Generic placeholder image

The Chinese Journal of Artificial Intelligence

Editor-in-Chief

ISSN (Print): 2666-7827
ISSN (Online): 2666-7835

Mini-Review Article

Perspectives of Artificial Intelligence (AI) in Health Care Management: Prospect and Protest

Author(s): Narmatha Sasi Prakash, Lakshmi Chandran, Madhana Kumar Sivakumar and Ankul Singh Suresh Pratap Singh*

Volume 1, Issue 2, 2022

Published on: 28 September, 2022

Article ID: e200922208961 Pages: 11

DOI: 10.2174/2666782701666220920091940

Price: $65

Abstract

Background: Artificial intelligence postulates that computers will eventually supervise performing tasks through various pattern recognition with less or without human interventions and assistance. It appears to mimic human cognitive functions. Resembling the human brain, it receives various forms of raw data that are stored, aligned, surveyed, interpreted, analyzed, and converted to single processed data, making it easy to conclude and understand. Recently, in the digital world, machine learning, deep learning, neural network and AI applications are expanding widely, where humans have expertise.

Methods: A detailed literature survey was performed through an online database, such as ScienceDirect, Google Scholar, Scopus, Cochrane, and PubMed. The search keywords were Machine Learning OR Deep Learning OR Neural Networks OR Applications OR Pharmaceutical Innovations OR Technology OR Artificial Intelligence AND Pharmaceutical Sectors OR Clinical Pharmacology OR Healthcare OR Medical OR Pharmacovigilance OR Clinical Trials OR Regulatory OR Challenges. The literature search was limited to studies published in English.

Results: It was found that there is an immense growth of artificial intelligence in the sector of the pharmaceutical industry applied in drug discovery and drug development, clinical trials, and the pharmacovigilance sector. It has several clinical applications of AI as a tool in health care and biomedical research besides clinical practice. It also shows several challenges faced and methods to overcome them.

Conclusion: AI has great potential and future as a valuable tool in the healthcare and pharmaceutical industry by applying a scientific approach and averting real-life challenges.

Keywords: Deep learning, machine learning, artificial intelligence, pharmacovigilance, pharmaceutical applications, health care management.

Graphical Abstract
[1]
Henstock, P.V. Artificial intelligence for pharma: Time for internal investment. Trends Pharmacol. Sci., 2019, 40(8), 543-546.
[http://dx.doi.org/10.1016/j.tips.2019.05.003] [PMID: 31204059]
[2]
Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine learning and artificial intelligence: Definitions, applications, and future directions. Curr. Rev. Musculoskelet. Med., 2020, 13(1), 69-76.
[http://dx.doi.org/10.1007/s12178-020-09600-8] [PMID: 31983042]
[3]
Bini, S.A. Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? J. Arthroplasty, 2018, 33(8), 2358-2361.
[http://dx.doi.org/10.1016/j.arth.2018.02.067] [PMID: 29656964]
[4]
Haeberle, H.S.; Helm, J.M.; Navarro, S.M.; Karnuta, J.M.; Schaffer, J.L.; Callaghan, J.J.; Mont, M.A.; Kamath, A.F.; Krebs, V.E.; Ramkumar, P.N. Artificial intelligence and machine learning in lower extremity arthroplasty: A review. J. Arthroplasty, 2019, 34(10), 2201-2203.
[http://dx.doi.org/10.1016/j.arth.2019.05.055] [PMID: 31253449]
[5]
Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J., 2019, 6(2), 94-98.
[http://dx.doi.org/10.7861/futurehosp.6-2-94]
[6]
Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An intro-duction to machine learning. Clin. Pharmacol. Ther., 2020, 107(4), 871-885.
[http://dx.doi.org/10.1002/cpt.1796] [PMID: 32128792]
[7]
Shahid, N.; Rappon, T.; Berta, W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS One, 2019, 2, e0212356.
[http://dx.doi.org/10.1371/journal.pone.0212356]
[8]
Brown, N.; Cambruzzi, J.; Cox, P.J.; Davies, M.; Dunbar, J.; Plumbley, D. Big data in drug discovery. In: Progress in Medicinal Chemistry, 2018, 57, 277-356.
[http://dx.doi.org/10.1016/bs.pmch.2017.12.003]
[9]
Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol., 2019, 29(7), R231-R236.
[http://dx.doi.org/10.1016/j.cub.2019.02.034] [PMID: 30939301]
[10]
Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci, 2021, 2(6), 420.
[11]
Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Pianykh, O.S.; Geis, J.R.; Pandharipande, P.V.; Brink, J.A.; Dreyer, K.J. Current applications and future impact of machine learning in radiology. Radiology, 2018, 288(2), 318-328.
[http://dx.doi.org/10.1148/radiol.2018171820] [PMID: 29944078]
[12]
Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A deep look into radiomics. Radiol. Med. (Torino), 2021, 126(10), 1296-1311.
[http://dx.doi.org/10.1007/s11547-021-01389-x] [PMID: 34213702]
[13]
Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl. Acad. Sci. USA, 2018, 115(18), E4304-E4311.
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[14]
Daunhawer, I.; Kasser, S.; Koch, G.; Sieber, L.; Cakal, H.; Tütsch, J.; Pfister, M.; Wellmann, S.; Vogt, J.E. Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning. Pediatr. Res., 2019, 86(1), 122-127.
[http://dx.doi.org/10.1038/s41390-019-0384-x] [PMID: 30928997]
[15]
Gaweda, A.E.; Muezzinoglu, M.K.; Aronoff, G.R.; Jacobs, A.A.; Zurada, J.M.; Brier, M.E. Individualization of pharmacological anemia management using reinforcement learning. Neural Netw., 2005, 18(5-6), 826-834.
[http://dx.doi.org/10.1016/j.neunet.2005.06.020] [PMID: 16109475]
[16]
Schork, N.J. Artificial intelligence and personalized medicine.Precision Medicine in Cancer Therapy; Von Hoff, D.; Han, H., Eds.; Cancer treatment and researchSpringer: Cham, 2019, p. 178. [https://doi.org/10.1007/978-3-030-16391-4_11]
[17]
Hammann, F.; Gutmann, H.; Vogt, N.; Helma, C.; Drewe, J. Prediction of adverse drug reactions using decision tree modeling. Clin. Pharmacol. Ther., 2010, 88(1), 52-59.
[http://dx.doi.org/10.1038/clpt.2009.248] [PMID: 20220749]
[18]
McComb, M.; Bies, R.; Ramanathan, M. Machine learning in pharmacometrics: Opportunities and challenges. Br. J. Clin. Pharmacol., 2022, 88(4), 1482-1499.
[http://dx.doi.org/10.1111/bcp.14801] [PMID: 33634893]
[19]
Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today, 2021, 26(1), 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[20]
Cáceres, E.L.; Tudor, M.; Cheng, A.C. Deep learning approaches in predicting ADMET properties. Future Med. Chem., 2020, 12(22), 1995-1999.
[http://dx.doi.org/10.4155/fmc-2020-0259] [PMID: 33124448]
[21]
Winkler, D.A. Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases. Front Chem., 2021, 9, 614073.
[http://dx.doi.org/10.3389/fchem.2021.614073] [PMID: 33791277]
[22]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[23]
Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360.
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[24]
Jones, T.M. Preformulation studies. In: Pharmaceutical Formulation; The Science and Technology of Dosage Forms, 2018; pp. 1-41. Available from: http://ebook.rsc.org/
[http://dx.doi.org/10.1039/9781782620402-00001]
[25]
Damiati, S.A. Digital Pharmaceutical Sciences. AAPS PharmSciTech, 2020, 21(6), 206.
[http://dx.doi.org/10.1208/s12249-020-01747-4] [PMID: 32715351]
[26]
Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In: Artificial Intelligence in Healthcare; Elsevier: Amsterdam, 2020; pp. 25-60.
[http://dx.doi.org/10.1016/B978-0-12-818438-7.00002-2]
[27]
Lounnas, V.; Ritschel, T.; Kelder, J.; McGuire, R.; Bywater, R.P.; Foloppe, N. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery. Comput. Struct. Biotechnol. J., 2013, 5(6), e201302011.
[http://dx.doi.org/10.5936/csbj.201302011] [PMID: 24688704]
[28]
Wang, C.; Xu, P.; Zhang, L.; Huang, J.; Zhu, K.; Luo, C. Current strategies and applications for precision drug design. Front. Pharmacol., 2018, 9, 787.
[http://dx.doi.org/10.3389/fphar.2018.00787] [PMID: 30072901]
[29]
Selvaraj, C.; Chandra, I.; Singh, S.K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol. Divers., 2022, 26, 1893-1913. [https://link.springer.com/10.1007/s11030-021-10326-z]
[30]
Vijayan, R.S.K.; Kihlberg, J.; Cross, J.B.; Poongavanam, V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov. Today, 2022, 27(4), 967-984.
[http://dx.doi.org/10.1016/j.drudis.2021.11.023] [PMID: 34838731]
[31]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 2019, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[32]
Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.H.M.; Ahsan, M.J. Machine learning in drug discovery: A review. Artif. Intell. Rev., 2022, 55(3), 1947-1999.
[http://dx.doi.org/10.1007/s10462-021-10058-4] [PMID: 34393317]
[33]
Soufan, O.; Ba-alawi, W.; Magana-Mora, A.; Essack, M.; Bajic, V.B. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening. Sci. Rep., 2018, 8(1), 9110.
[http://dx.doi.org/10.1038/s41598-018-27495-x] [PMID: 29904147]
[34]
Golbraikh, A.; Wang, X.S.; Zhu, H.; Tropsha, A. Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment. In: Handbook of Computational Chemistry; Springer Netherlands: Dordrecht, 2016; pp. 1-48.
[http://dx.doi.org/10.1007/978-94-007-6169-8_37-3]
[35]
Keshavarzi Arshadi, A.; Webb, J.; Salem, M.; Cruz, E.; Calad-Thomson, S.; Ghadirian, N. Artificial intelligence for COVID-19 drug dis-covery and vaccine development; Front Artif Intell, 2020.
[36]
Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem. Rev., 2019, 119(18), 10520-10594.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[37]
Bullock, J.; Luccioni, A.; Hoffman Pham, K.; Sin Nga Lam, C.; Luengo-Oroz, M. Mapping the landscape of Artificial Intelligence applica-tions against COVID-19. J. Artif. Intell. Res., 2020, 69, 807-845.
[http://dx.doi.org/10.1613/jair.1.12162]
[38]
Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A. Fer-nandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J., 2021, 19, 4538-4558.
[http://dx.doi.org/10.1016/j.csbj.2021.08.011] [PMID: 34471498]
[39]
Nekoei, M.; Mohammadhosseini, M.; Pourbasheer, E. QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach. Med. Chem. Res., 2015, 24(7), 3037-3046.
[http://dx.doi.org/10.1007/s00044-015-1354-4]
[40]
Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model., 2015, 55(2), 263.
[http://dx.doi.org/10.1021/ci500747n] [PMID: 25635324]
[41]
Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S. Ap-plications of machine learning in drug discovery and development. Nat. Rev. Drug Discov., 2019, 18(6), 463-477.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[42]
Mayr, A.; Klambauer, G.; Unterthiner, T.; Steijaert, M.; Wegner, J.K.; Ceulemans, H.; Clevert, D.A.; Hochreiter, S. Large-scale compari-son of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. (Camb.), 2018, 9(24), 5441-5451.
[http://dx.doi.org/10.1039/C8SC00148K] [PMID: 30155234]
[43]
Lavecchia, A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today, 2015, 20(3), 318-331.
[http://dx.doi.org/10.1016/j.drudis.2014.10.012] [PMID: 25448759]
[44]
Rashid, M.B.M.A. Artificial Intelligence Effecting a Paradigm Shift in Drug Development. SLAS Technol., 2021, 26(1), 3-15.
[http://dx.doi.org/10.1177/2472630320956931] [PMID: 32940124]
[45]
Jiang, L.; Wu, Z.; Xu, X.; Zhan, Y.; Jin, X.; Wang, L.; Qiu, Y. Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies. J. Int. Med. Res., 2021, 49(3)
[http://dx.doi.org/10.1177/03000605211000157] [PMID: 33771068]
[46]
Aung, Y.Y.M.; Wong, D.C.S.; Ting, D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artifi-cial intelligence in healthcare. Br. Med. Bull., 2021, 139(1), 4-15.
[http://dx.doi.org/10.1093/bmb/ldab016] [PMID: 34405854]
[47]
Price, W.N., II; Cohen, I.G. Privacy in the age of medical big data. Nat. Med., 2019, 25(1), 37-43.
[http://dx.doi.org/10.1038/s41591-018-0272-7] [PMID: 30617331]
[48]
Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst., 2014, 2(1), 3.
[http://dx.doi.org/10.1186/2047-2501-2-3]
[49]
Abouelmehdi, K.; Beni-Hessane, A.; Khaloufi, H. Big healthcare data: preserving security and privacy. J. Big Data, 2018, 5(1), 1.
[http://dx.doi.org/10.1186/s40537-017-0110-7]
[50]
Cheng, L.; Liu, F.; Yao, D.D. Enterprise data breach: causes, challenges, prevention, and future directions. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2017, 7(5), e1211.
[http://dx.doi.org/10.1002/widm.1211]
[51]
Hassan, S.; Dhali, M.; Zaman, F.; Tanveer, M. Big data and predictive analytics in healthcare in Bangladesh: regulatory challenges. Heliyon, 2021, 7(6), e07179.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07179] [PMID: 34141936]
[52]
Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelli-gence. BMC Med., 2019, 17(1), 195.
[http://dx.doi.org/10.1186/s12916-019-1426-2] [PMID: 31665002]
[53]
Murphy, K.; Di Ruggiero, E.; Upshur, R.; Willison, D.J.; Malhotra, N.; Cai, J.C.; Malhotra, N.; Lui, V.; Gibson, J. Artificial intelligence for good health: a scoping review of the ethics literature. BMC Med. Ethics, 2021, 22(1), 14.
[http://dx.doi.org/10.1186/s12910-021-00577-8] [PMID: 33588803]
[54]
Ferryman, K. Addressing health disparities in the Food and Drug Administration’s artificial intelligence and machine learning regulatory framework. J. Am. Med. Inform. Assoc., 2020, 27(12), 2016-2019.
[http://dx.doi.org/10.1093/jamia/ocaa133] [PMID: 32951036]
[55]
Rosa, C.; Marsch, L.A.; Winstanley, E.L.; Brunner, M.; Campbell, A.N.C. Using digital technologies in clinical trials: Current and future applications. Contemp. Clin. Trials, 2021, 100, 106219.
[http://dx.doi.org/10.1016/j.cct.2020.106219] [PMID: 33212293]
[56]
Cowie, M.R.; Blomster, J.I.; Curtis, L.H.; Duclaux, S.; Ford, I.; Fritz, F.; Goldman, S.; Janmohamed, S.; Kreuzer, J.; Leenay, M.; Michel, A.; Ong, S.; Pell, J.P.; Southworth, M.R.; Stough, W.G.; Thoenes, M.; Zannad, F.; Zalewski, A. Electronic health records to facilitate clin-ical research. Clin. Res. Cardiol., 2017, 106(1), 1-9.
[http://dx.doi.org/10.1007/s00392-016-1025-6] [PMID: 27557678]
[57]
Lee, S.; Xu, Y.; D’Souza, A.G.; Martin, E.A.; Doktorchik, C.; Zhang, Z.; Quan, H. Unlocking the potential of electronic health records for health research. Int. J. Popul. Data Sci., 2020, 5(1), 1123.
[http://dx.doi.org/10.23889/ijpds.v5i1.1123] [PMID: 32935049]
[58]
Lin, W.C.; Chen, J.S.; Chiang, M.F.; Hribar, M.R. Applications of artificial intelligence to electronic health record data in ophthalmology. Transl. Vis. Sci. Technol., 2020, 9(2), 13.
[http://dx.doi.org/10.1167/tvst.9.2.13] [PMID: 32704419]
[59]
Bennett, W.L.; Bramante, C.T.; Rothenberger, S.D.; Kraschnewski, J.L.; Herring, S.J.; Lent, M.R.; Clark, J.M.; Conroy, M.B.; Lehmann, H.; Cappella, N.; Gauvey-Kern, M.; McCullough, J.; McTigue, K.M. Patient recruitment into a multicenter clinical cohort linking electron-ic health records from 5 health systems: Cross-sectional analysis. J. Med. Internet Res., 2021, 23(5), e24003.
[http://dx.doi.org/10.2196/24003] [PMID: 34042604]
[60]
Inan, O.T.; Tenaerts, P.; Prindiville, S.A.; Reynolds, H.R.; Dizon, D.S.; Cooper-Arnold, K.; Turakhia, M.; Pletcher, M.J.; Preston, K.L.; Krumholz, H.M.; Marlin, B.M.; Mandl, K.D.; Klasnja, P.; Spring, B.; Iturriaga, E.; Campo, R.; Desvigne-Nickens, P.; Rosenberg, Y.; Steinhubl, S.R.; Califf, R.M. Digitizing clinical trials. NPJ Digit. Med., 2020, 3(1), 101.
[http://dx.doi.org/10.1038/s41746-020-0302-y] [PMID: 32821856]
[61]
Suke, S.G.; Kosta, P.; Negi, H. Role of Pharmacovigilance in India: An overview. Online J. Public Health Inform., 2015, 7(2), e223.
[http://dx.doi.org/10.5210/ojphi.v7i2.5595] [PMID: 26392851]
[62]
Medhi, B.; Murali, K.; Kaur, S.; Prakash, A. Artificial intelligence in pharmacovigilance: Practical utility. Indian J. Pharmacol., 2019, 51(6), 373-376.
[http://dx.doi.org/10.4103/ijp.IJP_814_19] [PMID: 32029958]
[63]
Harpaz, R.; DuMouchel, W.; Shah, N.H.; Madigan, D.; Ryan, P.; Friedman, C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin. Pharmacol. Ther., 2012, 91(6), 1010-1021.
[http://dx.doi.org/10.1038/clpt.2012.50] [PMID: 22549283]
[64]
Kolling, M.L.; Furstenau, L.B.; Sott, M.K.; Rabaioli, B.; Ulmi, P.H.; Bragazzi, N.L.; Tedesco, L.P.C. Data mining in healthcare: Applying strategic intelligence techniques to depict 25 years of research development. Int. J. Environ. Res. Public Health, 2021, 18(6), 3099.
[http://dx.doi.org/10.3390/ijerph18063099] [PMID: 33802880]
[65]
Chopard, D.; Treder, M.S.; Corcoran, P.; Ahmed, N.; Johnson, C.; Busse, M.; Spasic, I. Text mining of adverse events in clinical trials: Deep learning approach. JMIR Med. Inform., 2021, 9(12), e28632.
[http://dx.doi.org/10.2196/28632] [PMID: 34951601]
[66]
Botsis, T.; Nguyen, M.D.; Woo, E.J.; Markatou, M.; Ball, R. Text mining for the vaccine adverse event reporting system: Medical text classification using informative feature selection. J. Am. Med. Inform. Assoc., 2011, 18(5), 631-638.
[http://dx.doi.org/10.1136/amiajnl-2010-000022] [PMID: 21709163]
[67]
Schmider, J.; Kumar, K.; LaForest, C.; Swankoski, B.; Naim, K.; Caubel, P.M. Innovation in pharmacovigilance: Use of artificial intelli-gence in adverse event case processing. Clin. Pharmacol. Ther., 2019, 105(4), 954-961.
[http://dx.doi.org/10.1002/cpt.1255] [PMID: 30303528]
[68]
Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res., 2018, 67, 1-29.
[http://dx.doi.org/10.1016/j.preteyeres.2018.07.004] [PMID: 30076935]
[69]
Akazawa, M.; Hashimoto, K. Artificial intelligence in ovarian cancer diagnosis. Anticancer Res., 2020, 40(8), 4795-4800.
[http://dx.doi.org/10.21873/anticanres.14482] [PMID: 32727807]
[70]
Krittanawong, C.; Virk, H.U.H.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.; Kaplin, S.; Narasimhan, B.; Kitai, T.; Baber, U.; Halperin, J.L.; Tang, W.H.W. Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci. Rep., 2020, 10(1), 16057.
[http://dx.doi.org/10.1038/s41598-020-72685-1] [PMID: 32994452]
[71]
Das, N.; Topalovic, M.; Janssens, W. Artificial intelligence in diagnosis of obstructive lung disease. Curr. Opin. Pulm. Med., 2018, 24(2), 117-123.
[http://dx.doi.org/10.1097/MCP.0000000000000459] [PMID: 29251699]
[72]
Zhao, Y.; Hu, B.; Wang, Y.; Yin, X.; Jiang, Y.; Zhu, X. Identification of gastric cancer with convolutional neural networks: A systematic review. Multimedia Tools Appl., 2022, 81(8), 11717-11736.
[http://dx.doi.org/10.1007/s11042-022-12258-8]
[73]
Zhou, L.Q.; Wang, J.Y.; Yu, S.Y.; Wu, G.G.; Wei, Q.; Deng, Y.B.; Wu, X.L.; Cui, X.W.; Dietrich, C.F. Artificial intelligence in medical imaging of the liver. World J. Gastroenterol., 2019, 25(6), 672-682.
[http://dx.doi.org/10.3748/wjg.v25.i6.672] [PMID: 30783371]
[74]
Niel, O.; Bastard, P. Artificial intelligence in nephrology: Core concepts, clinical applications, and perspectives. Am. J. Kidney Dis., 2019, 74(6), 803-810.
[http://dx.doi.org/10.1053/j.ajkd.2019.05.020] [PMID: 31451330]
[75]
Mekov, E.; Miravitlles, M.; Petkov, R. Artificial intelligence and machine learning in respiratory medicine. Expert Rev. Respir. Med., 2020, 14(6), 559-564.
[http://dx.doi.org/10.1080/17476348.2020.1743181] [PMID: 32166988]
[76]
Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford), 2020, 2020, baaa010.
[http://dx.doi.org/10.1093/database/baaa010] [PMID: 32185396]
[77]
Thomasian, N.M.; Kamel, I.R.; Bai, H.X. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2), 81-95.
[http://dx.doi.org/10.1038/s41574-021-00543-9] [PMID: 34754064]
[78]
Vollmer, S.; Mateen, B.A.; Bohner, G.; Király, F.J.; Ghani, R.; Jonsson, P.; Cumbers, S.; Jonas, A.; McAllister, K.S.L.; Myles, P.; Grain-ger, D.; Birse, M.; Branson, R.; Moons, K.G.M.; Collins, G.S.; Ioannidis, J.P.A.; Holmes, C.; Hemingway, H. Machine learning and artifi-cial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ, 2020, 368, l6927.
[http://dx.doi.org/10.1136/bmj.l6927] [PMID: 32198138]
[79]
Yang, G.; Ye, Q.; Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Inf. Fusion, 2022, 77, 29-52.
[http://dx.doi.org/10.1016/j.inffus.2021.07.016] [PMID: 34980946]
[80]
Sarker, I.H. Machine Learning: Algorithms, real-world applications and research directions. SN Comput Sci, 2021, 2(3), 160.
[81]
Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng., 2018, 2(10), 719-731.
[http://dx.doi.org/10.1038/s41551-018-0305-z] [PMID: 31015651]
[82]
Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 2019, 7, e7702.
[http://dx.doi.org/10.7717/peerj.7702] [PMID: 31592346]
[83]
Amann, J.; Vetter, D.; Blomberg, S.N.; Christensen, H.C.; Coffee, M.; Gerke, S.; Lu, H.H-S. To explain or not to explain?—Artificial intel-ligence explainability in clinical decision support systems. PLOS Digit Heal, 2022, 1(2), e0000016.
[84]
Giordano, C.; Brennan, M.; Mohamed, B.; Rashidi, P.; Modave, F.; Tighe, P. Accessing artificial intelligence for clinical decision-making. Front Digit Heal, 2021, 3.
[http://dx.doi.org/10.3389/fdgth.2021.645232]
[85]
Gerke, S.; Babic, B.; Evgeniou, T.; Cohen, I.G. The need for a system view to regulate artificial intelligence/machine learning-based soft-ware as medical device. NPJ Digit. Med., 2020, 3(1), 53.
[http://dx.doi.org/10.1038/s41746-020-0262-2] [PMID: 32285013]
[86]
Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: a structured litera-ture review. BMC Med. Inform. Decis. Mak., 2021, 21(1), 125.
[http://dx.doi.org/10.1186/s12911-021-01488-9] [PMID: 33836752]
[87]
Kruk, M.E.; Gage, A.D.; Arsenault, C.; Jordan, K.; Leslie, H.H.; Roder-DeWan, S. High-quality health systems in the sustainable devel-opment goals era: Time for a revolution. Lancet Glob. Health, 2018, 6(11), e1196-e1252.
[http://dx.doi.org/10.1016/S2214-109X(18)30386-3]
[88]
Meskó, B.; Drobni, Z.; Bényei, É.; Gergely, B.; Győrffy, Z. Digital health is a cultural transformation of traditional healthcare. mHealth, 2017, 3, 38-38.
[http://dx.doi.org/10.21037/mhealth.2017.08.07] [PMID: 29184890]
[89]
Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support sys-tems: benefits, risks, and strategies for success. NPJ Digit. Med., 2020, 3(1), 17.
[http://dx.doi.org/10.1038/s41746-020-0221-y] [PMID: 32047862]
[90]
Lysaght, T.; Lim, H.Y.; Xafis, V.; Ngiam, K.Y. AI-assisted decision-making in healthcare. Asian Bioeth. Rev., 2019, 11(3), 299-314.
[http://dx.doi.org/10.1007/s41649-019-00096-0] [PMID: 33717318]
[91]
Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial intelligence for clinical trial design. Trends Pharmacol. Sci., 2019, 40(8), 577-591.
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[92]
Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol., 2017, 2(4), 230-243.
[http://dx.doi.org/10.1136/svn-2017-000101] [PMID: 29507784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy