; Hu, Y.; Huerta, J.M.; Huisman, M.; Husseini, A.S.; Huybrechts, I.; Hwalla, N.; Iacoviello, L.; Iannone, A.G.; Ibrahim, M.M.; Wong, N.I.; Ikeda, N.; Ikram, M.A.; Irazola, V.E.; Islam, M.; al-Safi Ismail, A.; Ivkovic, V.; Iwasaki, M.; Jackson, R.T.; Jacobs, J.M.; Jaddou, H.; Jafar, T.; Jamrozik, K.; Janszky, I.; Jasienska, G.; Jelaković, A.; Jelaković, B.; Jennings, G.; Jeong, S.; Jiang, C.Q.; Joffres, M.; Johansson, M.; Jokelainen, J.J.; Jonas, J.B.; Jørgensen, T.; Joshi, P.; Jóźwiak, J.; Juolevi, A.; Jurak, G.; Jureša, V.; Kaaks, R.; Kafatos, A.; Kajantie, E.O.; Kalter-Leibovici, O.; Kamaruddin, N.A.; Karki, K.B.; Kasaeian, A.; Katz, J.; Kauhanen, J.; Kaur, P.; Kavousi, M.; Kazakbaeva, G.; Keil, U.; Boker, L.K.; Keinänen-Kiukaanniemi, S.; Kelishadi, R.; Kemper, H.C.G.; Kengne, A.P.; Kerimkulova, A.; Kersting, M.; Key, T.; Khader, Y.S.; Khalili, D.; Khang, Y-H.; Khateeb, M.; Khaw, K-T.; Kiechl-Kohlendorfer, U.; Kiechl, S.; Killewo, J.; Kim, J.; Kim, Y-Y.; Klumbiene, J.; Knoflach, M.; Kolle, E.; Kolsteren, P.; Korrovits, P.; Koskinen, S.; Kouda, K.; Kowlessur, S.; Koziel, S.; Kriemler, S.; Kristensen, P.L.; Krokstad, S.; Kromhout, D.; Kruger, H.S.; Kubinova, R.; Kuciene, R.; Kuh, D.; Kujala, U.M.; Kulaga, Z.; Krishna Kumar, R.; Kurjata, P.; Kusuma, Y.S.; Kuulasmaa, K.; Kyobutungi, C.; Laatikainen, T.; Lachat, C.; Lam, T.H.; Landrove, O.; Lanska, V.; Lappas, G.; Larijani, B.; Laugsand, L.E.; Laxmaiah, A.; Le Nguyen Bao, K.; Le, T.D.; Leclercq, C.; Lee, J.; Lee, J.; Lehtimäki, T.; León-Muñoz, L.M.; Levitt, N.S.; Li, Y.; Lilly, C.L.; Lim, W-Y.; Lima-Costa, M.F.; Lin, H-H.; Lin, X.; Lind, L.; Linneberg, A.; Lissner, L.; Litwin, M.; Liu, J.; Lorbeer, R.; Lotufo, P.A.; Lozano, J.E.; Luksiene, D.; Lundqvist, A.; Lunet, N.; Lytsy, P.; Ma, G.; Ma, J.; Machado-Coelho, G.L.L.; Machi, S.; Maggi, S.; Magliano, D.J.; Magriplis, E.; Majer, M.; Makdisse, M.; Malekzadeh, R.; Malhotra, R.; Mallikharjuna Rao, K.; Malyutina, S.; Manios, Y.; Mann, J.I.; Manzato, E.; Margozzini, P.; Marques-Vidal, P.; Marques, L.P.; Marrugat, J.; Martorell, R.; Mathiesen, E.B.; Matijasevich, A.; Matsha, T.E.; Mbanya, J.C.N.; Mc Donald Posso, A.J.; McFarlane, S.R.; McGarvey, S.T.; McLachlan, S.; McLean, R.M.; McLean, S.B.; McNulty, B.A.; Mediene-Benchekor, S.; Medzioniene, J.; Meirhaeghe, A.; Meisinger, C.; Menezes, A.M.B.; Menon, G.R.; Meshram, I.I.; Metspalu, A.; Meyer, H.E.; Mi, J.; Mikkel, K.; Miller, J.C.; Minderico, C.S.; Francisco, J.; Miranda, J.J.; Mirrakhimov, E.; Mišigoj-Durakovic, M.; Modesti, P.A.; Mohamed, M.K.; Mohammad, K.; Mohammadifard, N.; Mohan, V.; Mohanna, S.; Mohd Yusoff, M.F.; Møllehave, L.T.; Møller, N.C.; Molnár, D.; Momenan, A.; Mondo, C.K.; Monyeki, K.D.K.; Moon, J.S.; Moreira, L.B.; Morejon, A.; Moreno, L.A.; Morgan, K.; Moschonis, G.; Mossakowska, M.; Mostafa, A.; Mota, J.; Esmaeel Motlagh, M.; Motta, J.; Msyamboza, K.P.; Mu, T.T.; Muiesan, M.L.; Müller-Nurasyid, M.; Murphy, N.; Mursu, J.; Musil, V.; Nabipour, I.; Nagel, G.; Naidu, B.M.; Nakamura, H.; Námešná, J.; Nang, E.E.K.; Nangia, V.B.; Narake, S.; Nauck, M.; Navarrete-Muñoz, E.M.; Ndiaye, N.C.; Neal, W.A.; Nenko, I.; Neovius, M.; Nervi, F.; Neuhauser, H.K.; Nguyen, C.T.; Nguyen, N.D.; Nguyen, Q.N.; Nguyen, Q.V.; Nieto-Martínez, R.E.; Niiranen, T.J.; Ning, G.; Ninomiya, T.; Nishtar, S.; Noale, M.; Noboa, O.A.; Noorbala, A.A.; Norat, T.; Noto, D.; Al Nsour, M.; O’Reilly, D.; Oda, E.; Oehlers, G.; Oh, K.; Ohara, K.; Olinto, M.T.A.; Oliveira, I.O.; Omar, M.A.; Onat, A.; Ong, S.K.; Ono, L.M.; Ordunez, P.; Ornelas, R.; Osmond, C.; Ostojic, S.M.; Ostovar, A.; Otero, J.A.; Overvad, K.; Owusu-Dabo, E.; Paccaud, F.M.; Padez, C.; Pahomova, E.; Pajak, A.; Palli, D.; Palmieri, L.; Pan, W-H.; Panda-Jonas, S.; Panza, F.; Papandreou, D.; Park, S-W.; Parnell, W.R.; Parsaeian, M.; Patel, N.D.; Pecin, I.; Pednekar, M.S.; Peer, N.; Peeters, P.H.; Peixoto, S.V.; Peltonen, M.; Pereira, A.C.; Peters, A.; Petersmann, A.; Petkeviciene, J.; Peykari, N.; Pham, S.T.; Pigeot, I.; Pikhart, H.; Pilav, A.; Pilotto, L.; Pitakaka, F.; Piwonska, A.; Plans-Rubió, P.; Polašek, O.; Porta, M.; Portegies, M.L.P.; Pourshams, A.; Poustchi, H.; Pradeepa, R.; Prashant, M.; Price, J.F.; Puder, J.J.; Puiu, M.; Punab, M.; Qasrawi, R.F.; Qorbani, M.; Bao, T.Q.; Radic, I.; Radisauskas, R.; Rahman, M.; Raitakari, O.; Raj, M.; Ramachandra Rao, S.; Ramachandran, A.; Ramos, E.; Rampal, L.; Rampal, S.; Rangel Reina, D.A.; Redon, J.; Reganit, P.F.M.; Ribeiro, R.; Riboli, E.; Rigo, F.; Rinke de Wit, T.F.; Ritti-Dias, R.M.; Robinson, S.M.; Robitaille, C.; Rodríguez-Artalejo, F.; del Cristo Rodriguez-Perez, M.; Rodríguez-Villamizar, L.A.; Rojas-Martinez, R.; Romaguera, D.; Ronkainen, K.; Rosengren, A.; Roy, J.G.R.; Rubinstein, A.; Sandra Ruiz-Betancourt, B.; Rutkowski, M.; Sabanayagam, C.; Sachdev, H.S.; Saidi, O.; Sakarya, S.; Salanave, B.; Salazar Martinez, E.; Salmerón, D.; Salomaa, V.; Salonen, J.T.; Salvetti, M.; Sánchez-Abanto, J.; Sans, S.; Santos, D.A.; Santos, I.S.; Nunes dos Santos, R.; Santos, R.; Saramies, J.L.; Sardinha, L.B.; Sarganas, G.; Sarrafzadegan, N.; Saum, K-U.; Savva, S.; Scazufca, M.; Schargrodsky, H.; Schipf, S.; Schmidt, C.O.; Schöttker, B.; Schultsz, C.; Schutte, A.E.; Sein, A.A.; Sen, A.; Senbanjo, I.O.; Sepanlou, S.G.; Sharma, S.K.; Shaw, J.E.; Shibuya, K.; Shin, D.W.; Shin, Y.; Si-Ramlee, K.; Siantar, R.; Sibai, A.M.; Santos Silva, D.A.; Simon, M.; Simons, J.; Simons, L.A.; Sjöström, M.; Skovbjerg, S.; Slowikowska-Hilczer, J.; Slusarczyk, P.; Smeeth, L.; Smith, M.C.; Snijder, M.B.; So, H-K.; Sobngwi, E.; Söderberg, S.; Solfrizzi, V.; Sonestedt, E.; Song, Y.; Sørensen, T.I.A.; Soric, M.; Jérome, C.S.; Soumare, A.; Staessen, J.A.; Starc, G.; Stathopoulou, M.G.; Stavreski, B.; Steene-Johannessen, J.; Stehle, P.; Stein, A.D.; Stergiou, G.S.; Stessman, J.; Stieber, J.; Stöckl, D.; Stocks, T.; Stokwiszewski, J.; Stronks, K.; Strufaldi, M.W.; Sun, C-A.; Sundström, J.; Sung, Y-T.; Suriyawongpaisal, P.; Sy, R.G.; Shyong Tai, E.; Tammesoo, M-L.; Tamosiunas, A.; Tan, E.J.; Tang, X.; Tanser, F.; Tao, Y.; Tarawneh, M.R.; Tarqui-Mamani, C.B.; Tautu, O-F.; Taylor, A.; Theobald, H.; Theodoridis, X.; Thijs, L.; Thuesen, B.H.; Tjonneland, A.; Tolonen, H.K.; Tolstrup, J.S.; Topbas, M.; Topór-Madry, R.; Tormo, M.J.; Torrent, M.; Traissac, P.; Trichopoulos, D.; Trichopoulou, A.; Trinh, O.T.H.; Trivedi, A.; Tshepo, L.; Tulloch-Reid, M.K.; Tullu, F.; Tuomainen, T-P.; Tuomilehto, J.; Turley, M.L.; Tynelius, P.; Tzourio, C.; Ueda, P.; Ugel, E.E.; Ulmer, H.; Uusitalo, H.M.T.; Valdivia, G.; Valvi, D.; van der Schouw, Y.T.; Van Herck, K.; Van Minh, H.; van Rossem, L.; Van Schoor, N.M.; van Valkengoed, I.G.M.; Vanderschueren, D.; Vanuzzo, D.; Vatten, L.; Vega, T.; Velasquez-Melendez, G.; Veronesi, G.; Monique Verschuren, W.M.; Verstraeten, R.; Victora, C.G.; Viet, L.; Viikari-Juntura, E.; Vineis, P.; Vioque, J.; Virtanen, J.K.; Visvikis-Siest, S.; Viswanathan, B.; Vlasoff, T.; Vollenweider, P.; Voutilainen, S.; Wade, A.N.; Wagner, A.; Walton, J.; Wan Bebakar, W.M.; Wan Mohamud, W.N.; Wanderley, R.S., Jr; Wang, M-D.; Wang, Q.; Wang, Y.X.; Wang, Y-W.; Wannamethee, S.G.; Wareham, N.; Wedderkopp, N.; Weerasekera, D.; Whincup, P.H.; Widhalm, K.; Widyahening, I.S.; Wiecek, A.; Wijga, A.H.; Wilks, R.J.; Willeit, J.; Willeit, P.; Williams, E.A.; Wilsgaard, T.; Wojtyniak, B.; Wong-McClure, R.A.; Wong, J.Y.Y.; Wong, T.Y.; Woo, J.; Woodward, M.; Giwercman Wu, A.; Wu, F.C.; Wu, S.; Xu, H.; Yan, W.; Yang, X.; Ye, X.; Yiallouros, P.K.; Yoshihara, A.; Younger-Coleman, N.O.; Yusoff, A.F.; Zainuddin, A.A.; Zambon, S.; Zampelas, A.; Zdrojewski, T.; Zeng, Y.; Zhao, D.; Zhao, W.; Zheng, W.; Zheng, Y.; Zhu, D.; Zhussupov, B.; Zimmermann, E.; Cisneros, J.Z. Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants. Int. J. Epidemiol., 2018, 47(3), 872-883i.
[http://dx.doi.org/10.1093/ije/dyy016] [PMID: 29579276]
[4]
van Breukelen-van der Stoep, D.F.; van Zeben, D.; Klop, B.; van de Geijn, G.J.M.; Janssen, H.J.W.; van der Meulen, N.; De Vries, M.A.; Hazes, M.; Birnie, E.; Castro Cabezas, M. Marked underdiagnosis and undertreatment of hypertension and hypercholesterolaemia in rheumatoid arthritis. Rheumatology (Oxford), 2016, 55(7), 1210-1216.
[http://dx.doi.org/10.1093/rheumatology/kew039] [PMID: 27009825]
[5]
Materson, B.J. Expanding the definition and classification of hypertension. J. Clin. Hypertens. (Greenwich), 2005, 7(9), 540-541.
[http://dx.doi.org/10.1111/j.1524-6175.2005.04806.x] [PMID: 16227774]
[6]
Ruzicka, M.; Kucharski, S.E.; Hiremath, S. Balancing overscreening and underdiagnosis in secondary hypertension. Cardiol. Clin., 2017, 35(2), 247-254.
[http://dx.doi.org/10.1016/j.ccl.2016.12.006] [PMID: 28411898]
[7]
Poulter, N.R.; Prabhakaran, D.; Caulfield, M. Hypertension. Lancet, 2015, 386(9995), 801-812.
[http://dx.doi.org/10.1016/S0140-6736(14)61468-9] [PMID: 25832858]
[8]
Mohamed, F. The physiology and clinical use of the sphygmograph. Med Times Gazette., 1872, 1, 62.
[9]
O’Rourke, M.F. Frederick akbar mahomed. Hypertension, 1992, 19(2), 212-217.
[http://dx.doi.org/10.1161/01.HYP.19.2.212] [PMID: 1737655]
[10]
Korotkoff, N. On methods of studying blood pressure. Izv Venno-Med Akad., 1905, 11, 365.
[11]
Mancia, G. Scipione riva-rocci. Clin. Cardiol., 1997, 20(5), 503-504.
[http://dx.doi.org/10.1002/clc.4960200520] [PMID: 9134286]
[12]
Riva-Rocci, S. Un nuovo sfigmomanometro. Gazzetta medica di Torino, 1896, 47, 981-1001.
[13]
Segall, H.N. How Korotkoff, the surgeon, discovered the auscultatory method of measuring arterial pressure. Ann. Intern. Med., 1975, 83(4), 561-562.
[http://dx.doi.org/10.7326/0003-4819-83-4-561] [PMID: 1101765]
[14]
Basso, N.; Terragno, N.A. History about the discovery of the renin-angiotensin system. Hypertension, 2001, 38(6), 1246-1249.
[http://dx.doi.org/10.1161/hy1201.101214] [PMID: 11751697]
[15]
Tigerstedt, R.; Bergman, P.Q. Niere und Kreislauf. Skand. Arch. Physiol., 1898, 8(1), 223-271.
[http://dx.doi.org/10.1111/j.1748-1716.1898.tb00272.x]
[16]
Johnson, R.J.; Lanaspa, M.A.; Gabriela Sánchez-Lozada, L.; Rodriguez-Iturbe, B. The discovery of hypertension: Evolving views on the role of the kidneys, and current hot topics. Am. J. Physiol. Renal Physiol., 2015, 308(3), F167-F178.
[http://dx.doi.org/10.1152/ajprenal.00503.2014] [PMID: 25377913]
[17]
Cook, H.W. Blood pressure in prognosis. Med. Rec., 1911, 80, 959-968.
[18]
Goldblatt, H.; Lynch, J.; Hanzal, R.F.; Summerville, W.W. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med., 1934, 59(3), 347-379.
[http://dx.doi.org/10.1084/jem.59.3.347] [PMID: 19870251]
[19]
Braun-Menendez, E.; Page, I.H. Suggested revision of nomenclature—angiotensin. Science, 1958, 127(3292), 242.
[http://dx.doi.org/10.1126/science.127.3292.242.b] [PMID: 17750687]
[20]
Fasciolo, J.C.; Leloir, L.F.; Muñoz, J.M.; Braun-Menendez, E. On the specificity of renin. Science, 1940, 92(2398), 554-555.
[http://dx.doi.org/10.1126/science.92.2398.554] [PMID: 17757123]
[21]
Fasciolo, J.C.; Houssay, B.A.; Taquini, A.C. The blood-pressure raising secretion of the ischaemic kidney. J. Physiol., 1938, 94(3), 281-293.
[http://dx.doi.org/10.1113/jphysiol.1938.sp003680] [PMID: 16995044]
[22]
Goldblatt, H. Studies on experimental hypertension: V. The pathogenesis of experimental hypertension due to renal ischemia. Ann. Intern. Med., 1937, 11(1), 69-103.
[http://dx.doi.org/10.7326/0003-4819-11-1-69]
[23]
Page, I.H. Vaso-pressor action of extracts of plasma of normal dogs and dogs with experimentally produced hypertension. Exp. Biol. Med. (Maywood), 1936, 35(1), 112-116.
[http://dx.doi.org/10.3181/00379727-35-8877C]
[24]
Saklayen, M.G.; Deshpande, N.V. Timeline of history of hypertension treatment. Front. Cardiovasc. Med., 2016, 3, 3.
[http://dx.doi.org/10.3389/fcvm.2016.00003] [PMID: 26942184]
[25]
Hawgood, B.J. Maurício Rocha E Silva MD: Snake venom, bradykinin and the rise of autopharmacology. Toxicon, 1997, 35(11), 1569-1580.
[http://dx.doi.org/10.1016/S0041-0101(97)00008-1] [PMID: 9428104]
[26]
e Silva, M.R.; Beraldo, W.T.; Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol., 1949, 156(2), 261-273.
[http://dx.doi.org/10.1152/ajplegacy.1949.156.2.261] [PMID: 18127230]
[27]
Skeggs, L.T., Jr; Kahn, J.R.; Shumway, N.P. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med., 1956, 103(3), 295-299.
[http://dx.doi.org/10.1084/jem.103.3.295] [PMID: 13295487]
[28]
Freis, E.D.; Wanko, A.; Wilson, I.M.; Parrish, A.E. Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents. J. Am. Med. Assoc., 1958, 166(2), 137-140.
[http://dx.doi.org/10.1001/jama.1958.02990020025004] [PMID: 13491319]
[29]
Smirk, H.; McQueen, E.G.; Morrison, R.B.I. Chlorothiazide and hydrochlorothiazide in management of hypertension. BMJ, 1960, 1(5172), 515-518.
[http://dx.doi.org/10.1136/bmj.1.5172.515] [PMID: 13831829]
[30]
Borst, J.G.G.; Borst-de Geus, A. Hypertension explained by Starling’s theory of circulatory homoeostasis. Lancet, 1963, 281(7283), 677-682.
[http://dx.doi.org/10.1016/S0140-6736(63)91443-0] [PMID: 14014100]
[31]
Guyton, A.C.; Coleman, T.G.; Fourcade, J.C.; Navar, L.G. Physiologic control of arterial pressure. Bull. N. Y. Acad. Med., 1969, 45(9), 811-830.
[PMID: 4308841]
[32]
Kannel, W.B.; Gordon, T.; Schwartz, M.J. Systolic versus diastolic blood pressure and risk of coronary heart disease. Am. J. Cardiol., 1971, 27(4), 335-346.
[http://dx.doi.org/10.1016/0002-9149(71)90428-0] [PMID: 5572576]
[33]
Bianchi, G.; Fox, U.; Di Francesco, G.F.; Giovanetti, A.M.; Pagetti, D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin. Sci. Mol. Med., 1974, 47(5), 435-448.
[http://dx.doi.org/10.1042/cs0470435] [PMID: 4611680]
[34]
Brenner, B.M.; Garcia, D.L.; Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens., 1988, 1(4 Pt 1), 335-347.
[http://dx.doi.org/10.1093/ajh/1.4.335] [PMID: 3063284]
[35]
Campese, V.M.; Romoff, M.S.; Levitan, D.; Saglikes, Y.; Friedler, R.M.; Massry, S.G. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int., 1982, 21(2), 371-378.
[http://dx.doi.org/10.1038/ki.1982.32] [PMID: 7069999]
[36]
DiBona, G.F. Renal neural mechanisms in salt-sensitive hypertension. Blood Press. Suppl., 1995, 2, 81-87.
[PMID: 7582081]
[37]
Gill, J.R., Jr; Güllner, G.; Lake, C.R.; Lakatua, D.J.; Lan, G. Plasma and urinary catecholamines in salt-sensitive idiopathic hypertension. Hypertension, 1988, 11(4), 312-319.
[http://dx.doi.org/10.1161/01.HYP.11.4.312] [PMID: 3281896]
[38]
Guyton, A.C.; Coleman, T.G.; Cowley, A.W., Jr; Scheel, K.W.; Manning, R.D., Jr; Norman, R.A., Jr. Arterial pressure regulation. Am. J. Med., 1972, 52(5), 584-594.
[http://dx.doi.org/10.1016/0002-9343(72)90050-2] [PMID: 4337474]
[39]
Laragh, J.H.; Sealey, J.E. The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure. Am. J. Hypertens., 2011, 24(11), 1164-1180.
[http://dx.doi.org/10.1038/ajh.2011.171] [PMID: 21938070]
[40]
Lifton, R.P. Genetic dissection of human blood pressure variation: Common pathways from rare phenotypes. Harvey Lect., 2004-2005, 100, 71-101.
[PMID: 16970175]
[41]
Rodriguez-Iturbe, B.; Romero, F.; Johnson, R.J. Pathophysiological mechanisms of salt-dependent hypertension. Am. J. Kidney Dis., 2007, 50(4), 655-672.
[http://dx.doi.org/10.1053/j.ajkd.2007.05.025] [PMID: 17900467]
[42]
Sommers, S.; Melamed, J. Renal pathology of essential hypertension. Am. J. Hypertens., 1990, 3(7), 583-587.
[http://dx.doi.org/10.1093/ajh/3.7.583] [PMID: 1694671]
[43]
Wilcox, C.S. Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 289(4), R913-R935.
[http://dx.doi.org/10.1152/ajpregu.00250.2005] [PMID: 16183628]
[44]
Dahlöf, B.; Sever, P.S.; Poulter, N.R.; Wedel, H.; Beevers, D.G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; McInnes, G.T.; Mehlsen, J.; Nieminen, M.; O’Brien, E.; Östergren, J. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): A multicentre randomised controlled trial. Lancet, 2005, 366(9489), 895-906.
[http://dx.doi.org/10.1016/S0140-6736(05)67185-1] [PMID: 16154016]
[45]
Officers, A. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA, 2002, 288(23), 2981-2997.
[http://dx.doi.org/10.1001/jama.288.23.2981] [PMID: 12479763]
[46]
Laurent, S. Antihypertensive drugs. Pharmacol. Res., 2017, 124, 116-125.
[http://dx.doi.org/10.1016/j.phrs.2017.07.026] [PMID: 28780421]
[47]
Staessen, J.; Bulpitt, C.; Clement, D.; De Leeuw, P.; Fagard, R.; Fletcher, A.; Forette, F.; Leonetti, G.; Nissinen, A.; O’Malley, K. Relation between mortality and treated blood pressure in elderly patients with hypertension: Report of the European Working Party on High Blood Pressure in the Elderly. BMJ, 1989, 298(6687), 1552-1556.
[http://dx.doi.org/10.1136/bmj.298.6687.1552] [PMID: 2503114]
[48]
Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; Lin, P.H.; Karanja, N.; Simons-Morton, D.; McCullough, M.; Swain, J.; Steele, P.; Evans, M.A.; Miller, E.R.; Harsha, D.W. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med., 1997, 336(16), 1117-1124.
[http://dx.doi.org/10.1056/NEJM199704173361601] [PMID: 9099655]
[49]
Cappuccio, F.P.; Markandu, N.D.; Carney, C.; Sagnella, G.A.; MacGregor, G.A. Double-blind randomised trial of modest salt restriction in older people. Lancet, 1997, 350(9081), 850-854.
[http://dx.doi.org/10.1016/S0140-6736(97)02264-2] [PMID: 9310603]
[50]
Opie, L.H. Mediterranean diet for primary prevention of cardiovascular disease. N. Engl. J. Med., 2013, 369(7), 672-677.
[http://dx.doi.org/10.1056/NEJMc1306659] [PMID: 23944309]
[51]
Santos, R.A. Angiotensin-(1–7). Hypertension, 2014, 63(6), 1138-1147.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01274] [PMID: 24664288]
[52]
Rolim, T.; Cancino, J.; Zucolotto, V. A nanostructured genosensor for the early diagnosis of systemic arterial hypertension. Biomed. Microdevices, 2015, 17(1), 3.
[http://dx.doi.org/10.1007/s10544-014-9911-z] [PMID: 25653060]
[53]
Cuffee, Y.; Ogedegbe, C.; Williams, N.J.; Ogedegbe, G.; Schoenthaler, A. Psychosocial risk factors for hypertension: An update of the literature. Curr. Hypertens. Rep., 2014, 16(10), 483.
[http://dx.doi.org/10.1007/s11906-014-0483-3] [PMID: 25139781]
[54]
Liu, K.; Tang, Q.; Zhu, X.; Yang, X. IL-37 increased in patients with acute coronary syndrome and associated with a worse clinical outcome after ST-segment elevation acute myocardial infarction. Clin. Chim. Acta, 2017, 468, 140-144.
[http://dx.doi.org/10.1016/j.cca.2017.02.017] [PMID: 28237549]
[55]
Pan, Y.; Cai, W.; Cheng, Q.; Dong, W.; An, T.; Yan, J. Association between anxiety and hypertension: A systematic review and meta-analysis of epidemiological studies. Neuropsychiatr. Dis. Treat., 2015, 11, 1121-1130.
[PMID: 25960656]
[56]
Rubio-Guerra, A.F.; Rodriguez-Lopez, L.; Vargas-Ayala, G.; Huerta-Ramirez, S.; Serna, D.C.; Lozano-Nuevo, J.J. Depression increases the risk for uncontrolled hypertension. Exp. Clin. Cardiol., 2013, 18(1), 10-12.
[PMID: 24294029]
[57]
Scalco, A.Z.; Scalco, M.Z.; Azul, J.B.S.; Neto, F.L. Hypertension and depression. Clinics (São Paulo), 2005, 60(3), 241-250.
[http://dx.doi.org/10.1590/S1807-59322005000300010] [PMID: 15962086]
[58]
Spruill, T.M. Chronic psychosocial stress and hypertension. Curr. Hypertens. Rep., 2010, 12(1), 10-16.
[http://dx.doi.org/10.1007/s11906-009-0084-8] [PMID: 20425153]
[59]
Worsnop, C.J.; Pierce, R.J.; Naughton, M. Systemic hypertension and obstructive sleep apnea. Sleep, 1993, 16(8), S148-S149.
[http://dx.doi.org/10.1093/sleep/16.suppl_8.S148] [PMID: 8178012]
[60]
Baguet, J.P.; Boutin, I.; Barone-Rochette, G.; Levy, P.; Tamisier, R.; Pierre, H.; Boggetto-Graham, L.; Pépin, J.L. Hypertension diagnosis in obstructive sleep apnea: Self or 24-hour ambulatory blood pressure monitoring? Int. J. Cardiol., 2013, 167(5), 2346-2347.
[http://dx.doi.org/10.1016/j.ijcard.2012.11.037] [PMID: 23176771]
[61]
Sarkar, P.; Mukherjee, S.; Chai-Coetzer, C.L.; McEvoy, R.D. The epidemiology of obstructive sleep apnoea and cardiovascular disease. J. Thorac. Dis., 2018, 10(S34), S4189-S4200.
[http://dx.doi.org/10.21037/jtd.2018.12.56] [PMID: 30687535]
[62]
Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-induced hypertension. Circ. Res., 2015, 116(6), 991-1006.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305697] [PMID: 25767285]
[63]
Leggio, M.; Lombardi, M.; Caldarone, E.; Severi, P.; D’Emidio, S.; Armeni, M.; Bravi, V.; Bendini, M.G.; Mazza, A. The relationship between obesity and hypertension: An updated comprehensive overview on vicious twins. Hypertens. Res., 2017, 40(12), 947-963.
[http://dx.doi.org/10.1038/hr.2017.75] [PMID: 28978986]
[64]
Sorof, J.; Daniels, S. Obesity hypertension in children: A problem of epidemic proportions. Hypertension, 2002, 40(4), 441-447.
[http://dx.doi.org/10.1161/01.HYP.0000032940.33466.12] [PMID: 12364344]
[65]
de Boer, I.H.; Bangalore, S.; Benetos, A.; Davis, A.M.; Michos, E.D.; Muntner, P.; Rossing, P.; Zoungas, S.; Bakris, G. Diabetes and hypertension: A position statement by the american diabetes association. Diabetes Care, 2017, 40(9), 1273-1284.
[http://dx.doi.org/10.2337/dci17-0026] [PMID: 28830958]
[66]
Ferrannini, E.; Cushman, W.C. Diabetes and hypertension: The bad companions. Lancet, 2012, 380(9841), 601-610.
[http://dx.doi.org/10.1016/S0140-6736(12)60987-8] [PMID: 22883509]
[67]
Ohishi, M. Hypertension with diabetes mellitus: Physiology and pathology. Hypertens. Res., 2018, 41(6), 389-393.
[http://dx.doi.org/10.1038/s41440-018-0034-4] [PMID: 29556093]
[68]
Oh, J.; Matkovich, S.J.; Riek, A.E.; Bindom, S.M.; Shao, J.S.; Head, R.D.; Barve, R.A.; Sands, M.S.; Carmeliet, G.; Osei-Owusu, P.; Knutsen, R.H.; Zhang, H.; Blumer, K.J.; Nichols, C.G.; Mecham, R.P.; Baldán, Á.; Benitez, B.A.; Sequeira-Lopez, M.L.; Gomez, R.A.; Bernal-Mizrachi, C. Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat. Commun., 2020, 11(1), 4798.
[http://dx.doi.org/10.1038/s41467-020-18538-x] [PMID: 32968066]
[69]
Zhong, X.; Ma, Z.; Su, Y.; Li, Z.; Liao, Y.; Pan, X.; Zang, L.; Zhou, S. Flavin adenine dinucleotide ameliorates hypertensive vascular remodeling via activating short chain acyl-CoA dehydrogenase. Life Sci., 2020, 258, 118156.
[http://dx.doi.org/10.1016/j.lfs.2020.118156] [PMID: 32735886]
[70]
Saxena, T.; Ali, A.O.; Saxena, M. Pathophysiology of essential hypertension: An update. Expert Rev. Cardiovasc. Ther., 2018, 16(12), 879-887.
[http://dx.doi.org/10.1080/14779072.2018.1540301] [PMID: 30354851]
[71]
Hall, J.E.; Granger, J.P.; do Carmo, J.M.; da Silva, A.A.; Dubinion, J.; George, E.; Hamza, S.; Speed, J.; Hall, M.E. Hypertension: Physiology and pathophysiology. Compr. Physiol., 2012, 2(4), 2393-2442.
[http://dx.doi.org/10.1002/cphy.c110058] [PMID: 23720252]
[72]
Roy, A.; Dakroub, M.; Tezini, G.C.S.V.; Liu, Y.; Guatimosim, S.; Feng, Q.; Salgado, H.C.; Prado, V.F.; Prado, M.A.M.; Gros, R. Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB J., 2016, 30(2), 688-701.
[http://dx.doi.org/10.1096/fj.15-277046] [PMID: 26481308]
[73]
Roy, A.; Guatimosim, S.; Prado, V.F.; Gros, R.; Prado, M.A.M. Cholinergic activity as a new target in diseases of the heart. Mol. Med., 2014, 20(1), 527-537.
[http://dx.doi.org/10.2119/molmed.2014.00125] [PMID: 25222914]
[74]
Durand, M.T.; Becari, C.; Tezini, G.C.S.V.; Fazan, R., Jr; Oliveira, M.; Guatimosim, S.; Prado, V.F.; Prado, M.A.M.; Salgado, H.C. Autonomic cardiocirculatory control in mice with reduced expression of the vesicular acetylcholine transporter. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(4), H655-H662.
[http://dx.doi.org/10.1152/ajpheart.00114.2015] [PMID: 26092977]
[75]
Mann, S.J. Neurogenic hypertension: Pathophysiology, diagnosis and management. Clin. Auton. Res., 2018, 28(4), 363-374.
[http://dx.doi.org/10.1007/s10286-018-0541-z] [PMID: 29974290]
[76]
de Almeida, P.W.M.; Melo, M.B.; Lima, R.F.; Gavioli, M.; Santiago, N.M.; Greco, L.; Jesus, I.C.G.; Nocchi, E.; Parreira, A.; Alves, M.N.M.; Mitraud, L.; Resende, R.R.; Campagnole-Santos, M.J.; dos Santos, R.A.S.; Guatimosim, S. Beneficial effects of angiotensin-(1-7) against deoxycorticosterone acetate-induced diastolic dysfunction occur independently of changes in blood pressure. Hypertension, 2015, 66(2), 389-395.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04893] [PMID: 26077567]
[77]
Souza, D.S.; Menezes-Filho, J.E.R.; Santos-Miranda, A.; Jesus, I.C.G.; Silva Neto, J.A.; Guatimosim, S.; Cruz, J.S.; Vasconcelos, C.M.L. Calcium overload-induced arrhythmia is suppressed by farnesol in rat heart. Eur. J. Pharmacol., 2019, 859, 172488.
[http://dx.doi.org/10.1016/j.ejphar.2019.172488] [PMID: 31233746]
[78]
Goncalves, G.K.; Scalzo, S.; Alves, A.P.; Agero, U.; Guatimosim, S.; Reis, A.M. Neonatal cardiomyocyte hypertrophy induced by endothelin-1 is blocked by estradiol acting on GPER. Am. J. Physiol. Cell Physiol., 2018, 314(3), C310-C322.
[http://dx.doi.org/10.1152/ajpcell.00060.2017] [PMID: 29167148]
[79]
Crowley, S.D.; Song, Y.S.; Lin, E.E.; Griffiths, R.; Kim, H.S.; Ruiz, P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298(4), R1089-R1097.
[http://dx.doi.org/10.1152/ajpregu.00373.2009] [PMID: 20147609]
[80]
Hulsmans, M.; Sager, H.B.; Roh, J.D.; Valero-Muñoz, M.; Houstis, N.E.; Iwamoto, Y.; Sun, Y.; Wilson, R.M.; Wojtkiewicz, G.; Tricot, B.; Osborne, M.T.; Hung, J.; Vinegoni, C.; Naxerova, K.; Sosnovik, D.E.; Zile, M.R.; Bradshaw, A.D.; Liao, R.; Tawakol, A.; Weissleder, R.; Rosenzweig, A.; Swirski, F.K.; Sam, F.; Nahrendorf, M. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med., 2018, 215(2), 423-440.
[http://dx.doi.org/10.1084/jem.20171274] [PMID: 29339450]
[81]
Shagdarsuren, E.; Wellner, M.; Braesen, J.H.; Park, J.K.; Fiebeler, A.; Henke, N.; Dechend, R.; Gratze, P.; Luft, F.C.; Muller, D.N. Complement activation in angiotensin II-induced organ damage. Circ. Res., 2005, 97(7), 716-724.
[http://dx.doi.org/10.1161/01.RES.0000182677.89816.38] [PMID: 16109917]
[82]
Sharma, B.R.; Kanneganti, T.D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 2021, 22(5), 550-559.
[http://dx.doi.org/10.1038/s41590-021-00886-5] [PMID: 33707781]
[83]
De Miguel, C.; Pelegrín, P.; Baroja-Mazo, A.; Cuevas, S. Emerging role of the inflammasome and pyroptosis in hypertension. Int. J. Mol. Sci., 2021, 22(3), 1064.
[http://dx.doi.org/10.3390/ijms22031064] [PMID: 33494430]
[84]
Romão-Veiga, M.; Matias, M.L.; Ribeiro, V.R.; Nunes, P.R.; M Borges, V.T.; Peraçoli, J.C.; Peraçoli, M.T.S. Induction of systemic inflammation by hyaluronan and hsp70 in women with pre-eclampsia. Cytokine, 2018, 105, 23-31.
[http://dx.doi.org/10.1016/j.cyto.2018.02.007] [PMID: 29438905]
[85]
Krishnan, S.M.; Sobey, C.G.; Latz, E.; Mansell, A.; Drummond, G.R. IL -1β and IL -18: Inflammatory markers or mediators of hypertension? Br. J. Pharmacol., 2014, 171(24), 5589-5602.
[http://dx.doi.org/10.1111/bph.12876] [PMID: 25117218]
[86]
Yamagami, H.; Kitagawa, K.; Hoshi, T.; Furukado, S.; Hougaku, H.; Nagai, Y.; Hori, M. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler. Thromb. Vasc. Biol., 2005, 25(7), 1458-1462.
[http://dx.doi.org/10.1161/01.ATV.0000168417.52486.56] [PMID: 15860738]
[87]
Ke, B.; Shen, W.; Fang, X.; Wu, Q. The NLPR3 inflammasome and obesity-related kidney disease. J. Cell. Mol. Med., 2018, 22(1), 16-24.
[http://dx.doi.org/10.1111/jcmm.13333] [PMID: 28857469]
[88]
Ren, X.S.; Tong, Y.; Ling, L.; Chen, D.; Sun, H.J.; Zhou, H.; Qi, X.H.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell. Physiol. Biochem., 2017, 44(6), 2269-2280.
[http://dx.doi.org/10.1159/000486061] [PMID: 29262411]
[89]
Ratajczak, M.Z.; Mack, A.; Bujko, K.; Domingues, A.; Pedziwiatr, D.; Kucia, M.; Ratajczak, J.; Ulrich, H.; Kucharska-Mazur, J.; Samochowiec, J. ATP-Nlrp3 inflammasome-complement cascade axis in sterile brain inflammation in psychiatric patients and its impact on stem cell trafficking. Stem Cell Rev., 2019, 15(4), 497-505.
[http://dx.doi.org/10.1007/s12015-019-09888-1] [PMID: 31020518]
[90]
Ribeiro, D.E.; Oliveira-Giacomelli, Á.; Glaser, T.; Arnaud-Sampaio, V.F.; Andrejew, R.; Dieckmann, L. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol. Psychiatry, 2021, 26, 1044-1059.
[PMID: 33328588]
[91]
Vonend, O.; Turner, C.M.; Chan, C.M.; Loesch, A.; Carmen Dell’Anna, G.; Srai, K.S.; Burnstock, G.; Unwin, R.J. Glomerular expression of the ATP-sensitive P2X7 receptor in diabetic and hypertensive rat models. Kidney Int., 2004, 66(1), 157-166.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00717.x] [PMID: 15200422]
[92]
Ji, X.; Naito, Y.; Hirokawa, G.; Weng, H.; Hiura, Y.; Takahashi, R.; Iwai, N. P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. Hypertens. Res., 2012, 35(2), 173-179.
[http://dx.doi.org/10.1038/hr.2011.153] [PMID: 21918525]
[93]
Zhao, T.V.; Li, Y.; Liu, X.; Xia, S.; Shi, P.; Li, L.; Chen, Z.; Yin, C.; Eriguchi, M.; Chen, Y.; Bernstein, E.A.; Giani, J.F.; Bernstein, K.E.; Shen, X.Z. ATP release drives heightened immune responses associated with hypertension. Sci. Immunol., 2019, 4(36), eaau6426.
[http://dx.doi.org/10.1126/sciimmunol.aau6426] [PMID: 31253642]
[94]
Kunnas, T.; Määttä, K.; Nikkari, S.T. NLR family pyrin domain containing 3 (NLRP3) inflammasome gene polymorphism rs7512998 (C>T) predicts aging-related increase of blood pressure, the TAMRISK study. Immun. Ageing, 2015, 12(1), 19.
[http://dx.doi.org/10.1186/s12979-015-0047-7] [PMID: 26523150]
[95]
Dalekos, G.N.; Elisaf, M.; Bairaktari, E.; Tsolas, O.; Siamopoulos, K.C. Increased serum levels of interleukin-1β in the systemic circulation of patients with essential hypertension: Additional risk factor for atherogenesis in hypertensive patients? J. Lab. Clin. Med., 1997, 129(3), 300-308.
[http://dx.doi.org/10.1016/S0022-2143(97)90178-5] [PMID: 9042815]
[96]
Van Bortel, L.M. What does intima-media thickness tell us? J. Hypertens., 2005, 23(1), 37-39.
[http://dx.doi.org/10.1097/00004872-200501000-00009] [PMID: 15643121]
[97]
Guzik, T.J.; Hoch, N.E.; Brown, K.A.; McCann, L.A.; Rahman, A.; Dikalov, S.; Goronzy, J.; Weyand, C.; Harrison, D.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J. Exp. Med., 2007, 204(10), 2449-2460.
[http://dx.doi.org/10.1084/jem.20070657] [PMID: 17875676]
[98]
Barhoumi, T.; Kasal, D.A.; Li, M.W.; Shbat, L.; Laurant, P.; Neves, M.F.; Paradis, P.; Schiffrin, E.L. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension, 2011, 57(3), 469-476.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.162941] [PMID: 21263125]
[99]
Chan, C.T.; Sobey, C.G.; Lieu, M.; Ferens, D.; Kett, M.M.; Diep, H.; Kim, H.A.; Krishnan, S.M.; Lewis, C.V.; Salimova, E.; Tipping, P.; Vinh, A.; Samuel, C.S.; Peter, K.; Guzik, T.J.; Kyaw, T.S.; Toh, B.H.; Bobik, A.; Drummond, G.R. Obligatory role for B cells in the development of angiotensin II–dependent hypertension. Hypertension, 2015, 66(5), 1023-1033.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05779] [PMID: 26351030]
[100]
Alexander, B.T.; Cockrell, K.L.; Massey, M.B.; Bennett, W.A.; Granger, J.P. Tumor necrosis factor-induced hypertension in pregnant rats results in decreased renal neuronal nitric oxide synthase expression. Am. J. Hypertens., 2002, 15(2), 170-175.
[http://dx.doi.org/10.1016/S0895-7061(01)02255-5] [PMID: 11863253]
[101]
Orshal, J.M.; Khalil, R.A. Reduced endothelial NO-cGMP-mediated vascular relaxation and hypertension in IL-6-infused pregnant rats. Hypertension, 2004, 43(2), 434-444.
[http://dx.doi.org/10.1161/01.HYP.0000113044.46326.98] [PMID: 14707155]
[102]
LaMarca, B.B.D.; Bennett, W.A.; Alexander, B.T.; Cockrell, K.; Granger, J.P. Hypertension produced by reductions in uterine perfusion in the pregnant rat: Role of tumor necrosis factor-alpha. Hypertension, 2005, 46(4), 1022-1025.
[http://dx.doi.org/10.1161/01.HYP.0000175476.26719.36] [PMID: 16144982]
[103]
Harrison, D.G.; Guzik, T.J.; Goronzy, J.; Weyand, C. Is hypertension an immunologic disease? Curr. Cardiol. Rep., 2008, 10(6), 464-469.
[http://dx.doi.org/10.1007/s11886-008-0073-6] [PMID: 18950555]
[104]
Da Silva, S.L.; Dias-Junior, C.A.; Baldasso, P.A.; Damico, D.C.S.; Carvalho, B.M.A.; Garanto, A.; Acosta, G.; Oliveira, E.; Albericio, F.; Soares, A.M.; Marangoni, S.; Resende, R.R. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom. Peptides, 2012, 36(2), 206-212.
[http://dx.doi.org/10.1016/j.peptides.2012.05.005] [PMID: 22617223]
[105]
Da Silva, S.L.; Almeida, J.R.; Resende, L.M.; Martins, W.; Henriques, F.A.F.A.; Baldasso, P.A.; Soares, A.M.; Taranto, A.G.; Resende, R.R.; Marangoni, S.; Dias-Junior, C.A. Isolation and characterization of a natriuretic peptide from Crotalus oreganus abyssus (grand canyon rattlesnake) and its effects on systemic blood pressure and nitrite levels. Int. J. Pept. Res. Ther., 2011, 17(3), 165-173.
[http://dx.doi.org/10.1007/s10989-011-9254-z]
[106]
Naylor, S. Biomarkers: Current perspectives and future prospects. Expert Rev. Mol. Diagn., 2003, 3(5), 525-529.
[http://dx.doi.org/10.1586/14737159.3.5.525] [PMID: 14510173]
[107]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[108]
Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx, 2004, 1(2), 182-188.
[http://dx.doi.org/10.1602/neurorx.1.2.182] [PMID: 15717018]
[109]
Drucker, E.; Krapfenbauer, K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J., 2013, 4(1), 7.
[http://dx.doi.org/10.1186/1878-5085-4-7] [PMID: 23442211]
[110]
Akçan, R.; Taşteki̇n, B.; Yildirim, M.Ş.; Aydogan, H.C.; Sağlam, N. Omics era in forensic medicine: Towards a new age. Turk. J. Med. Sci., 2020, 50(5), 1480-1490.
[http://dx.doi.org/10.3906/sag-1912-197] [PMID: 32283897]
[111]
Vailati-Riboni, M.; Palombo, V.; Loor, J.J. What are omics sciences? In: Periparturient Diseases of Dairy Cows; Springer: Cham, 2017; pp. 1-7.
[112]
Jablonski, K.L.; Klawitter, J.; Chonchol, M.; Bassett, C.J.; Racine, M.L.; Seals, D.R. Effect of dietary sodium restriction on human urinary metabolomic profiles. Clin. J. Am. Soc. Nephrol., 2015, 10(7), 1227-1234.
[http://dx.doi.org/10.2215/CJN.11531114] [PMID: 25901092]
[113]
Mathew, A.V.; Seymour, E.M.; Byun, J.; Pennathur, S.; Hummel, S.L. Altered metabolic profile with sodium-restricted dietary approaches to stop hypertension diet in hypertensive heart failure with preserved ejection fraction. J. Card. Fail., 2015, 21(12), 963-967.
[http://dx.doi.org/10.1016/j.cardfail.2015.10.003] [PMID: 26497755]
[114]
Kim, M.; Jung, S.; Kim, S.Y.; Lee, S.H.; Lee, J.H. Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS One, 2014, 9(5), e96735.
[http://dx.doi.org/10.1371/journal.pone.0096735] [PMID: 24800806]
[115]
Ameta, K.; Gupta, A.; Kumar, S.; Sethi, R.; Kumar, D.; Mahdi, A.A. Essential hypertension: A filtered serum based metabolomics study. Sci. Rep., 2017, 7(1), 2153.
[http://dx.doi.org/10.1038/s41598-017-02289-9] [PMID: 28526818]
[116]
Derosa, G.; Maffioli, P.; Ferrari, I.; Palumbo, I.; Randazzo, S.; Fogari, E.; D’Angelo, A.; Cicero, A.F.G. Different actions of losartan and ramipril on adipose tissue activity and vascular remodeling biomarkers in hypertensive patients. Hypertens. Res., 2011, 34(1), 145-151.
[http://dx.doi.org/10.1038/hr.2010.205] [PMID: 21107327]
[117]
Jagodzinski, A.; Neumann, J.T.; Ojeda, F.; Sörensen, N.A.; Wild, P.; Münzel, T.; Zeller, T.; Westermann, D.; Blankenberg, S. Cardiovascular biomarkers in hypertensive patients with medical treatment—results from the randomized TEAMSTA protect I trial. Clin. Chem., 2017, 63(12), 1877-1885.
[http://dx.doi.org/10.1373/clinchem.2017.275289] [PMID: 28904053]
[118]
Savoia, C.; Volpe, M.; Grassi, G.; Borghi, C.; Agabiti Rosei, E.; Touyz, R.M. Personalized medicine—a modern approach for the diagnosis and management of hypertension. Clin. Sci. (Lond.), 2017, 131(22), 2671-2685.
[http://dx.doi.org/10.1042/CS20160407] [PMID: 29109301]
[119]
Fang, P.; Yu, M.; Gu, X.; Shi, M.; Zhu, Y.; Zhang, Z.; Bo, P. Low levels of plasma galanin in obese subjects with hypertension. J. Endocrinol. Invest., 2017, 40(1), 63-68.
[http://dx.doi.org/10.1007/s40618-016-0529-2] [PMID: 27538957]
[120]
Au, A.; Cheng, K.K.; Wei, L.K. Metabolomics, lipidomics and pharmacometabolomics of human hypertension. Adv. Exp. Med. Biol., 2016, 956, 599-613.
[http://dx.doi.org/10.1007/5584_2016_79] [PMID: 27722964]
[121]
Padmanabhan, S.; Caulfield, M.; Dominiczak, A.F. Genetic and molecular aspects of hypertension. Circ. Res., 2015, 116(6), 937-959.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303647] [PMID: 25767282]
[122]
Warren, H.R.; Evangelou, E.; Cabrera, C.P.; Gao, H.; Ren, M.; Mifsud, B.; Ntalla, I.; Surendran, P.; Liu, C.; Cook, J.P.; Kraja, A.T.; Drenos, F.; Loh, M.; Verweij, N.; Marten, J.; Karaman, I.; Lepe, M.P.S.; O’Reilly, P.F.; Knight, J.; Snieder, H.; Kato, N.; He, J.; Tai, E.S.; Said, M.A.; Porteous, D.; Alver, M.; Poulter, N.; Farrall, M.; Gansevoort, R.T.; Padmanabhan, S.; Mägi, R.; Stanton, A.; Connell, J.; Bakker, S.J.L.; Metspalu, A.; Shields, D.C.; Thom, S.; Brown, M.; Sever, P.; Esko, T.; Hayward, C.; van der Harst, P.; Saleheen, D.; Chowdhury, R.; Chambers, J.C.; Chasman, D.I.; Chakravarti, A.; Newton-Cheh, C.; Lindgren, C.M.; Levy, D.; Kooner, J.S.; Keavney, B.; Tomaszewski, M.; Samani, N.J.; Howson, J.M.M.; Tobin, M.D.; Munroe, P.B.; Ehret, G.B.; Wain, L.V. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet., 2017, 49(3), 403-415.
[http://dx.doi.org/10.1038/ng.3768] [PMID: 28135244]
[123]
Takimoto, E.; Yao, A.; Toko, H.; Takano, H.; Shimoyama, M.; Sonoda, M.; Wakimoto, K.; Takahashi, T.; Akazawa, H.; Mizukami, M.; Nagai, T.; Nagai, R.; Komuro, I. Sodium calcium exchanger plays a key role in alteration of cardiac function in response to pressure overload. FASEB J., 2002, 16(3), 373-378.
[http://dx.doi.org/10.1096/fj.01-0735com] [PMID: 11874986]
[124]
van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA, 2006, 103(48), 18255-18260.
[http://dx.doi.org/10.1073/pnas.0608791103] [PMID: 17108080]
[125]
Hoekstra, M.; van der Lans, C.A.C.; Halvorsen, B.; Gullestad, L.; Kuiper, J.; Aukrust, P.; van Berkel, T.J.C.; Biessen, E.A.L. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem. Biophys. Res. Commun., 2010, 394(3), 792-797.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.075] [PMID: 20230787]
[126]
Bátkai, S.; Thum, T. MicroRNAs in hypertension: Mechanisms and therapeutic targets. Curr. Hypertens. Rep., 2012, 14(1), 79-87.
[http://dx.doi.org/10.1007/s11906-011-0235-6] [PMID: 22052337]
[127]
Jusic, A.; Devaux, Y.; Action, E.U-C.C. Noncoding RNAs in hypertension. Hypertension, 2019, 74(3), 477-492.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13412] [PMID: 31352819]
[128]
Morillas, P.; Quiles, J.; de Andrade, H.; Castillo, J.; Tarazón, E.; Roselló, E.; Portolés, M.; Rivera, M.; Bertomeu-Martínez, V. Circulating biomarkers of collagen metabolism in arterial hypertension. J. Hypertens., 2013, 31(8), 1611-1617.
[http://dx.doi.org/10.1097/HJH.0b013e3283614c1c] [PMID: 23615327]
[129]
Baldan-Martin, M.; Mourino-Alvarez, L.; Gonzalez-Calero, L.; Moreno-Luna, R.; Sastre-Oliva, T.; Ruiz-Hurtado, G.; Segura, J.; Lopez, J.A.; Vazquez, J.; Vivanco, F.; Alvarez-Llamas, G.; Ruilope, L.M.; de la Cuesta, F.; Barderas, M.G. Plasma molecular signatures in hypertensive patients with renin–angiotensin system suppression. Hypertension, 2016, 68(1), 157-166.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07412] [PMID: 27217411]
[130]
Kuznetsova, T.; Mischak, H.; Mullen, W.; Staessen, J.A. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur. Heart J., 2012, 33(18), 2342-2350.
[http://dx.doi.org/10.1093/eurheartj/ehs185] [PMID: 22789915]
[131]
Gajjala, P.R.; Jankowski, V.; Heinze, G.; Bilo, G.; Zanchetti, A.; Noels, H.; Liehn, E.; Perco, P.; Schulz, A.; Delles, C.; Kork, F.; Biessen, E.; Narkiewicz, K.; Kawecka-Jaszcz, K.; Floege, J.; Soranna, D.; Zidek, W.; Jankowski, J. Proteomic-biostatistic integrated approach for finding the underlying molecular determinants of hypertension in human plasma. Hypertension, 2017, 70(2), 412-419.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08906] [PMID: 28652472]
[132]
Etelvino, G.M.; Peluso, A.A.B.; Santos, R.A.S. New components of the renin-angiotensin system: Alamandine and the MAS-related G protein-coupled receptor D. Curr. Hypertens. Rep., 2014, 16(6), 433.
[http://dx.doi.org/10.1007/s11906-014-0433-0] [PMID: 24760442]
[133]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Kemplin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A.S. Discovery and characterization of alamandine: A novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[134]
de Souza-Neto, F.P.; Silva, M.M.; Santuchi, M.C.; de Alcântara-Leonídio, T.C.; Motta-Santos, D.; Oliveira, A.C.; Melo, M.B.; Canta, G.N.; de Souza, L.E.; Irigoyen, M.C.C.; Campagnole-Santos, M.J.; Guatimosim, S.; Santos, R.A.S.; da Silva, R.F. Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice. Clin. Sci. (Lond.), 2019, 133(5), 629-643.
[http://dx.doi.org/10.1042/CS20180547] [PMID: 30737255]
[135]
Jesus, I.C.G.; Mesquita, T.R.R.; Monteiro, A.L.L.; Parreira, A.B.; Santos, A.K.; Coelho, E.L.X.; Silva, M.M.; Souza, L.A.C.; Campagnole-Santos, M.J.; Santos, R.S.; Guatimosim, S. Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. Am. J. Physiol. Cell Physiol., 2020, 318(4), C740-C750.
[http://dx.doi.org/10.1152/ajpcell.00153.2019] [PMID: 31913703]
[136]
Soares, E.R.; Barbosa, C.M.; Campagnole-Santos, M.J.; Santos, R.A.S.; Alzamora, A.C. Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1–7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides, 2017, 96, 67-75.
[http://dx.doi.org/10.1016/j.peptides.2017.09.005] [PMID: 28889964]
[137]
Jesus, I.C.G.; Scalzo, S.; Alves, F.; Marques, K.; Rocha-Resende, C.; Bader, M.; Santos, R.A.S.; Guatimosim, S. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am. J. Physiol. Cell Physiol., 2018, 314(6), C702-C711.
[http://dx.doi.org/10.1152/ajpcell.00153.2017] [PMID: 29443552]
[138]
Oliveira, A.C.; Melo, M.B.; Motta-Santos, D.; Peluso, A.A.; Souza-Neto, F.; da Silva, R.F.; Almeida, J.F.Q.; Canta, G.; Reis, A.M.; Goncalves, G.; Cerri, G.; Coutinho, D.; Guedes de Jesus, I.C.; Guatimosim, S.; Linhares, N.D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A.S. Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(1), H123-H133.
[http://dx.doi.org/10.1152/ajpheart.00075.2018] [PMID: 30339496]
[139]
Zhao, H.; Liu, Y.; Li, Z.; Song, Y.; Cai, X.; Liu, Y.; Zhang, T.; Yang, L.; Li, L.; Gao, S.; Li, Y.; Yu, C. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin. Chim. Acta, 2018, 486, 192-198.
[http://dx.doi.org/10.1016/j.cca.2018.08.006] [PMID: 30092170]
[140]
Ke, C.; Zhu, X.; Zhang, Y.; Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Meta- bolomics, 2018, 14(9), 117.
[http://dx.doi.org/10.1007/s11306-018-1408-y] [PMID: 30830367]
[141]
Tzoulaki, I.; Ebbels, T.M.D.; Valdes, A.; Elliott, P.; Ioannidis, J.P.A. Design and analysis of metabolomics studies in epidemiologic research: A primer on -omic technologies. Am. J. Epidemiol., 2014, 180(2), 129-139.
[http://dx.doi.org/10.1093/aje/kwu143] [PMID: 24966222]
[142]
Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; Cohen, A.J.; Dandona, L.; Estep, K.; Ferrari, A.J.; Frostad, J.J.; Fullman, N.; Gething, P.W.; Godwin, W.W.; Griswold, M.; Hay, S.I.; Kinfu, Y.; Kyu, H.H.; Larson, H.J.; Liang, X.; Lim, S.S.; Liu, P.Y.; Lopez, A.D.; Lozano, R.; Marczak, L.; Mensah, G.A.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; Neal, B.; Reitsma, M.B.; Roth, G.A.; Salomon, J.A.; Sur, P.J.; Vos, T.; Wagner, J.A.; Wang, H.; Zhao, Y.; Zhou, M.; Aasvang, G.M.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abraham, B.; Abu-Raddad, L.J.; Abyu, G.Y.; Adebiyi, A.O.; Adedeji, I.A.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Agardh, E.E.; Agarwal, A.; Agrawal, A.; Kiadaliri, A.A.; Ajala, O.N.; Akinyemiju, T.F.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Aldhahri, S.F.; Aldridge, R.W.; Alemu, Z.A.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alsharif, U.; Altirkawi, K.A.; Martin, E.A.; Alvis-Guzman, N.; Amare, A.T.; Amberbir, A.; Amegah, A.K.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, B.O.; Antonio, C.A.T.; Anwari, P.; Ärnlöv, J.; Artaman, A.; Asayesh, H.; Asghar, R.J.; Assadi, R.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Quintanilla, B.P.A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Bahit, M.C.; Balakrishnan, K.; Barac, A.; Barber, R.M.; Barker-Collo, S.L.; Bärnighausen, T.; Barquera, S.; Barregard, L.; Barrero, L.H.; Basu, S.; Batis, C.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Bell, B.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhansali, A.; Bhatt, S.; Biadgilign, S.; Bikbov, B.; Bisanzio, D.; Bjertness, E.; Blore, J.D.; Borschmann, R.; Boufous, S.; Bourne, R.R.A.; Brainin, M.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Broday, D.M.; Brugha, T.S.; Brunekreef, B.; Butt, Z.A.; Cahill, L.E.; Calabria, B.; Campos-Nonato, I.R.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Casey, D.C.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Castro, R.E.; Catalá-López, F.; Chang, J-C.; Chiang, P.P-C.; Chibalabala, M.; Chimed-Ochir, O.; Chisumpa, V.H.; Chitheer, A.A.; Choi, J-Y.J.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Coates, M.M.; Colquhoun, S.M.; Manzano, A.G.C.; Cooper, L.T.; Cooperrider, K.; Cornaby, L.; Cortinovis, M.; Crump, J.A.; Cuevas-Nasu, L.; Damasceno, A.; Dandona, R.; Darby, S.C.; Dargan, P.I.; das Neves, J.; Davis, A.C.; Davletov, K.; de Castro, E.F.; De la Cruz-Góngora, V.; De Leo, D.; Degenhardt, L.; Del Gobbo, L.C.; del Pozo-Cruz, B.; Dellavalle, R.P.; Deribew, A.; Jarlais, D.C.D.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Dicker, D.; Ding, E.L.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Elyazar, I.; Endries, A.Y.; Ermakov, S.P.; Erskine, H.E.; Eshrati, B.; Esteghamati, A.; Fahimi, S.; Faraon, E.J.A.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fischer, F.; Fitchett, J.R.A.; Fleming, T.; Foigt, N.; Foreman, K.; Fowkes, F.G.R.; Franklin, R.C.; Fürst, T.; Futran, N.D.; Gakidou, E.; Garcia-Basteiro, A.L.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Geleijnse, J.M.; Gessner, B.D.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Goenka, S.; Gomez-Cabrera, M.C.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Gugnani, H.C.; Guillemin, F.; Guo, Y.; Gupta, R.; Gupta, R.; Gutiérrez, R.A.; Haagsma, J.A.; Hafezi-Nejad, N.; Haile, D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hassanvand, M.S.; Hassen, T.A.; Havmoeller, R.; Heredia-Pi, I.B.; Hernández-Llanes, N.F.; Heydarpour, P.; Hoek, H.W.; Hoffman, H.J.; Horino, M.; Horita, N.; Hosgood, H.D.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Husseini, A.; Hutchings, S.J.; Huybrechts, I.; Iburg, K.M.; Idrisov, B.T.; Ileanu, B.V.; Inoue, M.; Jacobs, T.A.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; Jansen, H.A.F.M.; Jassal, S.K.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jee, S.H.; Jeemon, P.; Jha, V.; Jiang, Y.; Jibat, T.; Jin, Y.; Johnson, C.O.; Jonas, J.B.; Kabir, Z.; Kalkonde, Y.; Kamal, R.; Kan, H.; Karch, A.; Karema, C.K.; Karimkhani, C.; Kasaeian, A.; Kaul, A.; Kawakami, N.; Kazi, D.S.; Keiyoro, P.N.; Kemmer, L.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khan, A.R.; Khan, E.A.; Khan, G.; Khang, Y-H.; Khatibzadeh, S.; Khera, S.; Khoja, T.A.M.; Khubchandani, J.; Kieling, C.; Kim, C.; Kim, D.; Kimokoti, R.W.; Kissoon, N.; Kivipelto, M.; Knibbs, L.D.; Kokubo, Y.; Kopec, J.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Kromhout, H.; Krueger, H.; Ku, T.; Defo, B.K.; Kuchenbecker, R.S.; Bicer, B.K.; Kuipers, E.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lan, Q.; Larsson, A.; Latif, A.A.; Lawrynowicz, A.E.B.; Leasher, J.L.; Leigh, J.; Leung, J.; Levi, M.; Li, X.; Li, Y.; Liang, J.; Liu, S.; Lloyd, B.K.; Logroscino, G.; Lotufo, P.A.; Lunevicius, R.; MacIntyre, M.; Mahdavi, M.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manamo, W.A.A.; Mapoma, C.C.; Marcenes, W.; Martin, R.V.; Martinez-Raga, J.; Masiye, F.; Matsushita, K.; Matzopoulos, R.; Mayosi, B.M.; McGrath, J.J.; McKee, M.; Meaney, P.A.; Medina, C.; Mehari, A.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memish, Z.A.; Mendoza, W.; Mensink, G.B.M.; Meretoja, A.; Meretoja, T.J.; Mesfin, Y.M.; Mhimbira, F.A.; Millear, A.; Miller, T.R.; Mills, E.J.; Mirarefin, M.; Misganaw, A.; Mock, C.N.; Mohammadi, A.; Mohammed, S.; Mola, G.L.D.; Monasta, L.; Hernandez, J.C.M.; Montico, M.; Morawska, L.; Mori, R.; Mozaffarian, D.; Mueller, U.O.; Mullany, E.; Mumford, J.E.; Murthy, G.V.S.; Nachega, J.B.; Naheed, A.; Nangia, V.; Nassiri, N.; Newton, J.N.; Ng, M.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nyakarahuka, L.; Obermeyer, C.M.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olivares, P.R.; Olsen, H.; Olusanya, B.O.; Olusanya, J.O.; Opio, J.N.; Oren, E.; Orozco, R.; Ortiz, A.; Ota, E.; Pa, M.; Pana, A.; Park, E-K.; Parry, C.D.; Parsaeian, M.; Patel, T.; Caicedo, A.J.P.; Patil, S.T.; Patten, S.B.; Patton, G.C.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Plass, D.; Polinder, S.; Pond, C.D.; Pope, C.A.; Pope, D.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prasad, N.M.; Qorbani, M.; Rabiee, R.H.S.; Radfar, A.; Rafay, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajsic, S.; Raju, M.; Ram, U.; Rana, S.M.; Ranganathan, K.; Rao, P.; García, C.A.R.; Refaat, A.H.; Rehm, C.D.; Rehm, J.; Reinig, N.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Rivera, J.A.; Roba, H.S.; Rodriguez, A.; Rodriguez-Ramirez, S.; Rojas-Rueda, D.; Roman, Y.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Saleh, M.M.; Sanabria, J.R.; Sanchez-Riera, L.; Sanchez-Niño, M.D.; Sánchez-Pimienta, T.G.; Sandar, L.; Santomauro, D.F.; Santos, I.S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schmidhuber, J.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M.A.; Levy, T.S.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Sheth, K.N.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shin, M-J.; Shiri, R.; Shishani, K.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silva, D.A.S.; Silveira, D.G.A.; Silverberg, J.I.; Simard, E.P.; Sindi, S.; Singh, A.; Singh, J.A.; Singh, P.K.; Slepak, E.L.; Soljak, M.; Soneji, S.; Sorensen, R.J.D.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Steckling, N.; Steel, N.; Stein, D.J.; Stein, M.B.; Stöckl, H.; Stranges, S.; Stroumpoulis, K.; Sunguya, B.F.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Takahashi, K.; Talongwa, R.T.; Tandon, N.; Tanne, D.; Tavakkoli, M.; Taye, B.W.; Taylor, H.R.; Tedla, B.A.; Tefera, W.M.; Tegegne, T.K.; Tekle, D.Y.; Terkawi, A.S.; Thakur, J.S.; Thomas, B.A.; Thomas, M.L.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tobe-Gai, R.; Tobollik, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J.A.; Tran, B.X.; Dimbuene, Z.T.; Tsilimparis, N.; Tura, A.K.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Undurraga, E.A.; Uneke, C.J.; Uthman, O.A.; van Donkelaar, A.; van Os, J.; Varakin, Y.Y.; Vasankari, T.; Veerman, J.L.; Venketasubramanian, N.; Violante, F.S.; Vollset, S.E.; Wagner, G.R.; Waller, S.G.; Wang, J.L.; Wang, L.; Wang, Y.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; Whiteford, H.A.; Wijeratne, T.; Wiysonge, C.S.; Wolfe, C.D.A.; Won, S.; Woolf, A.D.; Wubshet, M.; Xavier, D.; Xu, G.; Yadav, A.K.; Yakob, B.; Yalew, A.Z.; Yano, Y.; Yaseri, M.; Ye, P.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Younis, M.Z.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zhu, J.; Zipkin, B.; Zodpey, S.; Zuhlke, L.J.; Murray, C.J.L. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1659-1724.
[http://dx.doi.org/10.1016/S0140-6736(16)31679-8] [PMID: 27733284]
[143]
Oparil, S.; Weber, M.A. Hypertension: A companion to Brenner & Rector’s. Mayo Clin. Proc., 2000, 75(10), P1105.
[144]
Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.Y.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2017 update: A report from the American heart association. Circulation, 2017, 135(10), e146-e603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[145]
Au, A. Metabolomics and lipidomics of ischemic stroke. Adv. Clin. Chem., 2018, 85, 31-69.
[http://dx.doi.org/10.1016/bs.acc.2018.02.002] [PMID: 29655461]
[146]
Thakkar, M.; Edelenbos, J.; Doré, S. Bilirubin and ischemic stroke: Rendering the current paradigm to better understand the protective effects of bilirubin. Mol. Neurobiol., 2019, 56(8), 5483-5496.
[http://dx.doi.org/10.1007/s12035-018-1440-y] [PMID: 30612336]
[147]
Sloane, K.L.; Camargo, E.C. Antithrombotic management of ischemic stroke. Curr. Treat. Options Cardiovasc. Med., 2019, 21(11), 78.
[http://dx.doi.org/10.1007/s11936-019-0778-4] [PMID: 31792720]
[148]
Adams, HP, Jr; Bendixen, BH; Kappelle, LJ; Biller, J; Love, BB; Gordon, DL. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke, 1993, 24(1), 35-41.
[http://dx.doi.org/10.1161/01.str.24.1.35] [PMID: 7678184]
[149]
Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci., 2016, 17(12), 1967.
[http://dx.doi.org/10.3390/ijms17121967] [PMID: 27898011]
[150]
Guo, X.; Li, Z.; Zhou, Y.; Yu, S.; Yang, H.; Zheng, L.; Liu, Y.; Sun, Y. Metabolic profile for prediction of ischemic stroke in Chinese hypertensive population. J. Stroke Cerebrovasc. Dis., 2019, 28(4), 1062-1069.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.035] [PMID: 30642666]
[151]
Melo, D.S.; Costa-Pereira, L.V.; Santos, C.S.; Mendes, B.F.; Costa, K.B.; Santos, C.F.F.; Rocha-Vieira, E.; Magalhães, F.C.; Esteves, E.A.; Ferreira, A.J.; Guatimosim, S.; Dias-Peixoto, M.F. Severe calorie restriction reduces cardiometabolic risk factors and protects rat hearts from ischemia/reperfusion injury. Front. Physiol., 2016, 7, 106.
[http://dx.doi.org/10.3389/fphys.2016.00106] [PMID: 27092082]
[152]
Campos, J.C.; Queliconi, B.B.; Bozi, L.H.M.; Bechara, L.R.G.; Dourado, P.M.M.; Andres, A.M.; Jannig, P.R.; Gomes, K.M.S.; Zambelli, V.O.; Rocha-Resende, C.; Guatimosim, S.; Brum, P.C.; Mochly-Rosen, D.; Gottlieb, R.A.; Kowaltowski, A.J.; Ferreira, J.C.B. Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy, 2017, 13(8), 1304-1317.
[http://dx.doi.org/10.1080/15548627.2017.1325062] [PMID: 28598232]
[153]
Dassan, P.; Keir, G.; Brown, M.M. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: A review of S100B. Cerebrovasc. Dis., 2009, 27(3), 295-302.
[http://dx.doi.org/10.1159/000199468] [PMID: 19202335]
[154]
Makris, K.; Haliassos, A.; Chondrogianni, M.; Tsivgoulis, G. Blood biomarkers in ischemic stroke: Potential role and challenges in clinical practice and research. Crit. Rev. Clin. Lab. Sci., 2018, 55(5), 294-328.
[http://dx.doi.org/10.1080/10408363.2018.1461190] [PMID: 29668333]
[155]
Moore, D.F.; Li, H.; Jeffries, N.; Wright, V.; Cooper, R.A., Jr; Elkahloun, A.; Gelderman, M.P.; Zudaire, E.; Blevins, G.; Yu, H.; Goldin, E.; Baird, A.E. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: A pilot investigation. Circulation, 2005, 111(2), 212-221.
[http://dx.doi.org/10.1161/01.CIR.0000152105.79665.C6] [PMID: 15630028]
[156]
Guo, Y.; VanDusen, N.J.; Zhang, L.; Gu, W.; Sethi, I.; Guatimosim, S.; Ma, Q.; Jardin, B.D.; Ai, Y.; Zhang, D.; Chen, B.; Guo, A.; Yuan, G.C.; Song, L.S.; Pu, W.T. Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo. Circ. Res., 2017, 120(12), 1874-1888.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310283] [PMID: 28356340]
[157]
Che, P.; Liu, J.; Shan, Z.; Wu, R.; Yao, C.; Cui, J.; Zhu, X.; Wang, J.; Burnett, M.S.; Wang, S.; Wang, J. miR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF -1 downregulation. Aging Cell, 2014, 13(5), 926-934.
[http://dx.doi.org/10.1111/acel.12252] [PMID: 25059272]
[158]
Muramatsu, F.; Kidoya, H.; Naito, H.; Sakimoto, S.; Takakura, N. microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene, 2013, 32(4), 414-421.
[http://dx.doi.org/10.1038/onc.2012.68] [PMID: 22391569]
[159]
Tiedt, S.; Prestel, M.; Malik, R.; Schieferdecker, N.; Duering, M.; Kautzky, V.; Stoycheva, I.; Böck, J.; Northoff, B.H.; Klein, M.; Dorn, F.; Krohn, K.; Teupser, D.; Liesz, A.; Plesnila, N.; Holdt, L.M.; Dichgans, M. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ. Res., 2017, 121(8), 970-980.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311572] [PMID: 28724745]
[160]
Wang, C.; Song, J.; Lv, Q.; Pan, H.; Zhang, C.; Wu, J.; Fan, C.; Ma, L.; Liu, T.; Wang, J. Distinctive expression signatures of serum microRNAs in ischaemic stroke and transient ischaemic attack patients. Thromb. Haemost., 2017, 117(5), 992-1001.
[http://dx.doi.org/10.1160/TH16-08-0606] [PMID: 28251236]
[161]
Xue, L.; Chen, H.; Zhang, T.; Chen, J.; Geng, Z.; Zhao, Y. Changes in serum vascular endothelial growth factor and endostatin concentrations associated with circulating endothelial progenitor cells after acute ischemic stroke. Metab. Brain Dis., 2017, 32(2), 641-648.
[http://dx.doi.org/10.1007/s11011-017-9953-z] [PMID: 28093678]
[162]
Sobrino, T.; Rodríguez-Yáñez, M.; Campos, F.; Iglesias-Rey, R.; Millán, M.; de la Ossa, N.P.; Dávalos, A.; Delgado-Mederos, R.; Martínez-Domeño, A.; Martí-Fábregas, J.; Castellanos, M.; Serena, J.; Lago, A.; Díez-Tejedor, E.; Castillo, J. Association of high serum levels of growth factors with good outcome in ischemic stroke: A multicenter study. Transl. Stroke Res., 2020, 11(4), 653-663.
[http://dx.doi.org/10.1007/s12975-019-00747-2] [PMID: 31768951]
[163]
Pinto, M.C.X.; Simão, F.; da Costa, F.L.P.; Rosa, D.V.; de Paiva, M.J.N.; Resende, R.R.; Romano-Silva, M.A.; Gomez, M.V.; Gomez, R.S. Sarcosine preconditioning induces ischemic tolerance against global cerebral ischemia. Neuroscience, 2014, 271, 160-169.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.054] [PMID: 24797328]
[164]
Nielsen, H.H.; Soares, C.B.; Høgedal, S.S.; Madsen, J.S.; Hansen, R.B.; Christensen, A.A.; Madsen, C.; Clausen, B.H.; Frich, L.H.; Degn, M.; Sibbersen, C.; Lambertsen, K.L. Acute neurofilament light chain plasma levels correlate with stroke severity and clinical outcome in ischemic stroke patients. Front. Neurol., 2020, 11, 448.
[http://dx.doi.org/10.3389/fneur.2020.00448] [PMID: 32595585]
[165]
Zhao, H.; Li, F.; Huang, Y.; Zhang, S.; Li, L.; Yang, Z.; Wang, R.; Tao, Z.; Han, Z.; Fan, J.; Zheng, Y.; Ma, Q.; Luo, Y. Prognostic significance of plasma IL-2 and sIL-2Rα in patients with first-ever ischaemic stroke. J. Neuroinflammation, 2020, 17(1), 237.
[http://dx.doi.org/10.1186/s12974-020-01920-3] [PMID: 32795376]
[166]
VanGilder, R.L.; Davidov, D.M.; Stinehart, K.R.; Huber, J.D.; Turner, R.C.; Wilson, K.S.; Haney, E.; Davis, S.M.; Chantler, P.D.; Theeke, L.; Rosen, C.L.; Crocco, T.J.; Gutmann, L.; Barr, T.L. C-reactive protein and long-term ischemic stroke prognosis. J. Clin. Neurosci., 2014, 21(4), 547-553.
[http://dx.doi.org/10.1016/j.jocn.2013.06.015] [PMID: 24211144]
[167]
Matsuo, R.; Ago, T.; Hata, J.; Wakisaka, Y.; Kuroda, J.; Kuwashiro, T.; Kitazono, T.; Kamouchi, M. Plasma C-reactive protein and clinical outcomes after acute ischemic stroke: A prospective observational study. PLoS One, 2016, 11(6), e0156790.
[http://dx.doi.org/10.1371/journal.pone.0156790] [PMID: 27258004]
[168]
Wiseman, S.; Marlborough, F.; Doubal, F.; Webb, D.J.; Wardlaw, J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: Systematic review and meta-analysis. Cerebrovasc. Dis., 2014, 37(1), 64-75.
[http://dx.doi.org/10.1159/000356789] [PMID: 24401164]
[169]
Ye, H.; Wang, L.; Yang, X.K.; Fan, L.P.; Wang, Y.G.; Guo, L. Serum S100B levels may be associated with cerebral infarction: A meta-analysis. J. Neurol. Sci., 2015, 348(1-2), 81-88.
[http://dx.doi.org/10.1016/j.jns.2014.11.010] [PMID: 25434713]
[170]
Goulart, V.A.; Sena, M.M.; Mendes, T.O.; Menezes, H.C.; Cardeal, Z.L.; Paiva, M.J. Amino acid biosignature in plasma among ischemic stroke subtypes. BioMed Res. Int., 2019, 2019, 8480468.
[http://dx.doi.org/10.1155/2019/8480468]
[171]
Ziai, W.C.; Carhuapoma, J.R. Intracerebral hemorrhage. Continuum (Minneap. Minn.), 2018, 24(6), 1603-1622.
[http://dx.doi.org/10.1212/CON.0000000000000672] [PMID: 30516598]
[172]
Ikram, M.A.; Wieberdink, R.G.; Koudstaal, P.J. International epidemiology of intracerebral hemorrhage. Curr. Atheroscler. Rep., 2012, 14(4), 300-306.
[http://dx.doi.org/10.1007/s11883-012-0252-1] [PMID: 22538431]
[173]
O’Donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; Mondo, C.; Damasceno, A.; Lopez-Jaramillo, P.; Hankey, G.J.; Dans, A.L.; Yusoff, K.; Truelsen, T.; Diener, H.C.; Sacco, R.L.; Ryglewicz, D.; Czlonkowska, A.; Weimar, C.; Wang, X.; Yusuf, S. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet, 2010, 376(9735), 112-123.
[http://dx.doi.org/10.1016/S0140-6736(10)60834-3] [PMID: 20561675]
[174]
Li, W.; Jin, C.; Vaidya, A.; Wu, Y.; Rexrode, K.; Zheng, X.; Gurol, M.E.; Ma, C.; Wu, S.; Gao, X. Blood pressure trajectories and the risk of intracerebral hemorrhage and cerebral infarction. Hypertension, 2017, 70(3), 508-514.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09479] [PMID: 28716992]
[175]
Fan, J.S.; Huang, H.H.; Chen, Y.C.; Yen, D.H.T.; Kao, W.F.; Huang, M.S.; Huang, C.I.; Lee, C.H. Emergency department neurologic deterioration in patients with spontaneous intracerebral hemorrhage: Incidence, predictors, and prognostic significance. Acad. Emerg. Med., 2012, 19(2), 133-138.
[http://dx.doi.org/10.1111/j.1553-2712.2011.01285.x] [PMID: 22320363]
[176]
Zeng, Y.; Chen, R.; Ma, M.; Liu, B.; Xia, J.; Xu, H.; Liu, Y.; Du, X.; Hu, Z.; Yang, Q.; Zhang, L. Associations of EDNRA and EDNRB Polymorphisms with Intracerebral Hemorrhage. World Neurosurg., 2019, 129, e472-e477.
[http://dx.doi.org/10.1016/j.wneu.2019.05.186] [PMID: 31150867]
[177]
Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic kidney disease diagnosis and management. JAMA, 2019, 322(13), 1294-1304.
[http://dx.doi.org/10.1001/jama.2019.14745] [PMID: 31573641]
[178]
Luger, S.; Witsch, J.; Dietz, A.; Hamann, G.F.; Minnerup, J.; Schneider, H.; Sitzer, M.; Wartenberg, K.E.; Niessner, M.; Foerch, C. Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin. Chem., 2017, 63(1), 377-385.
[http://dx.doi.org/10.1373/clinchem.2016.263335] [PMID: 27881450]
[179]
Montaner, J.; Mendioroz, M.; Delgado, P.; García-Berrocoso, T.; Giralt, D.; Merino, C.; Ribó, M.; Rosell, A.; Penalba, A.; Fernández-Cadenas, I.; Romero, F.; Molina, C.; Alvarez-Sabín, J.; Hernández-Guillamon, M. Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: The S100B/RAGE pathway. J. Proteomics, 2012, 75(15), 4758-4765.
[http://dx.doi.org/10.1016/j.jprot.2012.01.033] [PMID: 22343074]
[180]
Thaler, H.W.; Schmidsfeld, J.; Pusch, M.; Pienaar, S.; Wunderer, J.; Pittermann, P.; Valenta, R.; Gleiss, A.; Fialka, C.; Mousavi, M. Evaluation of S100B in the diagnosis of suspected intracranial hemorrhage after minor head injury in patients who are receiving platelet aggregation inhibitors and in patients 65 years of age and older. J. Neurosurg., 2015, 123(5), 1202-1208.
[http://dx.doi.org/10.3171/2014.12.JNS142276] [PMID: 26148794]
[181]
Dang, B.; Duan, X.; Wang, Z.; He, W.; Chen, G. A therapeutic target of cerebral hemorrhagic stroke: Matrix metalloproteinase-9. Curr. Drug Targets, 2017, 18(12), 1358-1366.
[http://dx.doi.org/10.2174/1389450118666170427151657] [PMID: 28460607]
[182]
Bustamante, A.; López-Cancio, E.; Pich, S.; Penalba, A.; Giralt, D.; García-Berrocoso, T.; Ferrer-Costa, C.; Gasull, T.; Hernández-Pérez, M.; Millan, M.; Rubiera, M.; Cardona, P.; Cano, L.; Quesada, H.; Terceño, M.; Silva, Y.; Castellanos, M.; Garces, M.; Reverté, S.; Ustrell, X.; Marés, R.; Baiges, J.J.; Serena, J.; Rubio, F.; Salas, E.; Dávalos, A.; Montaner, J. Blood biomarkers for the early diagnosis of stroke. Stroke, 2017, 48(9), 2419-2425.
[http://dx.doi.org/10.1161/STROKEAHA.117.017076] [PMID: 28716979]
[183]
Gregorio, T.; Albuquerque, I.; Neves, V.; Reinas, R.; Pipa, S.; Azevedo, L.; Chaves, P.C. NT-pro-BNP correlates with disease severity and predicts outcome in cerebral haemorrhage patients: Cohort study. J. Neurol. Sci., 2019, 399, 51-56.
[http://dx.doi.org/10.1016/j.jns.2019.02.014] [PMID: 30772761]
[184]
Zhu, H.; Wang, Z.; Yu, J.; Yang, X.; He, F.; Liu, Z.; Che, F.; Chen, X.; Ren, H.; Hong, M.; Wang, J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog. Neurobiol., 2019, 178, 101610.
[http://dx.doi.org/10.1016/j.pneurobio.2019.03.003] [PMID: 30923023]
[185]
Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta, Gen. Subj., 2010, 1800(8), 760-769.
[http://dx.doi.org/10.1016/j.bbagen.2010.03.011] [PMID: 20304033]
[186]
Sobrino, T.; Arias, S.; Rodríguez-González, R.; Brea, D.; Silva, Y.; de la Ossa, N.P.; Agulla, J.; Blanco, M.; Pumar, J.M.; Serena, J.; Dávalos, A.; Castillo, J. High serum levels of growth factors are associated with good outcome in intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2009, 29(12), 1968-1974.
[http://dx.doi.org/10.1038/jcbfm.2009.182] [PMID: 19756022]
[187]
Yang, G.; Hu, R.; Zhang, C.; Qian, C.; Luo, Q.Q.; Yung, W.H.; Ke, Y.; Feng, H.; Qian, Z.M. A combination of serum iron, ferritin and transferrin predicts outcome in patients with intracerebral hemorrhage. Sci. Rep., 2016, 6(1), 21970.
[http://dx.doi.org/10.1038/srep21970] [PMID: 26898550]
[188]
Saloheimo, P.; Juvela, S.; Riutta, A.; Pyhtinen, J.; Hillbom, M. Thromboxane and prostacyclin biosynthesis in patients with acute spontaneous intracerebral hemorrhage. Thromb. Res., 2005, 115(5), 367-373.
[http://dx.doi.org/10.1016/j.thromres.2004.08.026] [PMID: 15733969]
[189]
van Kooten, F.; Ciabattoni, G.; Koudstaal, P.J.; Dippel, D.W.J.; Patrono, C. Increased platelet activation in the chronic phase after cerebral ischemia and intracerebral hemorrhage. Stroke, 1999, 30(3), 546-549.
[http://dx.doi.org/10.1161/01.STR.30.3.546] [PMID: 10066850]
[190]
Albers, G.W.; Caplan, L.R.; Easton, J.D.; Fayad, P.B.; Mohr, J.; Saver, J.L. Transient ischemic attack—proposal for a new definition. Mass Med. Soc., 2002, 2002, 020987.
[http://dx.doi.org/10.1056/NEJMsb020987]
[191]
Prabhakaran, S.; Silver, A.J.; Warrior, L.; McClenathan, B.; Lee, V.H. Misdiagnosis of transient ischemic attacks in the emergency room. Cerebrovasc. Dis., 2008, 26(6), 630-635.
[http://dx.doi.org/10.1159/000166839] [PMID: 18984948]
[192]
Johnston, S.C.; Gress, D.R.; Browner, W.S.; Sidney, S. Short-term prognosis after emergency department diagnosis of TIA. JAMA, 2000, 284(22), 2901-2906.
[http://dx.doi.org/10.1001/jama.284.22.2901] [PMID: 11147987]
[193]
Giles, M.F.; Rothwell, P.M. Risk of stroke early after transient ischaemic attack: A systematic review and meta-analysis. Lancet Neurol., 2007, 6(12), 1063-1072.
[http://dx.doi.org/10.1016/S1474-4422(07)70274-0] [PMID: 17993293]
[194]
Wu, C.M.; McLaughlin, K.; Lorenzetti, D.L.; Hill, M.D.; Manns, B.J.; Ghali, W.A. Early risk of stroke after transient ischemic attack: A systematic review and meta-analysis. Arch. Intern. Med., 2007, 167(22), 2417-2422.
[http://dx.doi.org/10.1001/archinte.167.22.2417] [PMID: 18071162]
[195]
Chandratheva, A.; Mehta, Z.; Geraghty, O.C.; Marquardt, L.; Rothwell, P.M.; Oxford Vascular, S. Population-based study of risk and predictors of stroke in the first few hours after a TIA. Neurology, 2009, 72(22), 1941-1947.
[http://dx.doi.org/10.1212/WNL.0b013e3181a826ad] [PMID: 19487652]
[196]
Coutts, SB. Diagnosis and management of transient ischemic attack. Continuum (Minneap Minn), 2017, 23, 82-92.
[http://dx.doi.org/10.1212/CON.0000000000000424]
[197]
Li, J.; Wang, Y. Blood biomarkers in minor stroke and transient ischemic attack. Neurosci. Bull., 2016, 32(5), 463-468.
[http://dx.doi.org/10.1007/s12264-016-0038-5] [PMID: 27250628]
[198]
Allard, L.; Burkhard, P.R.; Lescuyer, P.; Burgess, J.A.; Walter, N.; Hochstrasser, D.F.; Sanchez, J.C. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin. Chem., 2005, 51(11), 2043-2051.
[http://dx.doi.org/10.1373/clinchem.2005.053942] [PMID: 16141287]
[199]
Weissman, J.D.; Khunteev, G.A.; Heath, R.; Dambinova, S.A. NR2 antibodies: Risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J. Neurol. Sci., 2011, 300(1-2), 97-102.
[http://dx.doi.org/10.1016/j.jns.2010.09.023] [PMID: 20934192]
[200]
Endler, G.; Lalouschek, W.; Exner, M.; Mitterbauer, G.; Häring, D.; Mannhalter, C. The 4G/4G genotype at nucleotide position −675 in the promotor region of the plasminogen activator inhibitor 1 (PAI-1) gene is less frequent in young patients with minor stroke than in controls. Br. J. Haematol., 2000, 110(2), 469-471.
[http://dx.doi.org/10.1046/j.1365-2141.2000.02164.x] [PMID: 10971410]
[201]
George, P.M.; Mlynash, M.; Adams, C.M.; Kuo, C.J.; Albers, G.W.; Olivot, J.M. Novel TIA biomarkers identified by mass spectrometry-based proteomics. Int. J. Stroke, 2015, 10(8), 1204-1211.
[http://dx.doi.org/10.1111/ijs.12603] [PMID: 26307429]
[202]
Li, Y.M.; Liu, X.Y. Serum levels of procalcitonin and high sensitivity C-reactive protein are associated with long-term mortality in acute ischemic stroke. J. Neurol. Sci., 2015, 352(1-2), 68-73.
[http://dx.doi.org/10.1016/j.jns.2015.03.032] [PMID: 25868898]
[203]
Lin, J.; Zheng, H.; Cucchiara, B.L.; Li, J.; Zhao, X.; Liang, X.; Wang, C.; Li, H.; Mullen, M.T.; Johnston, S.C.; Wang, Y.; Wang, Y. Association of Lp-PLA 2 -A and early recurrence of vascular events after TIA and minor stroke. Neurology, 2015, 85(18), 1585-1591.
[http://dx.doi.org/10.1212/WNL.0000000000001938] [PMID: 26311748]
[204]
Purroy, F.; Montaner, J.; Molina, C.A.; Delgado, P.; Arenillas, J.F.; Chacon, P.; Quintana, M.; Alvarez-Sabin, J. C-reactive protein predicts further ischemic events in transient ischemic attack patients. Acta Neurol. Scand., 2007, 115(1), 60-66.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00715.x] [PMID: 17156267]
[205]
García-Berrocoso, T.; Giralt, D.; Bustamante, A.; Etgen, T.; Jensen, J.K.; Sharma, J.C.; Shibazaki, K.; Saritas, A.; Chen, X.; Whiteley, W.N.; Montaner, J. B-type natriuretic peptides and mortality after stroke: A systematic review and meta-analysis. Neurology, 2013, 81(23), 1976-1985.
[http://dx.doi.org/10.1212/01.wnl.0000436937.32410.32] [PMID: 24186915]
[206]
Folsom, A.R.; Gottesman, R.F.; Appiah, D.; Shahar, E.; Mosley, T.H. Plasma d-dimer and incident ischemic stroke and coronary heart disease: The atherosclerosis risk in communities study. Stroke, 2016, 47(1), 18-23.
[http://dx.doi.org/10.1161/STROKEAHA.115.011035] [PMID: 26556822]
[207]
Tian, X.; Guo, Y.; Wang, X.; Pei, L.; Wang, X.; Wu, J.; Sun, S.; Li, Y.; Ning, M.; Buonanno, F.S.; Xu, Y.; Song, B. Serum soluble ST2 is a potential long-term prognostic biomarker for transient ischaemic attack and ischaemic stroke. Eur. J. Neurol., 2020, 27(11), 2202-2208.
[http://dx.doi.org/10.1111/ene.14419] [PMID: 32593220]
[208]
Martinic-Popovic, I.; Simundic, A.M.; Dukic, L.; Lovrencic-Huzjan, A.; Popovic, A.; Seric, V.; Basic-Kes, V.; Demarin, V. The association of inflammatory markers with cerebral vasoreactivity and carotid atherosclerosis in transient ischaemic attack. Clin. Biochem., 2014, 47(16-17), 182-186.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.07.010] [PMID: 25046654]
[209]
a) Jové, M.; Mauri-Capdevila, G.; Suárez, I.; Cambray, S.; Sanahuja, J.; Quílez, A.; Farré, J.; Benabdelhak, I.; Pamplona, R.; Portero-Otín, M.; Purroy, F. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology, 2015, 84(1), 36-45.
[http://dx.doi.org/10.1212/WNL.0000000000001093] [PMID: 25471397];
(b) Cunningham, T.J.; Yao, L.; & Lucena, A. Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines' unexpected therapeutic properties. J Inflamm 5, 17 (2008).
[http://dx.doi.org/10.1186/1476-9255-5-17]
[210]
Lu, L.; Liu, M.; Sun, R.; Zheng, Y.; Zhang, P. Myocardial infarction: Symptoms and treatments. Cell Biochem. Biophys., 2015, 72(3), 865-867.
[http://dx.doi.org/10.1007/s12013-015-0553-4] [PMID: 25638347]
[211]
Scheen, A.J. From atherosclerosis to atherothrombosis: From a pathology chronic silence to an accident acute critique. Rev. Med. Liege, 2018, 73(5-6), 224-228.
[PMID: 29926559]
[212]
Taylor, J. Third universal definition of myocardial infarction. Eur. Heart J., 2012, 33(20), 2506-2507.
[PMID: 23065972]
[213]
Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R.; Prospective Studies, C. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002, 360(9349), 1903-1913.
[http://dx.doi.org/10.1016/S0140-6736(02)11911-8] [PMID: 12493255]
[214]
Njølstad, I.; Arnesen, E. Preinfarction blood pressure and smoking are determinants for a fatal outcome of myocardial infarction: A prospective analysis from the Finnmark Study. Arch. Intern. Med., 1998, 158(12), 1326-1332.
[http://dx.doi.org/10.1001/archinte.158.12.1326] [PMID: 9645827]
[215]
Tormey, W.P. The diagnosis and management of acute myocardial infarction-a role for biochemical markers? Ann. Clin. Biochem., 1996, 33(6), 477-481.
[http://dx.doi.org/10.1177/000456329603300601] [PMID: 8937578]
[216]
Wu, A.H.B.; Apple, F.S.; Gibler, W.B.; Jesse, R.L.; Warshaw, M.M.; Valdes, R., Jr. National academy of clinical biochemistry standards of laboratory practice: Recommendations for the use of cardiac markers in coronary artery diseases. Clin. Chem., 1999, 45(7), 1104-1121.
[http://dx.doi.org/10.1093/clinchem/45.7.1104] [PMID: 10388496]
[217]
Khan, I.A.; Wattanasuwan, N. Role of biochemical markers in diagnosis of myocardial infarction. Int. J. Cardiol., 2005, 104(2), 238-240.
[http://dx.doi.org/10.1016/j.ijcard.2004.10.031] [PMID: 16168823]
[218]
Tan, B.; Liu, Q.; Yang, L.; Yang, Y.; Liu, D.; Liu, L.; Meng, F. Low expression of PRMT5 in peripheral blood may serve as a potential independent risk factor in assessments of the risk of stable CAD and AMI. BMC Cardiovasc. Disord., 2019, 19(1), 31.
[http://dx.doi.org/10.1186/s12872-019-1008-4] [PMID: 30704408]
[219]
Do, R.; Stitziel, N.O.; Won, H.H.; Jørgensen, A.B.; Duga, S.; Angelica Merlini, P.; Kiezun, A.; Farrall, M.; Goel, A.; Zuk, O.; Guella, I.; Asselta, R.; Lange, L.A.; Peloso, G.M.; Auer, P.L.; Girelli, D.; Martinelli, N.; Farlow, D.N.; DePristo, M.A.; Roberts, R.; Stewart, A.F.R.; Saleheen, D.; Danesh, J.; Epstein, S.E.; Sivapalaratnam, S.; Kees Hovingh, G.; Kastelein, J.J.; Samani, N.J.; Schunkert, H.; Erdmann, J.; Shah, S.H.; Kraus, W.E.; Davies, R.; Nikpay, M.; Johansen, C.T.; Wang, J.; Hegele, R.A.; Hechter, E.; Marz, W.; Kleber, M.E.; Huang, J.; Johnson, A.D.; Li, M.; Burke, G.L.; Gross, M.; Liu, Y.; Assimes, T.L.; Heiss, G.; Lange, E.M.; Folsom, A.R.; Taylor, H.A.; Olivieri, O.; Hamsten, A.; Clarke, R.; Reilly, D.F.; Yin, W.; Rivas, M.A.; Donnelly, P.; Rossouw, J.E.; Psaty, B.M.; Herrington, D.M.; Wilson, J.G.; Rich, S.S.; Bamshad, M.J.; Tracy, R.P.; Adrienne Cupples, L.; Rader, D.J.; Reilly, M.P.; Spertus, J.A.; Cresci, S.; Hartiala, J.; Wilson Tang, W.H.; Hazen, S.L.; Allayee, H.; Reiner, A.P.; Carlson, C.S.; Kooperberg, C.; Jackson, R.D.; Boerwinkle, E.; Lander, E.S.; Schwartz, S.M.; Siscovick, D.S.; McPherson, R.; Tybjaerg-Hansen, A.; Abecasis, G.R.; Watkins, H.; Nickerson, D.A.; Ardissino, D.; Sunyaev, S.R.; O’Donnell, C.J.; Altshuler, D.; Gabriel, S.; Kathiresan, S. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518(7537), 102-106.
[http://dx.doi.org/10.1038/nature13917] [PMID: 25487149]
[220]
Mujalli, A.; Banaganapalli, B.; Alrayes, N.M.; Shaik, N.A.; Elango, R.; Al-Aama, J.Y. Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics, 2020, 112(6), 5072-5085.
[http://dx.doi.org/10.1016/j.ygeno.2020.09.004] [PMID: 32920122]
[221]
Wang, A.; Zhang, X.; Li, S.; Zhao, X.; Liu, L.; Johnston, S.C.; Meng, X.; Lin, J.; Zuo, Y.; Li, H.; Wang, Y.; Wang, Y. Oxidative lipoprotein markers predict poor functional outcome in patients with minor stroke or transient ischaemic attack. Eur. J. Neurol., 2019, 26(8), 1082-1090.
[http://dx.doi.org/10.1111/ene.13943] [PMID: 30793440]
[222]
Long, G.; Wang, F.; Duan, Q.; Yang, S.; Chen, F.; Gong, W.; Yang, X.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS One, 2012, 7(12), e50926.
[http://dx.doi.org/10.1371/journal.pone.0050926] [PMID: 23236408]
[223]
Zhao, J.; Yu, H.; Yan, P.; Zhou, X.; Wang, Y.; Yao, Y. Circulating MicroRNA-499 as a diagnostic biomarker for acute myocardial infarction: A meta-analysis. Dis. Markers, 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/6121696] [PMID: 31191754]
[224]
Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet., 2010, 3(6), 499-506.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.957415] [PMID: 20921333]
[225]
Kuwabara, Y.; Ono, K.; Horie, T.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Baba, O.; Kojima, Y.; Shizuta, S.; Imai, M.; Tamura, T.; Kita, T.; Kimura, T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet., 2011, 4(4), 446-454.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958975] [PMID: 21642241]
[226]
Ai, J.; Zhang, R.; Li, Y.; Pu, J.; Lu, Y.; Jiao, J.; Li, K.; Yu, B.; Li, Z.; Wang, R.; Wang, L.; Li, Q.; Wang, N.; Shan, H.; Li, Z.; Yang, B. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem. Biophys. Res. Commun., 2010, 391(1), 73-77.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.005] [PMID: 19896465]
[227]
Jensen, A.E.; Reikvam, Å.; Åsberg, A. Diagnostic efficiency of lactate dehydrogenase isoenzymes in serum after acute myocardial infarction. Scand. J. Clin. Lab. Invest., 1990, 50(3), 285-289.
[http://dx.doi.org/10.3109/00365519009091580] [PMID: 2353157]
[228]
Xuan, Y.; Bobak, M.; Anusruti, A.; Jansen, E.H.J.M.; Pająk, A.; Tamosiunas, A.; Saum, K.U.; Holleczek, B.; Gao, X.; Brenner, H.; Schöttker, B. Association of serum markers of oxidative stress with myocardial infarction and stroke: Pooled results from four large European cohort studies. Eur. J. Epidemiol., 2019, 34(5), 471-481.
[http://dx.doi.org/10.1007/s10654-018-0457-x] [PMID: 30406496]
[229]
Hawkins, R.C.; Tan, H.L. Comparison of the diagnostic utility of CK, CK-MB (activity and mass), troponin T and troponin I in patients with suspected acute myocardial infarction. Singapore Med. J., 1999, 40(11), 680-684.
[PMID: 10709404]
[230]
Wei, B.; Jin, J.P. Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch. Biochem. Biophys., 2011, 505(2), 144-154.
[http://dx.doi.org/10.1016/j.abb.2010.10.013] [PMID: 20965144]
[231]
Shah, A.S.V.; McAllister, D.A.; Mills, R.; Lee, K.K.; Churchhouse, A.M.D.; Fleming, K.M.; Layden, E.; Anand, A.; Fersia, O.; Joshi, N.V.; Walker, S.; Jaffe, A.S.; Fox, K.A.A.; Newby, D.E.; Mills, N.L. Sensitive troponin assay and the classification of myocardial infarction. Am. J. Med., 2015, 128(5), 493-501.e3.
[http://dx.doi.org/10.1016/j.amjmed.2014.10.056] [PMID: 25436428]
[232]
Aldous, S.J. Cardiac biomarkers in acute myocardial infarction. Int. J. Cardiol., 2013, 164(3), 282-294.
[http://dx.doi.org/10.1016/j.ijcard.2012.01.081] [PMID: 22341694]
[233]
Reichlin, T.; Hochholzer, W.; Stelzig, C.; Laule, K.; Freidank, H.; Morgenthaler, N.G.; Bergmann, A.; Potocki, M.; Noveanu, M.; Breidthardt, T.; Christ, A.; Boldanova, T.; Merki, R.; Schaub, N.; Bingisser, R.; Christ, M.; Mueller, C. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J. Am. Coll. Cardiol., 2009, 54(1), 60-68.
[http://dx.doi.org/10.1016/j.jacc.2009.01.076] [PMID: 19555842]
[234]
Omland, T.; Aakvaag, A.; Bonarjee, V.V.S.; Caidahl, K.; Lie, R.T.; Nilsen, D.W.T.; Sundsfjord, J.A.; Dickstein, K. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation, 1996, 93(11), 1963-1969.
[http://dx.doi.org/10.1161/01.CIR.93.11.1963] [PMID: 8640969]
[235]
Arakawa, N.; Nakamura, M.; Aoki, H.; Hiramori, K. Plasma brain natriuretic peptide concentrations predict survival after acute myocardial infarction. J. Am. Coll. Cardiol., 1996, 27(7), 1656-1661.
[http://dx.doi.org/10.1016/0735-1097(96)00067-8] [PMID: 8636550]
[236]
Squire, I.B.; O’Brien, R.J.; Demme, B.; Davies, J.E.; Ng, L.L. N-terminal pro-atrial natriuretic peptide (N-ANP) and N-terminal pro-B-type natriuretic peptide (N-BNP) in the prediction of death and heart failure in unselected patients following acute myocardial infarction. Clin. Sci. (Lond.), 2004, 107(3), 309-316.
[http://dx.doi.org/10.1042/CS20040087] [PMID: 15182235]
[237]
Ishii, J.; Wang, J.; Naruse, H.; Taga, S.; Kinoshita, M.; Kurokawa, H.; Iwase, M.; Kondo, T.; Nomura, M.; Nagamura, Y.; Watanabe, Y.; Hishida, H.; Tanaka, T.; Kawamura, K. Serum concentrations of myoglobin vs. human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin. Chem., 1997, 43(8), 1372-1378.
[http://dx.doi.org/10.1093/clinchem/43.8.1372] [PMID: 9267316]
[238]
Matsumoto, S.; Nakatani, D.; Sakata, Y.; Suna, S.; Shimizu, M.; Usami, M. Elevated serum heart-type fatty acid-binding protein in the convalescent stage predicts long-term outcome in patients surviving acute myocardial infarction. Circ. J., 2012, 2002, CJ-12-CJ-0999.
[PMID: 23291993]
[239]
Liebetrau, C.; Hoffmann, J.; Dörr, O.; Gaede, L.; Blumenstein, J.; Biermann, H.; Pyttel, L.; Thiele, P.; Troidl, C.; Berkowitsch, A.; Rolf, A.; Voss, S.; Hamm, C.W.; Nef, H.; Möllmann, H. Release kinetics of inflammatory biomarkers in a clinical model of acute myocardial infarction. Circ. Res., 2015, 116(5), 867-875.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304653] [PMID: 25516775]
[240]
Fanola, C.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Lukas, M.A.; Bode, C.; Hochman, J.S.; Goodrich, E.L.; Braunwald, E.; O’Donoghue, M.L. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: Observations from the SOLID-TIMI 52 (stabilization of plaque using Darapladib—Thrombolysis in Myocardial Infarction 52) trial. J. Am. Heart Assoc., 2017, 6(10), e005637.
[http://dx.doi.org/10.1161/JAHA.117.005637] [PMID: 29066436]
[241]
Napoleão, P.; Cabral, L.B.P.; Selas, M.; Freixo, C.; Monteiro, M.C.; Criado, M.B.; Costa, M.C.; Enguita, F.J.; Viegas-Crespo, A.M.; Saldanha, C.; Carmo, M.M.; Ferreira, R.C.; Pinheiro, T. Stratification of ST-elevation myocardial infarction patients based on soluble CD40L longitudinal changes. Transl. Res., 2016, 176, 95-104.
[http://dx.doi.org/10.1016/j.trsl.2016.04.005] [PMID: 27172386]
[242]
Lisowska, A.; Knapp, M.; Tycińska, A.; Motybel, E.; Kamiński, K.; Święcki, P.; Musiał, W.J.; Dymicka-Piekarska, V. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study. Atherosclerosis, 2016, 246, 309-317.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.022] [PMID: 26828748]
[243]
Liu, X.; Locasale, J.W. Metabolomics: A primer. Trends Biochem. Sci., 2017, 42(4), 274-284.
[http://dx.doi.org/10.1016/j.tibs.2017.01.004] [PMID: 28196646]
[244]
Shi, Q.; Savage, J.E.; Hufeisen, S.J.; Rauser, L.; Grajkowska, E.; Ernsberger, P.; Wroblewski, J.T.; Nadeau, J.H.; Roth, B.L. L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J. Pharmacol. Exp. Ther., 2003, 305(1), 131-142.
[http://dx.doi.org/10.1124/jpet.102.047092] [PMID: 12649361]
[245]
Khan, A.; Choi, Y.; Back, J.H.; Lee, S.; Jee, S.H.; Park, Y.H. High-resolution metabolomics study revealing l-homocysteine sulfinic acid, cysteic acid, and carnitine as novel biomarkers for high acute myocardial infarction risk. Metabolism, 2020, 104, 154051.
[http://dx.doi.org/10.1016/j.metabol.2019.154051] [PMID: 31874143]
[246]
Pekala, J.; Patkowska-Sokoła, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochyński, S.; Librowski, T. L-carnitine--metabolic functions and meaning in humans life. Curr. Drug Metab., 2011, 12(7), 667-678.
[http://dx.doi.org/10.2174/138920011796504536] [PMID: 21561431]
[247]
Lenfant, C. Chest pain of cardiac and noncardiac origin. Metabolism, 2010, 59, S41-S46.
[http://dx.doi.org/10.1016/j.metabol.2010.07.014] [PMID: 20837193]
[248]
Tsaknis, G.; Tsangaris, I.; Ikonomidis, I.; Tsantes, A. Clinical usefulness of novel serum and imaging biomarkers in risk stratification of patients with stable angina. Dis. Markers, 2014, 2014, 831364.
[http://dx.doi.org/10.1155/2014/831364] [PMID: 25045198]
[249]
Romaschenko, O.V.; Snegin, E.A.; Zhernakova, N.I.; Alferov, P.K.; Zakirova, L.R. Polymorphism of CYP2C9 gene in patients with stable angina pectoris and its significance in pathogenesis of the disease. Sys. Rev. Pharm., 2020, 11(6), 16-20.
[250]
Amorim, F.G.; Campagnaro, B.P.; Tonini, C.L.; Norbim, A.P.C.; Louro, I.D.; Vasquez, E.C.; Arruda, J.A.; Meyrelles, S.S. Association of interleukin-6 gene polymorphism with angina pectoris. Angiology, 2011, 62(7), 549-553.
[http://dx.doi.org/10.1177/0003319711398862] [PMID: 21421628]
[251]
Ren, J.L.; Zhang, A.H.; Kong, L.; Wang, X.J. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Advances, 2018, 8(40), 22335-22350.
[http://dx.doi.org/10.1039/C8RA01574K] [PMID: 35539746]
[252]
Wang, W.; Li, T.; Gao, L.; Li, Y.; Sun, Y.; Yao, H.C. Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomarkers Med., 2020, 14(2), 87-95.
[http://dx.doi.org/10.2217/bmm-2019-0257] [PMID: 31789049]
[253]
Yoshiyama, T.; Sugioka, K.; Naruko, T.; Nakagawa, M.; Shirai, N.; Ohsawa, M.; Yoshiyama, M.; Ueda, M. Neopterin and cardiovascular events following coronary stent implantation in patients with stable angina pectoris. J. Atheroscler. Thromb., 2018, 25(11), 1105-1117.
[http://dx.doi.org/10.5551/jat.43166] [PMID: 29593175]
[254]
Tanindi, A.; Sahinarslan, A.; Elbeg, S.; Cemri, M. Relationship between MMP-1, MMP-9, TIMP-1, IL-6 and risk factors, clinical presentation, extent and severity of atherosclerotic coronary artery disease. Open Cardiovasc. Med. J., 2011, 5(1), 110-116.
[http://dx.doi.org/10.2174/1874192401105010110] [PMID: 21772929]
[255]
Zhang, Y.; Li, Y.; Shi, C.; Fu, X.; Zhao, L.; Song, Y. Angiotensin-(1-7)-mediated Mas1 receptor/NF-κB-p65 signaling is involved in a cigarette smoke-induced chronic obstructive pulmonary disease mouse model. Environ. Toxicol., 2018, 33(1), 5-15.
[http://dx.doi.org/10.1002/tox.22454] [PMID: 28960804]
[256]
Lichtenauer, M.; Wernly, B.; Paar, V.; Rohm, I.; Jung, C.; Yilmaz, A.; Hoppe, U.C.; Schulze, P.C.; Kretzschmar, D.; Pistulli, R. Specifics of fetuin-A levels in distinct types of chronic heart failure. J. Clin. Lab. Anal., 2018, 32(1), e22179.
[http://dx.doi.org/10.1002/jcla.22179] [PMID: 28213903]
[257]
Li, C.; Zamore, P.D. Preparation of antisense oligonucleotides to inhibit miRNA function. Cold Spring Harb. Protoc., 2018, 2018(2), pdb.prot097527.
[http://dx.doi.org/10.1101/pdb.prot097527] [PMID: 29438060]
[258]
Karabağ, Y.; Çağdaş, M.; Rencuzogullari, I.; Karakoyun, S.; Artaç, İ.; İliş, D.; Atalay, E.; Yesin, M.; Gürsoy, M.O.; Halil Tanboğa, I. Relationship between C-reactive protein/albumin ratio and coronary artery disease severity in patients with stable angina pectoris. J. Clin. Lab. Anal., 2018, 32(7), e22457.
[http://dx.doi.org/10.1002/jcla.22457] [PMID: 29667724]
[259]
Sun, M.; Gao, X.; Zhang, D.; Ke, C.; Hou, Y.; Fan, L.; Zhang, R.; Liu, H.; Li, K.; Yu, B. Identification of biomarkers for unstable angina by plasma metabolomic profiling. Mol. Biosyst., 2013, 9(12), 3059-3067.
[http://dx.doi.org/10.1039/c3mb70216b] [PMID: 24061630]
[260]
Sun, C.Y.; Hsu, H.H.; Wu, M.S. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol. Dial. Transplant., 2013, 28(1), 70-78.
[http://dx.doi.org/10.1093/ndt/gfs133] [PMID: 22610984]
[261]
Dharane Neé Ligam, P.; Manuelpillai, U.; Wallace, E.; Walker, D.W. NFκB-dependent increase of kynurenine pathway activity in human placenta: Inhibition by sulfasalazine. Placenta, 2010, 31(11), 997-1002.
[http://dx.doi.org/10.1016/j.placenta.2010.09.002] [PMID: 20884048]
[262]
Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med., 2013, 158(11), 825-830.
[http://dx.doi.org/10.7326/0003-4819-158-11-201306040-00007] [PMID: 23732715]
[263]
Levin, A.; Tonelli, M.; Bonventre, J.; Coresh, J.; Donner, J.A.; Fogo, A.B.; Fox, C.S.; Gansevoort, R.T.; Heerspink, H.J.L.; Jardine, M.; Kasiske, B.; Köttgen, A.; Kretzler, M.; Levey, A.S.; Luyckx, V.A.; Mehta, R.; Moe, O.; Obrador, G.; Pannu, N.; Parikh, C.R.; Perkovic, V.; Pollock, C.; Stenvinkel, P.; Tuttle, K.R.; Wheeler, D.C.; Eckardt, K.U.; Adu, D.; Agarwal, S.K.; Alrukhaimi, M.; Anders, H-J.; Ashuntantang, G.; Basnet, S.; Bello, A.K.; Chailimpamontree, W.; Correa-Rotter, R.; Craig, J.; Douthat, W.G.; Feldman, H.I.; Ganji, M.R.; Garcia-Garcia, G.; Gharbi, M.B.; Harris, D.C.; Jha, V.; Johnson, D.W.; Kazancioglu, R.; Langham, R.; Liu, Z-H.; Massy, Z.A.; Nangaku, M.; Nelson, R.G.; O’Donoghue, D.; Okpechi, I.; Pecoits-Filho, R.; Powe, N.R.; Remuzzi, G.; Roberts, C.; Rossert, J.; Sola, L.; Stengel, B.; M, E.K.S.; Suzuki, Y.; Tanaka, T.; Tatiyanupanwong, S.; Thomas, B.; Uhlig, K.; Walker, R.; White, S.L.; Wiecek, A.; Yang, C-W. Global kidney health 2017 and beyond: A roadmap for closing gaps in care, research, and policy. Lancet, 2017, 390(10105), 1888-1917.
[http://dx.doi.org/10.1016/S0140-6736(17)30788-2] [PMID: 28434650]
[264]
Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E. Kidney disease: Improving global outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl., 2013, 3(1), 1-150.
[265]
Hamrahian, S.M.; Falkner, B. Hypertension in chronic kidney disease. Adv. Exp. Med. Biol., 2016, 956, 307-325.
[http://dx.doi.org/10.1007/5584_2016_84] [PMID: 27873228]
[266]
Briasoulis, A.; Bakris, G.L. Chronic kidney disease as a coronary artery disease risk equivalent. Curr. Cardiol. Rep., 2013, 15(3), 340.
[http://dx.doi.org/10.1007/s11886-012-0340-4] [PMID: 23338722]
[267]
Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.; Lv, J.; Garg, A.X.; Knight, J.; Rodgers, A.; Gallagher, M.; Kotwal, S.; Cass, A.; Perkovic, V. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet, 2015, 385(9981), 1975-1982.
[http://dx.doi.org/10.1016/S0140-6736(14)61601-9] [PMID: 25777665]
[268]
Kohlová, M.; Amorim, C.G.; Araújo, A.; Santos-Silva, A.; Solich, P.; Montenegro, M.C.B.S.M. The biocompatibility and bioactivity of hemodialysis membranes: Their impact in end-stage renal disease. J. Artif. Organs, 2019, 22(1), 14-28.
[http://dx.doi.org/10.1007/s10047-018-1059-9] [PMID: 30006787]
[269]
Wei, P.Z.; Kwan, B.C.H.; Chow, K.M.; Cheng, P.M.S.; Luk, C.C.W.; Lai, K.B.; Li, P.K.T.; Szeto, C.C. Urinary mitochondrial DNA level in non-diabetic chronic kidney diseases. Clin. Chim. Acta, 2018, 484, 36-39.
[http://dx.doi.org/10.1016/j.cca.2018.05.036] [PMID: 29778542]
[270]
Nadkarni, G.N.; Horowitz, C.R. Genomics in CKD: Is this the path forward? Adv. Chronic Kidney Dis., 2016, 23(2), 120-124.
[http://dx.doi.org/10.1053/j.ackd.2016.01.017] [PMID: 26979150]
[271]
Kao, W.H.L.; Klag, M.J.; Meoni, L.A.; Reich, D.; Berthier-Schaad, Y.; Li, M.; Coresh, J.; Patterson, N.; Tandon, A.; Powe, N.R.; Fink, N.E.; Sadler, J.H.; Weir, M.R.; Abboud, H.E.; Adler, S.G.; Divers, J.; Iyengar, S.K.; Freedman, B.I.; Kimmel, P.L.; Knowler, W.C.; Kohn, O.F.; Kramp, K.; Leehey, D.J.; Nicholas, S.B.; Pahl, M.V.; Schelling, J.R.; Sedor, J.R.; Thornley-Brown, D.; Winkler, C.A.; Smith, M.W.; Parekh, R.S. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet., 2008, 40(10), 1185-1192.
[http://dx.doi.org/10.1038/ng.232] [PMID: 18794854]
[272]
Kopp, J.B.; Smith, M.W.; Nelson, G.W.; Johnson, R.C.; Freedman, B.I.; Bowden, D.W.; Oleksyk, T.; McKenzie, L.M.; Kajiyama, H.; Ahuja, T.S.; Berns, J.S.; Briggs, W.; Cho, M.E.; Dart, R.A.; Kimmel, P.L.; Korbet, S.M.; Michel, D.M.; Mokrzycki, M.H.; Schelling, J.R.; Simon, E.; Trachtman, H.; Vlahov, D.; Winkler, C.A. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet., 2008, 40(10), 1175-1184.
[http://dx.doi.org/10.1038/ng.226] [PMID: 18794856]
[273]
Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; Bernhardy, A.J.; Hicks, P.J.; Nelson, G.W.; Vanhollebeke, B.; Winkler, C.A.; Kopp, J.B.; Pays, E.; Pollak, M.R. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science, 2010, 329(5993), 841-845.
[http://dx.doi.org/10.1126/science.1193032] [PMID: 20647424]
[274]
Lipkowitz, M.S.; Freedman, B.I.; Langefeld, C.D.; Comeau, M.E.; Bowden, D.W.; Linda Kao, W.H.; Astor, B.C.; Bottinger, E.P.; Iyengar, S.K.; Klotman, P.E.; Freedman, R.G.; Zhang, W.; Parekh, R.S.; Choi, M.J.; Nelson, G.W.; Winkler, C.A.; Kopp, J.B. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int., 2013, 83(1), 114-120.
[http://dx.doi.org/10.1038/ki.2012.263] [PMID: 22832513]
[275]
Wang, Y.X.; Liu, M.L.; Zhang, B.; Fu, E.Q.; Li, Z.C. Fasudil alleviated hypoxia-induced pulmonary hypertension by stabilizing the expression of angiotensin-(1-7) in rats. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3304-3312.
[PMID: 27467008]
[276]
Szeto, C.C.; Chan, R.W.Y.; Lai, K.B.; Szeto, C.Y.K.; Chow, K.M.; Li, P.K.T.; Lai, F.M.M. Messenger RNA expression of target genes in the urinary sediment of patients with chronic kidney diseases. Nephrol. Dial. Transplant., 2005, 20(1), 105-113.
[http://dx.doi.org/10.1093/ndt/gfh574] [PMID: 15561743]
[277]
Song, J.; Yu, J.; Prayogo, G.W.; Cao, W.; Wu, Y.; Jia, Z.; Zhang, A. Understanding kidney injury molecule 1: A novel immune factor in kidney pathophysiology. Am. J. Transl. Res., 2019, 11(3), 1219-1229.
[PMID: 30972157]
[278]
Looker, H.C.; Colombo, M.; Hess, S.; Brosnan, M.J.; Farran, B.; Dalton, R.N.; Wong, M.C.; Turner, C.; Palmer, C.N.A.; Nogoceke, E.; Groop, L.; Salomaa, V.; Dunger, D.B.; Agakov, F.; McKeigue, P.M.; Colhoun, H.M. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int., 2015, 88(4), 888-896.
[http://dx.doi.org/10.1038/ki.2015.199] [PMID: 26200946]
[279]
Hu, W.; Zhou, P.H.; Zhang, X.B.; Xu, C.G.; Wang, W. Plasma concentrations of adrenomedullin and natriuretic peptides in patients with essential hypertension. Exp. Ther. Med., 2015, 9(5), 1901-1908.
[http://dx.doi.org/10.3892/etm.2015.2345] [PMID: 26136912]
[280]
Saulnier, P.J.; Gand, E.; Velho, G.; Mohammedi, K.; Zaoui, P.; Fraty, M.; Halimi, J.M.; Roussel, R.; Ragot, S.; Hadjadj, S. Association of circulating biomarkers (Adrenomedullin, TNFR1, and NT-proBNP) with renal function decline in patients with type 2 diabetes: A French prospective cohort. Diabetes Care, 2017, 40(3), 367-374.
[http://dx.doi.org/10.2337/dc16-1571] [PMID: 27998909]
[281]
Lumlertgul, N.; Amprai, M.; Tachaboon, S.; Dinhuzen, J.; Peerapornratana, S.; Kerr, S.J.; Srisawat, N. Urine neutrophil gelatinase-associated lipocalin (NGAL) for prediction of persistent AKI and major adverse kidney events. Sci. Rep., 2020, 10(1), 8718.
[http://dx.doi.org/10.1038/s41598-020-65764-w] [PMID: 32457335]
[282]
Chen, Y.; Zhao, W.; Liu, C.; Meng, W.; Zhao, T.; Bhattacharya, S.K.; Sun, Y. Molecular and cellular effect of angiotensin 1–7 on hypertensive kidney disease. Am. J. Hypertens., 2019, 32(5), 460-467.
[http://dx.doi.org/10.1093/ajh/hpz009] [PMID: 30715105]
[283]
Koller, A.; Aldwin, L.; Natelson, S. Hepatic synthesis of canavaninosuccinate from ureidohomoserine and aspartate, and its conversion to guanidinosuccinate. Clin. Chem., 1975, 21(12), 1777-1782.
[http://dx.doi.org/10.1093/clinchem/21.12.1777] [PMID: 241511]
[284]
Berg, AH; Drechsler, C; Wenger, J; Buccafusca, R; Hod, T; Kalim, S. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl. Med. 2013, 5(175), 175ra29.
[http://dx.doi.org/10.1126/scitranslmed.3005218]
[285]
Wang, X.; Wang, X.; Xie, G.; Zhou, M.; Yu, H.; Lin, Y.; Du, G.; Luo, G.; Jia, W.; Liu, P. Urinary metabolite variation is associated with pathological progression of the post-hepatitis B cirrhosis patients. J. Proteome Res., 2012, 11(7), 3838-3847.
[http://dx.doi.org/10.1021/pr300337s] [PMID: 22624806]
[286]
Qi, H.; Liu, Z.; Liu, B.; Cao, H.; Sun, W.; Yan, Y.; Zhang, L. micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension. Medicine (Baltimore), 2017, 96(17), e6417.
[http://dx.doi.org/10.1097/MD.0000000000006417] [PMID: 28445253]
[287]
Jackson, K.L.; Marques, F.Z.; Watson, A.M.D.; Palma-Rigo, K.; Nguyen-Huu, T.P.; Morris, B.J.; Charchar, F.J.; Davern, P.J.; Head, G.A. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension, 2013, 62(4), 775-781.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01701] [PMID: 23897069]
[288]
Marques, F.Z.; Campain, A.E.; Tomaszewski, M.; Zukowska-Szczechowska, E.; Yang, Y.H.J.; Charchar, F.J.; Morris, B.J. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension, 2011, 58(6), 1093-1098.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.180729] [PMID: 22042811]
[289]
Yu, Y.; Lu, Y.; Bo, R.; Huang, Y.; Hu, Y.; Liu, J.; Wu, Y.; Tao, Y.; Wang, D. The preparation of gypenosides liposomes and its effects on the peritoneal macrophages function in vitro. Int. J. Pharm., 2014, 460(1-2), 248-254.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.018] [PMID: 24269288]
[290]
Kontaraki, J.E.; Marketou, M.E.; Zacharis, E.A.; Parthenakis, F.I.; Vardas, P.E. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: Novel targets in essential hypertension. J. Hum. Hypertens., 2014, 28(8), 510-516.
[http://dx.doi.org/10.1038/jhh.2013.117] [PMID: 24284386]
[291]
Kwon, S.H.; Tang, H.; Saad, A.; Woollard, J.R.; Lerman, A.; Textor, S.C.; Lerman, L.O. Differential expression of microRNAs in urinary extracellular vesicles obtained from hypertensive patients. Am. J. Kidney Dis., 2016, 68(2), 331-332.
[http://dx.doi.org/10.1053/j.ajkd.2016.01.027] [PMID: 26994684]
[292]
Li, H.; Zhang, X.; Wang, F.; Zhou, L.; Yin, Z.; Fan, J.; Nie, X.; Wang, P.; Fu, X.D.; Chen, C.; Wang, D.W. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation, 2016, 134(10), 734-751.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023926] [PMID: 27542393]
[293]
Dörr, O.; Liebetrau, C.; Möllmann, H.; Gaede, L.; Troidl, C.; Lankes, S.; Guckel, D.; Boeder, N.; Voss, S.; Bauer, T.; Hamm, C.; Nef, H. Effect of renal sympathetic denervation on specific MicroRNAs as an indicator of reverse remodeling processes in hypertensive heart disease. J. Clin. Hypertens. (Greenwich), 2016, 18(6), 497-502.
[http://dx.doi.org/10.1111/jch.12797] [PMID: 26916982]
[294]
van Deventer, C.A.; Lindeque, J.Z.; van Rensburg, P.J.J.; Malan, L.; van der Westhuizen, F.H.; Louw, R. Use of metabolomics to elucidate the metabolic perturbation associated with hypertension in a black South African male cohort: The SABPA study. J. Am. Soc. Hypertens., 2015, 9(2), 104-114.
[http://dx.doi.org/10.1016/j.jash.2014.11.007] [PMID: 25577962]
[295]
Shi, G.; Liu, Y.; Liu, T.; Yan, W.; Liu, X.; Wang, Y.; Shi, J.; Jia, L. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp. Brain Res., 2012, 216(2), 225-230.
[http://dx.doi.org/10.1007/s00221-011-2925-3] [PMID: 22094713]
[296]
Wunderlich, M.T.; Lins, H.; Skalej, M.; Wallesch, C.W.; Goertler, M. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin. Neurol. Neurosurg., 2006, 108(6), 558-563.
[http://dx.doi.org/10.1016/j.clineuro.2005.12.006] [PMID: 16457947]
[297]
Singh, H.V.; Pandey, A.; Shrivastava, A.K.; Raizada, A.; Singh, S.K.; Singh, N. Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin. Chim. Acta, 2013, 419, 136-138.
[http://dx.doi.org/10.1016/j.cca.2013.02.014] [PMID: 23438682]
[298]
Romeo, S.; Valenti, L. Regulation of retinol-binding protein 4 and retinol metabolism in fatty liver disease. Hepatology, 2016, 64(5), 1414-1416.
[http://dx.doi.org/10.1002/hep.28722] [PMID: 27396306]
[299]
Sakurai, T.; Odamaki, T.; Xiao, J. Production of indole-3-lactic acid by Bifidobacterium strains isolated fromhuman infants. Microorganisms, 2019, 7(9), 340.
[http://dx.doi.org/10.3390/microorganisms7090340] [PMID: 31514325]
[300]
Blin-Perrin, C.; Molle, D.; Dufosse, L.; Le-Quere, J-L.; Viel, C.; Mauvais, G.; Feron, G. Metabolism of ricinoleic acid into γ-decalactone: β-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiol. Lett., 2000, 188(1), 69-74.
[http://dx.doi.org/10.1016/S0378-1097(00)00212-3] [PMID: 10867236]
[301]
Mitsukura, K.; Suzuki, M.; Shinoda, S.; Kuramoto, T.; Yoshida, T.; Nagasawa, T. Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587. Biosci. Biotechnol. Biochem., 2011, 75(9), 1778-1782.
[http://dx.doi.org/10.1271/bbb.110303] [PMID: 21897027]
[302]
Vranova, V.; Lojkova, L.; Rejsek, K.; Formanek, P. Significance of the natural occurrence of L- versus D-pipecolic acid: A review. Chirality, 2013, 25(12), 823-831.
[http://dx.doi.org/10.1002/chir.22237] [PMID: 24114978]
[303]
Duncan, R.E.; Sarkadi-Nagy, E.; Jaworski, K.; Ahmadian, M.; Sul, H.S. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J. Biol. Chem., 2008, 283(37), 25428-25436.
[http://dx.doi.org/10.1074/jbc.M804146200] [PMID: 18614531]
[304]
Zakiev, E.; Rached, F.; Lhomme, M.; Darabi-Amin, M.; Ponnaiah, M.; Becker, P.H.; Therond, P.; Serrano, C.V., Jr; Santos, R.D.; Chapman, M.J.; Orekhov, A.; Kontush, A. Distinct phospholipid and sphingolipid species are linked to altered HDL function in apolipoprotein A-I deficiency. J. Clin. Lipidol., 2019, 13(3), 468-480.e8.
[http://dx.doi.org/10.1016/j.jacl.2019.02.004] [PMID: 31003938]
[305]
Školová, B.; Kováčik, A.; Tesař, O.; Opálka, L.; Vávrová, K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: Permeability and biophysics. Biochim. Biophys. Acta Biomembr., 2017, 1859(5), 824-834.
[http://dx.doi.org/10.1016/j.bbamem.2017.01.019] [PMID: 28109750]
[306]
Bantscheff, M.; Hopf, C.; Savitski, M.M.; Dittmann, A.; Grandi, P.; Michon, A.M.; Schlegl, J.; Abraham, Y.; Becher, I.; Bergamini, G.; Boesche, M.; Delling, M.; Dümpelfeld, B.; Eberhard, D.; Huthmacher, C.; Mathieson, T.; Poeckel, D.; Reader, V.; Strunk, K.; Sweetman, G.; Kruse, U.; Neubauer, G.; Ramsden, N.G.; Drewes, G. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol., 2011, 29(3), 255-265.
[http://dx.doi.org/10.1038/nbt.1759] [PMID: 21258344]
[307]
Razvi, S.; Ingoe, L.; Keeka, G.; Oates, C.; McMillan, C.; Weaver, J.U. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: Randomized, crossover trial. J. Clin. Endocrinol. Metab., 2007, 92(5), 1715-1723.
[http://dx.doi.org/10.1210/jc.2006-1869] [PMID: 17299073]
[308]
Cheng, X.; Ander, B.P.; Jickling, G.C.; Zhan, X.; Hull, H.; Sharp, F.R.; Stamova, B. MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2020, 40(4), 775-786.
[http://dx.doi.org/10.1177/0271678X19839501] [PMID: 30966854]
[309]
Chiu, C.C.; Li, Y.N.; Lin, L.J.; Hsiao, C.T.; Hsiao, K.Y.; Chen, I.C. Serum D-dimer as a predictor of mortality in patients with acute spontaneous intracerebral hemorrhage. J. Clin. Neurosci., 2012, 19(6), 810-813.
[http://dx.doi.org/10.1016/j.jocn.2011.08.032] [PMID: 22377638]
[310]
Lee, J.M.; Siddique, J.; Kim, H.C.; Green, D.; Van Horn, L.; Allison, M.; Wassertheil-Smoller, S.; Greenland, P. Hemostatic markers and long-term risk of intracerebral hemorrhage in postmenopausal women. J. Stroke Cerebrovasc. Dis., 2016, 25(7), 1639-1643.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.03.013] [PMID: 27067884]
[311]
Zhou, Z.; Liang, Y.; Zhang, X.; Xu, J.; Kang, K.; Qu, H.; Zhao, C.; Zhao, M. Plasma D-Dimer concentrations and risk of intracerebral hemorrhage: A systematic review and meta-analysis. Front. Neurol., 2018, 9, 1114.
[http://dx.doi.org/10.3389/fneur.2018.01114] [PMID: 30619067]
[312]
Shao, A.; Zhou, Y.; Yao, Y.; Zhang, W.; Zhang, J.; Deng, Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J. Cell. Mol. Med., 2019, 23(9), 5846-5858.
[http://dx.doi.org/10.1111/jcmm.14479] [PMID: 31273911]
[313]
Zuo, Z.; Ji, X. Prognostic value of copeptin in patients with aneurysmal subarachnoid hemorrhage. J. Neuroimmunol., 2019, 330, 116-122.
[http://dx.doi.org/10.1016/j.jneuroim.2019.03.007] [PMID: 30875611]
[314]
Yanagisawa, M.; Ariga, T.; Yu, R.K. Cytotoxic effects of G(M1) ganglioside and amyloid β-peptide on mouse embryonic neural stem cells. ASN Neuro, 2010, 2(1), AN20090063.
[http://dx.doi.org/10.1042/AN20090063] [PMID: 20305711]
[315]
Hernandez-Guillamon, M.; Delgado, P.; Penalba, A.; Rodriguez-Luna, D.; Molina, C.A.; Rovira, A.; Alvarez-Sabin, J.; Boada, M.; Montaner, J. Plasma β-amyloid levels in cerebral amyloid angiopathy-associated hemorrhagic stroke. Neurodegener. Dis., 2012, 10(1-4), 320-323.
[http://dx.doi.org/10.1159/000333811] [PMID: 22261638]
[316]
Wang, G.; Kwan, B.C.H.; Lai, F.M.M.; Chow, K.M.; Ng, K.C.J.; Luk, C.W.C.; Li, P.K.T.; Szeto, C.C. Urinary sediment mRNA level of extracellular matrix molecules in adult nephrotic syndrome. Clin. Chim. Acta, 2016, 456, 157-162.
[http://dx.doi.org/10.1016/j.cca.2016.03.006] [PMID: 26995661]
[317]
Wang, K.; Basu, R.; Poglitsch, M.; Bakal, J.A.; Oudit, G.Y. Elevated angiotensin 1–7/Angiotensin II ratio predicts favorable outcomes in patients with heart failure. Circ. Heart Fail., 2020, 13(7), e006939.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.006939] [PMID: 32580658]
[318]
Acara, A.C.; Bolatkale, M. Endothelial nitric oxide level as a predictor of coronary complexity in patients with unstable angina pectoris. Am. J. Med. Sci., 2019, 357(6), 453-460.
[http://dx.doi.org/10.1016/j.amjms.2019.02.011] [PMID: 31000423]
[319]
Shlipak, M.G.; Matsushita, K.; Ärnlöv, J.; Inker, L.A.; Katz, R.; Polkinghorne, K.R.; Rothenbacher, D.; Sarnak, M.J.; Astor, B.C.; Coresh, J.; Levey, A.S.; Gansevoort, R.T. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med., 2013, 369(10), 932-943.
[http://dx.doi.org/10.1056/NEJMoa1214234] [PMID: 24004120]
[320]
Shere, A.; Eletta, O.; Goyal, H. Circulating blood biomarkers in essential hypertension: A literature. JLPM, 2017, 2(12), 4705.
[http://dx.doi.org/10.21037/jlpm.2017.12.06]
[321]
Čabarkapa, V.; Ilinčić, B.; Đerić, M.; Vučaj Ćirilović, V.; Kresoja, M.; Žeravica, R.; Sakač, V. Cystatin C, vascular biomarkers and measured glomerular filtration rate in patients with unresponsive hypertensive phenotype: A pilot study. Ren. Fail., 2017, 39(1), 203-210.
[http://dx.doi.org/10.1080/0886022X.2016.1256316] [PMID: 27876431]
[322]
Ogawa-Akiyama, A.; Sugiyama, H.; Kitagawa, M.; Tanaka, K.; Onishi, A.; Yamanari, T.; Morinaga, H.; Uchida, H.A.; Nakamura, K.; Ito, H.; Wada, J. Serum cystatin C is an independent biomarker associated with the renal resistive index in patients with chronic kidney disease. PLoS One, 2018, 13(3), e0193695.
[http://dx.doi.org/10.1371/journal.pone.0193695] [PMID: 29513723]
[323]
Lv, L.; Wang, J.; Gao, B.; Wu, L.; Wang, F.; Cui, Z.; He, K.; Zhang, L.; Chen, M.; Zhao, M.H. Serum uromodulin and progression of kidney disease in patients with chronic kidney disease. J. Transl. Med., 2018, 16(1), 316.
[http://dx.doi.org/10.1186/s12967-018-1693-2] [PMID: 30454063]
[324]
Ostojic, S.M. Symmetric dimethylarginine as a secondary prevention biomarker of chronic kidney disease. Nephron J., 2020, 144(6), 310-312.
[http://dx.doi.org/10.1159/000507862] [PMID: 32396896]
[325]
Alam, M.L.; Katz, R.; Bellovich, K.A.; Bhat, Z.Y.; Brosius, F.C.; de Boer, I.H.; Gadegbeku, C.A.; Gipson, D.S.; Hawkins, J.J.; Himmelfarb, J.; Kestenbaum, B.R.; Kretzler, M.; Robinson-Cohen, C.; Steigerwalt, S.P.; Tuegel, C.; Bansal, N. Soluble ST2 and Galectin-3 and progression of CKD. Kidney Int. Rep., 2019, 4(1), 103-111.
[http://dx.doi.org/10.1016/j.ekir.2018.09.013] [PMID: 30596173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy