Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Interactions of Copper(II) and Zinc(II) Ions with the Peptide Fragments of Proteins Related to Neurodegenerative Disorders: Similarities and Differences

Author(s): Imre Sóvágó*, Katalin Várnagy, Csilla Kállay and Ágnes Grenács

Volume 30, Issue 36, 2023

Published on: 25 November, 2022

Page: [4050 - 4071] Pages: 22

DOI: 10.2174/0929867329666220915140852

Price: $65

Abstract

Metal binding ability and coordination modes of the copper(II) and zinc(II) complexes of various peptide fragments of prion, amyloid-β, and tau proteins, are summarized in this review. Imidazole-N donors are the primary metal binding sites of all three proteins, but the difference in the location of these residues and the presence or absence of other coordinating side chains result in significant differences in the complex formation processes. The presence of macrochelates and the possibility of forming multicopper complexes are the most important characteristic of prion fragments. Amyloid-β can form highly stable complexes with both copper(II) and zinc(II) ions, but the preferred binding sites are different for the two metal ions. Similar observations are obtained for the tau fragments, but the metal ion selectivity of the various fragments is even more pronounced. In addition to the complex formation, copper(II) ions can play an important role in the various oxidative reactions of peptides. Results of the metal ion-catalyzed oxidation of peptide fragments of prion, amyloid-β, and tau proteins are also summarized. Amino acid side chain oxidation (mostly methionine, histidine and aspartic acid) and protein fragmentations are the most common consequences of this process.

Keywords: Amyloid-β, tau protein, prion protein, copper(II) complex, zinc(II) complex, metal binding site, MCO.

[1]
Duce, J.A.; Bush, A.I. Biological metals and Alzheimer’s disease: Implications for therapeutics and diagnostics. Prog. Neurobiol., 2010, 92(1), 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2010.04.003] [PMID: 20444428]
[2]
Ayton, S.; Lei, P.; Bush, A.I. Metallostasis in Alzheimer’s disease. Free Radic. Biol. Med., 2013, 62, 76-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.558] [PMID: 23142767]
[3]
Cristóvão, J.S.; Santos, R.; Gomes, C.M. Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxid. Med. Cell. Longev., 2016, 2016, 9812178.
[http://dx.doi.org/10.1155/2016/9812178] [PMID: 26881049]
[4]
Millhauser, G.L. Copper binding in the prion protein. Acc. Chem. Res., 2004, 37(2), 79-85.
[http://dx.doi.org/10.1021/ar0301678] [PMID: 14967054]
[5]
Wong, B.S.; Chen, S.G.; Colucci, M.; Xie, Z.; Pan, T.; Liu, T.; Liu, R.; Gambetti, P.; Sy, M.S.; Brown, D.; Dalton Trans, R. Aberrant metal binding by prion protein in human prion disease. J. Neurochem., 2001, 78, 1400-1408.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00522.x] [PMID: 11579148]
[6]
Brown, D.R.; Kozlowski, H. Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans., 2004, (13), 1907-1917.
[http://dx.doi.org/10.1039/b401985g] [PMID: 15252577]
[7]
Campbell, A.; Smith, M.A.; Sayre, L.M.; Bondy, S.C.; Perry, G. Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res. Bull., 2001, 55(2), 125-132.
[http://dx.doi.org/10.1016/S0361-9230(01)00455-5] [PMID: 11470308]
[8]
Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord. Chem. Rev., 2012, 256(19-20), 2129-2141.
[http://dx.doi.org/10.1016/j.ccr.2012.03.013]
[9]
Rowinska-Zyrek, M.; Salerno, M.; Kozlowski, H. Neurodegenerative diseases – Understanding their molecular bases and progress in the development of potential treatments. Coord. Chem. Rev., 2015, 284, 298-312.
[http://dx.doi.org/10.1016/j.ccr.2014.03.026]
[10]
Viles, J.H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord. Chem. Rev., 2012, 256(19-20), 2271-2284.
[http://dx.doi.org/10.1016/j.ccr.2012.05.003]
[11]
Zawisza, I.; Rózga, M.; Bal, W. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP). Coord. Chem. Rev., 2012, 256(19-20), 2297-2307.
[http://dx.doi.org/10.1016/j.ccr.2012.03.012]
[12]
Lin, C.J.; Huang, H.C.; Jiang, Z.F. Cu(II) interaction with amyloid-β peptide: A review of neuroactive mechanisms in AD brains. Brain Res. Bull., 2010, 82(5-6), 235-242.
[http://dx.doi.org/10.1016/j.brainresbull.2010.06.003] [PMID: 20598459]
[13]
Bolognin, S.; Messori, L.; Drago, D.; Gabbiani, C.; Cendron, L.; Zatta, P. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1–42 aggregation and toxicity. Int. J. Biochem. Cell Biol., 2011, 43(6), 877-885.
[http://dx.doi.org/10.1016/j.biocel.2011.02.009] [PMID: 21376832]
[14]
Jiji, A.C.; Arshad, A.; Dhanya, S.R.; Shabana, P.S.; Mehjubin, C.K.; Vijayan, V. Zn2+ interrupts R4-R3 association leading to accelerated aggregation of tau protein. Chemistry, 2017, 23(67), 16976-16979.
[http://dx.doi.org/10.1002/chem.201704555] [PMID: 29044752]
[15]
Ahmadi, S.; Zhu, S.; Sharma, R.; Wilson, D.J.; Kraatz, H.B. Interaction of metal ions with tau protein. The case for a metal-mediated tau aggregation. J. Inorg. Biochem., 2019, 194, 44-51.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.02.007] [PMID: 30826589]
[16]
Valensin, D.; Gabbiani, C.; Messori, L. Metal compounds as inhibitors of β-amyloid aggregation. Perspectives for an innovative metallotherapeutics on Alzheimer’s disease. Coord. Chem. Rev., 2012, 256(19-20), 2357-2366.
[http://dx.doi.org/10.1016/j.ccr.2012.04.010]
[17]
Gorantla, N.V.; Das, R.; Balaraman, E.; Chinnathambi, S. Transition metal nickel prevents Tau aggregation in Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 156, 1359-1365.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.176] [PMID: 31770557]
[18]
Sóvágó, I.; Kállay, C.; Várnagy, K. Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes. Coord. Chem. Rev., 2012, 256(19-20), 2225-2233.
[http://dx.doi.org/10.1016/j.ccr.2012.02.026]
[19]
Sóvágó, I.; Várnagy, K.; Lihi, N.; Grenács, Á. Coordinating properties of peptides containing histidyl residues. Coord. Chem. Rev., 2016, 327-328, 43-54.
[http://dx.doi.org/10.1016/j.ccr.2016.04.015]
[20]
Arena, G.; La Mendola, D.; Pappalardo, G.; Sóvágó, I.; Rizzarelli, E. Interactions of Cu2+ with prion family peptide fragments: Considerations on affinity, speciation and coordination. Coord. Chem. Rev., 2012, 256(19-20), 2202-2218.
[http://dx.doi.org/10.1016/j.ccr.2012.03.038]
[21]
Arena, G.; Pappalardo, G.; Sóvágó, I.; Rizzarelli, E. Copper(II) interaction with amyloid-β: Affinity and speciation. Coord. Chem. Rev., 2012, 256(1-2), 3-12.
[http://dx.doi.org/10.1016/j.ccr.2011.07.012]
[22]
Komarnicka, U.K.; Lesiów, M.K.; Witwicki, M.; Bieńko, A. The bright and dark sides of reactive oxygen species generated by copper(II)-peptide complexes. Separations, 2022, 9(3), 73.
[http://dx.doi.org/10.3390/separations9030073]
[23]
Prusiner, S.B. Prion diseases and the BSE crisis. Science, 1997, 278(5336), 245-251.
[http://dx.doi.org/10.1126/science.278.5336.245] [PMID: 9323196]
[24]
Prusiner, S.B. Shattuck lecture--neurodegenerative diseases and prions. N. Engl. J. Med., 2001, 344(20), 1516-1526.
[http://dx.doi.org/10.1056/NEJM200105173442006] [PMID: 11357156]
[25]
Kozlowski, H.; Janicka-Klos, A.; Stanczak, P.; Valensin, D.; Valensin, G.; Kulon, K. Specificity in the Cu2+ interactions with prion protein fragments and related His-rich peptides from mammals to fishes. Coord. Chem. Rev., 2008, 252(10-11), 1069-1078.
[http://dx.doi.org/10.1016/j.ccr.2007.08.006]
[26]
Kozlowski, H.; Łuczkowski, M.; Remelli, M. Prion proteins and copper ions. Biological and chemical controversies. Dalton Trans., 2010, 39(28), 6371-6385.
[http://dx.doi.org/10.1039/c001267j] [PMID: 20422067]
[27]
Migliorini, C.; Porciatti, E.; Luczkowski, M.; Valensin, D. Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coord. Chem. Rev., 2012, 256(1-2), 352-368.
[http://dx.doi.org/10.1016/j.ccr.2011.07.004]
[28]
Leal, S.S.; Botelho, H.M.; Gomes, C.M. Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord. Chem. Rev., 2012, 256(19-20), 2253-2270.
[http://dx.doi.org/10.1016/j.ccr.2012.04.004]
[29]
Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure–stability relations in metallopeptides. Coord. Chem. Rev., 1999, 184(1), 319-346.
[http://dx.doi.org/10.1016/S0010-8545(98)00261-6]
[30]
Sóvágó, I.; Ősz, K. Metal ion selectivity of oligopeptides. Dalton Trans., 2006, (32), 3841-3854.
[http://dx.doi.org/10.1039/B607515K] [PMID: 16896443]
[31]
Burns, C.S.; Aronoff-Spencer, E.; Dunham, C.M.; Lario, P.; Avdievich, N.I.; Antholine, W.E.; Olmstead, M.M.; Vrielink, A.; Gerfen, G.J.; Peisach, J.; Scott, W.G.; Millhauser, G.L. Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry, 2002, 41(12), 3991-4001.
[http://dx.doi.org/10.1021/bi011922x] [PMID: 11900542]
[32]
Di Natale, G.; Grasso, G.; Impellizzeri, G.; La Mendola, D.; Micera, G.; Mihala, N.; Nagy, Z.; Õsz, K.; Pappalardo, G.; Rigó, V.; Rizzarelli, E.; Sanna, D.; Sóvágó, I. Copper(II) interaction with unstructured prion domain outside the octarepeat region: Speciation, stability, and binding details of copper(II) complexes with PrP106-126 peptides. Inorg. Chem., 2005, 44(20), 7214-7225.
[http://dx.doi.org/10.1021/ic050754k] [PMID: 16180886]
[33]
Grasso, D.; Grasso, G.; Guantieri, V.; Impellizzeri, G.; La Rosa, C.; Milardi, D.; Micera, G.; Õsz, K.; Pappalardo, G.; Rizzarelli, E.; Sanna, D.; Sóvágó, I. Environmental effects on a prion’s helix II domain: Copper(II) and membrane interactions with PrP180-193 and its analogues. Chemistry, 2006, 12(2), 537-547.
[http://dx.doi.org/10.1002/chem.200500534] [PMID: 16163753]
[34]
Łuczkowski, M.; Kozlowski, H.; Stawikowski, M.; Rolka, K.; Gaggelli, E.; Valensin, D.; Valensin, G. Is the monomeric prion octapeptide repeat PHGGGWGQ a specific ligand for Cu2+ ions? J. Chem. Soc., Dalton Trans., 2002, (11), 2269-2274.
[http://dx.doi.org/10.1039/b201040m]
[35]
Valensin, D.; Luczkowski, M.; Mancini, F.M.; Legowska, A.; Gaggelli, E.; Valensin, G.; Rolka, K.; Kozlowski, H. The dimeric and tetrameric octarepeat fragments of prion protein behave differently to its monomeric unit. Dalton Trans., 2004, (9), 1284-1293.
[http://dx.doi.org/10.1039/B402090A] [PMID: 15252619]
[36]
Di Natale, G.; Ősz, K.; Kállay, C.; Pappalardo, G.; Sanna, D.; Impellizzeri, G.; Sóvágó, I.; Rizzarelli, E. Affinity, speciation, and molecular features of copper(II) complexes with a prion tetraoctarepeat domain in aqueous solution: Insights into old and new results. Chemistry, 2013, 19(11), 3751-3761.
[http://dx.doi.org/10.1002/chem.201202912] [PMID: 23355367]
[37]
Ősz, K.; Nagy, Z.; Pappalardo, G.; Di Natale, G.; Sanna, D.; Micera, G.; Rizzarelli, E.; Sóvágó, I. Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: Speciation, stability constants and binding details. Chemistry, 2007, 13(25), 7129-7143.
[http://dx.doi.org/10.1002/chem.200601568] [PMID: 17566127]
[38]
Di Natale, G.; Ösz, K.; Nagy, Z.; Sanna, D.; Micera, G.; Pappalardo, G.; Sóvágó, I.; Rizzarell, E. Interaction of copper(II) with the prion peptide fragment HuPrP(76-114) encompassing four histidyl residues within and outside the octarepeat domain. Inorg. Chem., 2009, 48(9), 4239-4250.
[http://dx.doi.org/10.1021/ic802190v] [PMID: 19348438]
[39]
Di Natale, G.; Turi, I.; Pappalardo, G.; Sóvágó, I.; Rizzarelli, E. Cross-talk between the octarepeat domain and the fifth binding site of prion protein driven by the interaction of copper(II) with the N-terminus. Chemistry, 2015, 21(10), 4071-4084.
[http://dx.doi.org/10.1002/chem.201405502] [PMID: 25649151]
[40]
Kállay, C.; Várnagy, K.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Sóvágó, I. Thermodynamic and structural characterization of the macrochelates formed in the reactions of copper(II) and zinc(II) ions with peptides of histidine. Inorg. Chim. Acta, 2009, 362(3), 935-945.
[http://dx.doi.org/10.1016/j.ica.2008.01.022]
[41]
Jószai, V.; Nagy, Z.; Ősz, K.; Sanna, D.; Di Natale, G.; La Mendola, D.; Pappalardo, G.; Rizzarelli, E.; Sóvágó, I. Transition metal complexes of terminally protected peptides containing histidyl residues. J. Inorg. Biochem., 2006, 100(8), 1399-1409.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.04.003] [PMID: 16730799]
[42]
Millhauser, G.L. Copper and the prion protein: Methods, structures, function, and disease. Annu. Rev. Phys. Chem., 2007, 58(1), 299-320.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104657] [PMID: 17076634]
[43]
Garnett, A.P.; Viles, J.H. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: Insights from circular dichroism. J. Biol. Chem., 2003, 278(9), 6795-6802.
[http://dx.doi.org/10.1074/jbc.M209280200] [PMID: 12454014]
[44]
Pappalardo, G.; Impellizzeri, G.; Campagna, T. Copper(II) binding of prion protein’s octarepeat model peptides. Inorg. Chim. Acta, 2004, 357(1), 185-194.
[http://dx.doi.org/10.1016/S0020-1693(03)00492-4]
[45]
Bonomo, R.P.; Cucinotta, V.; Giuffrida, A.; Impellizzeri, G.; Magrì, A.; Pappalardo, G.; Rizzarelli, E.; Santoro, A.M.; Tabbì, G.; Vagliasindi, L.I. A re-investigation of copper coordination in the octa-repeats region of the prion protein. Dalton Trans., 2005, (1), 150-158.
[http://dx.doi.org/10.1039/B415727C] [PMID: 15605159]
[46]
Chattopadhyay, M.; Walter, E.D.; Newell, D.J.; Jackson, P.J.; Aronoff-Spencer, E.; Peisach, J.; Gerfen, G.J.; Bennett, B.; Antholine, W.E.; Millhauser, G.L. The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J. Am. Chem. Soc., 2005, 127(36), 12647-12656.
[http://dx.doi.org/10.1021/ja053254z] [PMID: 16144413]
[47]
Walter, E.D.; Chattopadhyay, M.; Millhauser, G.L. The affinity of copper binding to the prion protein octarepeat domain: Evidence for negative cooperativity. Biochemistry, 2006, 45(43), 13083-13092.
[http://dx.doi.org/10.1021/bi060948r] [PMID: 17059225]
[48]
dos Santos, N.V.; Silva, A.F.; Oliveira, V.X., Jr; Homem-de-Mello, P.; Cerchiaro, G. Copper(II) complexation to 1-octarepeat peptide from a prion protein: Insights from theoretical and experimental UV-visible studies. J. Inorg. Biochem., 2012, 114, 1-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.04.008] [PMID: 22687559]
[49]
Arcos-López, T.; Qayyum, M.; Rivillas-Acevedo, L.; Miotto, M.C.; Grande-Aztatzi, R.; Fernández, C.O.; Hedman, B.; Hodgson, K.O.; Vela, A.; Solomon, E.I.; Quintanar, L. Spectroscopic and theoretical study of CuI Binding to His111 in the human prion protein fragment 106-115. Inorg. Chem., 2016, 55(6), 2909-2922.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02794] [PMID: 26930130]
[50]
Jones, C.E.; Klewpatinond, M.; Abdelraheim, S.R.; Brown, D.R.; Viles, J.H. Probing copper2+ binding to the prion protein using diamagnetic Nickel2+ and 1H NMR: The unstructured N terminus facilitates the coordination of six Copper2+ ions at physiological concentrations. J. Mol. Biol., 2005, 346(5), 1393-1407.
[http://dx.doi.org/10.1016/j.jmb.2004.12.043] [PMID: 15713489]
[51]
Garnett, A.P.; Jones, C.E.; Viles, J.H. A survey of diamagnetic probes for copper2+ binding to the prion protein. 1H NMR solution structure of the palladium2+ bound single octarepeat. Dalton Trans., 2006, (3), 509-518.
[http://dx.doi.org/10.1039/B511553A] [PMID: 16395451]
[52]
Klewpatinond, M.; Viles, J.H. Empirical rules for rationalising visible circular dichroism spectra of Cu2+ and Ni2+ complexes: Applications to prion protein. FEBS Lett., 2007, 581, 1430-1434.
[http://dx.doi.org/10.1016/j.febslet.2007.02.068] [PMID: 17359979]
[53]
Valensin, D.; Gajda, K.; Gralka, E.; Valensin, G.; Kamysz, W.; Kozlowski, H. Copper binding to chicken and human prion protein amylodogenic regions: Differences and similarities revealed by Ni2+ as a diamagnetic probe. J. Inorg. Biochem., 2010, 104(1), 71-78.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.10.008] [PMID: 19883942]
[54]
Turi, I.; Kállay, C.; Szikszai, D.; Pappalardo, G.; Di Natale, G.; De Bona, P.; Rizzarelli, E.; Sóvágó, I. Nickel(II) complexes of the multihistidine peptide fragments of human prion protein. J. Inorg. Biochem., 2010, 104(8), 885-891.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.04.008] [PMID: 20494446]
[55]
Sánchez-López, C.; Rivillas-Acevedo, L.; Cruz-Vásquez, O.; Quintanar, L. Methionine 109 plays a key role in Cu(II) binding to His111 in the 92–115 fragment of the human prion protein. Inorg. Chim. Acta, 2018, 481, 87-97.
[http://dx.doi.org/10.1016/j.ica.2017.09.046]
[56]
Stellato, F.; Spevacek, A.; Proux, O.; Minicozzi, V.; Millhauser, G.; Morante, S. Zinc modulates Copper coordination mode in prion protein octa-repeat subdomains. Eur. Biophys. J., 2011, 40(11), 1259-1270.
[http://dx.doi.org/10.1007/s00249-011-0713-4] [PMID: 21710304]
[57]
Stellato, F.; Minicozzi, V.; Millhauser, G.L.; Pascucci, M.; Proux, O.; Rossi, G.C.; Spevacek, A.; Morante, S. Copper–zinc cross-modulation in prion protein binding. Eur. Biophys. J., 2014, 43(12), 631-642.
[http://dx.doi.org/10.1007/s00249-014-0993-6] [PMID: 25395329]
[58]
Walter, E.D.; Stevens, D.J.; Visconte, M.P.; Millhauser, G.L. The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J. Am. Chem. Soc., 2007, 129(50), 15440-15441.
[http://dx.doi.org/10.1021/ja077146j] [PMID: 18034490]
[59]
Jószai, V.; Turi, I.; Kállay, C.; Pappalardo, G.; Di Natale, G.; Rizzarelli, E.; Sóvágó, I. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein. J. Inorg. Biochem., 2012, 112, 17-24.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.02.014] [PMID: 22542592]
[60]
Faller, P.; Hureau, C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans., 2009, (7), 1080-1094.
[http://dx.doi.org/10.1039/B813398K] [PMID: 19322475]
[61]
Liu, Y.; Nguyen, M.; Robert, A.; Meunier, B. Metal ions in Alzheimer’s disease: A key role or not? Acc. Chem. Res., 2019, 52(7), 2026-2035.
[http://dx.doi.org/10.1021/acs.accounts.9b00248] [PMID: 31274278]
[62]
Das, N.; Raymick, J.; Sarkar, S. Role of metals in Alzheimer’s disease. Metab. Brain Dis., 2021, 36(7), 1627-1639.
[http://dx.doi.org/10.1007/s11011-021-00765-w] [PMID: 34313926]
[63]
Hureau, C. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 1: An overview. Coord. Chem. Rev., 2012, 256(19-20), 2164-2174.
[http://dx.doi.org/10.1016/j.ccr.2012.03.037]
[64]
Borghesani, V.; Alies, B.; Hureau, C. Cu(II) binding to various forms of amyloid-β peptides. Are they friends or foes? Eur. J. Inorg. Chem., 2018, 2018(1), 7-15.
[http://dx.doi.org/10.1002/ejic.201700776] [PMID: 30186035]
[65]
Summers, K.L.; Schilling, K.M.; Roseman, G.; Markham, K.A.; Dolgova, N.V.; Kroll, T.; Sokaras, D.; Millhauser, G.L.; Pickering, I.J.; George, G.N. X-ray absorption spectroscopy investigations of copper(II) coordination in the human amyloid-β peptide. Inorg. Chem., 2019, 58(9), 6294-6311.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00507] [PMID: 31013069]
[66]
Damante, C.A.; Ösz, K.; Nagy, Z.; Pappalardo, G.; Grasso, G.; Impellizzeri, G.; Rizzarelli, E.; Sóvágó, I. The metal loading ability of β-amyloid N-terminus: A combined potentiometric and spectroscopic study of copper(II) complexes with β-amyloid(1-16), its short or mutated peptide fragments, and its PolyEthylene Glycol (PEG)-ylated analogue. Inorg. Chem., 2008, 47(20), 9669-9683.
[http://dx.doi.org/10.1021/ic8006052] [PMID: 18808108]
[67]
Grenács, Á.; Sóvágó, I. Copper(II), nickel(II) and zinc(II) complexes of the N-terminal nonapeptide fragment of amyloid-β and its derivatives. J. Inorg. Biochem., 2014, 139, 49-56.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.06.001] [PMID: 24973554]
[68]
Grenács, Á.; Sanna, D.; Sóvágó, I. Copper(II) and nickel(II) binding sites of peptide containing adjacent histidyl residues. J. Inorg. Biochem., 2015, 151, 87-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.06.020] [PMID: 26188480]
[69]
Kowalik-Jankowska, T.; Ruta-Dolejsz, M.; Wiśniewska, K.; Łankiewicz, L. Cu(II) interaction with N-terminal fragments of human and mouse β-amyloid peptide. J. Inorg. Biochem., 2001, 86(2-3), 535-545.
[http://dx.doi.org/10.1016/S0162-0134(01)00226-4] [PMID: 11566325]
[70]
Kowalik-Jankowska, T.; Ruta, M.; Wiśniewska, K.; Łankiewicz, L. Coordination abilities of the 1–16 and 1–28 fragments of β-amyloid peptide towards copper(II) ions: A combined potentiometric and spectroscopic study. J. Inorg. Biochem., 2003, 95(4), 270-282.
[http://dx.doi.org/10.1016/S0162-0134(03)00128-4] [PMID: 12818797]
[71]
Guilloreau, L.; Damian, L.; Coppel, Y.; Mazarguil, H.; Winterhalter, M.; Faller, P. Structural and thermodynamical properties of CuII amyloid-β16/28 complexes associated with Alzheimer’s disease. J. Biol. Inorg. Chem., 2006, 11(8), 1024-1038.
[http://dx.doi.org/10.1007/s00775-006-0154-1] [PMID: 16924555]
[72]
Alies, B.; Bijani, C.; Sayen, S.; Guillon, E.; Faller, P.; Hureau, C. Copper coordination to native N-terminally modified versus full-length amyloid-β: Second-sphere effects determine the species present at physiological pH. Inorg. Chem., 2012, 51(23), 12988-13000.
[http://dx.doi.org/10.1021/ic302097d] [PMID: 23150940]
[73]
Gunderson, W.A.; Hernández-Guzmán, J.; Karr, J.W.; Sun, L.; Szalai, V.A.; Warncke, K. Local structure and global patterning of Cu2+ binding in fibrillar amyloid-β [Aβ(1-40)] protein. J. Am. Chem. Soc., 2012, 134(44), 18330-18337.
[http://dx.doi.org/10.1021/ja306946q] [PMID: 23043377]
[74]
Trujano-Ortiz, L.G.; González, F.J.; Quintanar, L. Redox cycling of copper-amyloid β 1-16 peptide complexes is highly dependent on the coordination mode. Inorg. Chem., 2015, 54(1), 4-6.
[http://dx.doi.org/10.1021/ic501941a] [PMID: 25521160]
[75]
Di Natale, G.; Sinopoli, A.; Grenács, Á.; Sanna, D.; Sóvágó, I.; Pappalardo, G. Copper(II) coordination properties of the Aβ(1–16) 2 peptidomimetic: Experimental evidence of intermolecular macrochelate complex species in the Aβ dimer. New J. Chem., 2016, 40(12), 10274-10284.
[http://dx.doi.org/10.1039/C6NJ02354A]
[76]
Drew, S.C.; Kok, W.M.; Hutton, C.A.; Barnham, K.J. Cu2+ coordination of covalently cross-linked β-amyloid dimers. Appl. Magn. Reson., 2013, 44(8), 927-939.
[http://dx.doi.org/10.1007/s00723-013-0450-1]
[77]
Himes, R.A.; Park, G.Y.; Siluvai, G.S.; Blackburn, N.J.; Karlin, K.D. Structural studies of copper(I) complexes of amyloid-β peptide fragments: Formation of two-coordinate bis(histidine) complexes. Angew. Chem. Int. Ed., 2008, 47(47), 9084-9087.
[http://dx.doi.org/10.1002/anie.200803908] [PMID: 18932185]
[78]
Shearer, J.; Szalai, V.A. The amyloid-β peptide of Alzheimer’s disease binds Cu(I) in a linear bis-his coordination environment: Insight into a possible neuroprotective mechanism for the amyloid-β peptide. J. Am. Chem. Soc., 2008, 130(52), 17826-17835.
[http://dx.doi.org/10.1021/ja805940m] [PMID: 19035781]
[79]
Abelein, A.; Gräslund, A.; Danielsson, J. Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc. Natl. Acad. Sci., 2015, 112(17), 5407-5412.
[http://dx.doi.org/10.1073/pnas.1421961112] [PMID: 25825723]
[80]
Huang, J.; Yao, Y.; Lin, J.; Ye, Y.H.; Sun, W.Y.; Tang, W.X. The solution structure of rat Aβ-(1–28) and its interaction with zinc ion: Insights into the scarcity of amyloid deposition in aged rat brain. J. Biol. Inorg. Chem., 2004, 9(5), 627-635.
[http://dx.doi.org/10.1007/s00775-004-0556-x] [PMID: 15160315]
[81]
Syme, C.D.; Viles, J.H. Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Aβ) of Alzheimer’s disease. Biochim. Biophys. Acta. Proteins Proteomics, 2006, 1764(2), 246-256.
[http://dx.doi.org/10.1016/j.bbapap.2005.09.012] [PMID: 16266835]
[82]
Zirah, S.; Kozin, S.A.; Mazur, A.K.; Blond, A.; Cheminant, M.; Ségalas-Milazzo, I.; Debey, P.; Rebuffat, S. Structural changes of region 1-16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J. Biol. Chem., 2006, 281(4), 2151-2161.
[http://dx.doi.org/10.1074/jbc.M504454200] [PMID: 16301322]
[83]
Abelein, A.; Abrahams, J.P.; Danielsson, J.; Gräslund, A.; Jarvet, J.; Luo, J.; Tiiman, A.; Wärmländer, S.K.T.S. The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. J. Biol. Inorg. Chem., 2014, 19(4-5), 623-634.
[http://dx.doi.org/10.1007/s00775-014-1131-8] [PMID: 24737040]
[84]
Pietropaolo, A.; Satriano, C.; Strano, G.; La Mendola, D.; Rizzarelli, E. Different zinc(II) complex species drive distinct long range cross-talks in the Aβ monomers. J. Inorg. Biochem., 2015, 153, 367-376.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.08.013] [PMID: 26298865]
[85]
Zirah, S.; Rebuffat, S.; Kozin, S.A.; Debey, P.; Fournier, F.; Lesage, D.; Tabet, J.C. Zinc binding properties of the amyloid fragment Aβ(1–16) studied by electrospray-ionization mass spectrometry. Int. J. Mass Spectrom., 2003, 228(2-3), 999-1016.
[http://dx.doi.org/10.1016/S1387-3806(03)00221-5]
[86]
Alies, B.; Conte-Daban, A.; Sayen, S.; Collin, F.; Kieffer, I.; Guillon, E.; Faller, P.; Hureau, C. Zinc(II) binding site to the amyloid-β peptide insights from spectroscopic studies with a wide series of modified peptides. Inorg. Chem., 2016, 55(20), 10499-10509.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01733] [PMID: 27665863]
[87]
Arena, G.; Rizzarelli, E. Zn2+ interaction with amyloid-β: Affinity and speciation. Molecules, 2019, 24(15), 2796-2815.
[http://dx.doi.org/10.3390/molecules24152796] [PMID: 31370315]
[88]
Damante, C.A.; Ősz, K.; Nagy, Z.; Pappalardo, G.; Grasso, G.; Impellizzeri, G.; Rizzarelli, E.; Sóvágó, I. Metal loading capacity of Abeta N-terminus: A combined potentiometric and spectroscopic study of zinc(II) complexes with Abeta(1-16), its short or mutated peptide fragments and its polyethylene glycol-ylated analogue. Inorg. Chem., 2009, 48(21), 10405-10415.
[http://dx.doi.org/10.1021/ic9012334] [PMID: 19780525]
[89]
Damante, C.A.; Ösz, K.; Nagy, Z.; Grasso, G.; Pappalardo, G.; Rizzarelli, E.; Sóvágó, I. Zn2+'s ability to alter the distribution of Cu2+ among the available binding sites of Aβ(1-16)-polyethylenglycol-ylated peptide: Implications in Alzheimer’s disease. Inorg. Chem., 2011, 50(12), 5342-5350.
[http://dx.doi.org/10.1021/ic101537m] [PMID: 21612223]
[90]
Kállay, C.; Ősz, K.; Dávid, A.; Valastyán, Z.; Malandrinos, G.; Hadjiliadis, N.; Sóvágó, I. Zinc(ii) binding ability of tri-, tetra- and penta-peptides containing two or three histidyl residues. Dalton Trans., 2007, (36), 4040-4047.
[http://dx.doi.org/10.1039/b706303b] [PMID: 17828365]
[91]
Grenács, Á.; Kaluha, A.; Kállay, C.; Jószai, V.; Sanna, D.; Sóvágó, I. Binary and ternary mixed metal complexes of terminally free peptides containing two different histidyl binding sites. J. Inorg. Biochem., 2013, 128, 17-25.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.07.008] [PMID: 23911567]
[92]
Atrián-Blasco, E.; Conte-Daban, A.; Hureau, C. Mutual interference of Cu and Zn ions in Alzheimer’s disease: Perspectives at the molecular level. Dalton Trans., 2017, 46(38), 12750-12759.
[http://dx.doi.org/10.1039/C7DT01344B] [PMID: 28937157]
[93]
Atrián-Blasco, E.; Gonzalez, P.; Santoro, A.; Alies, B.; Faller, P.; Hureau, C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord. Chem. Rev., 2018, 371, 38-55.
[http://dx.doi.org/10.1016/j.ccr.2018.04.007] [PMID: 30262932]
[94]
Silva, M.C.; Haggarty, S.J. tauopathies: Deciphering disease mechanisms to develop effective therapies. Int. J. Mol. Sci., 2020, 21(23), 8948-8996.
[http://dx.doi.org/10.3390/ijms21238948] [PMID: 33255694]
[95]
Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci., 1975, 72(5), 1858-1862.
[http://dx.doi.org/10.1073/pnas.72.5.1858] [PMID: 1057175]
[96]
Jeganathan, S.; von Bergen, M.; Brutlach, H.; Steinhoff, H.J.; Mandelkow, E. Global hairpin folding of tau in solution. Biochemistry, 2006, 45(7), 2283-2293.
[http://dx.doi.org/10.1021/bi0521543] [PMID: 16475817]
[97]
Wang, Y.; Mandelkow, E. tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 22-35.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[98]
Spillantini, M.G.; Goedert, M. tau pathology and neurodegeneration. Lancet Neurol., 2013, 12(6), 609-622.
[http://dx.doi.org/10.1016/S1474-4422(13)70090-5] [PMID: 23684085]
[99]
Fuster-Matanzo, A.; Hernández, F.; Ávila, J. tau spreading mechanisms; Implications for dysfunctional tauopathies. Int. J. Mol. Sci., 2018, 19(3), 645-658.
[http://dx.doi.org/10.3390/ijms19030645] [PMID: 29495325]
[100]
Gong, C.X.; Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Curr. Med. Chem., 2008, 15(23), 2321-2328.
[http://dx.doi.org/10.2174/092986708785909111] [PMID: 18855662]
[101]
Brister, M.A.; Pandey, A.K.; Bielska, A.A.; Zondlo, N.J. OGlcNAcylation and phosphorylation have opposing structural effects in tau: Phosphothreonine induces particular conformational order. J. Am. Chem. Soc., 2014, 136(10), 3803-3816.
[http://dx.doi.org/10.1021/ja407156m] [PMID: 24559475]
[102]
Kim, A.; Lim, S.; Kim, Y. Metal ion effects on Aβ and tau aggregation. Int. J. Mol. Sci., 2018, 19(1), 128-142.
[http://dx.doi.org/10.3390/ijms19010128] [PMID: 29301328]
[103]
Mo, Z.Y.; Zhu, Y.Z.; Zhu, H.L.; Fan, J.B.; Chen, J.; Liang, Y. Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J. Biol. Chem., 2009, 284(50), 34648-34657.
[http://dx.doi.org/10.1074/jbc.M109.058883] [PMID: 19826005]
[104]
Sun, X.Y.; Wei, Y.P.; Xiong, Y.; Wang, X.C.; Xie, A.J.; Wang, X.L.; Yang, Y.; Wang, Q.; Lu, Y.M.; Liu, R.; Wang, J.Z. Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J. Biol. Chem., 2012, 287(14), 11174-11182.
[http://dx.doi.org/10.1074/jbc.M111.309070] [PMID: 22334661]
[105]
Yamamoto, A.; Shin, R.W.; Hasegawa, K.; Naiki, H.; Sato, H.; Yoshimasu, F.; Kitamoto, T. Iron (III) induces aggregation of hyperphosphorylated τ and its reduction to iron (II) reverses the aggregation: Implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J. Neurochem., 2002, 82(5), 1137-1147.
[http://dx.doi.org/10.1046/j.1471-4159.2002.t01-1-01061.x] [PMID: 12358761]
[106]
Sayre, L.M.; Perry, G.; Harris, P.L.R.; Liu, Y.; Schubert, K.A.; Smith, M.A. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J. Neurochem., 2000, 74(1), 270-279.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[107]
Huang, Y.; Wu, Z.; Cao, Y.; Lang, M.; Lu, B.; Zhou, B. Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation. Cell Rep., 2014, 8(3), 831-842.
[http://dx.doi.org/10.1016/j.celrep.2014.06.047] [PMID: 25066125]
[108]
Hu, J.Y.; Zhang, D.L.; Liu, X.L.; Li, X.S.; Cheng, X.Q.; Chen, J.; Du, H.N.; Liang, Y. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human tau and thereby significantly increases tau toxicity in neuronal cells. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 414-427.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.022] [PMID: 27890528]
[109]
Moreira, G.G.; Cristóvão, J.S.; Torres, V.M.; Carapeto, A.P.; Rodrigues, M.S.; Landrieu, I.; Cordeiro, C.; Gomes, C.M. Zinc binding to tau influences aggregation kinetics and oligomer distribution. Int. J. Mol. Sci., 2019, 20(23), 5979-5991.
[http://dx.doi.org/10.3390/ijms20235979] [PMID: 31783644]
[110]
Roman, A.Y.; Devred, F.; Byrne, D.; La Rocca, R.; Ninkina, N.N.; Peyrot, V.; Tsvetkov, P.O. Zinc induces temperature-dependent reversible self-assembly of tau. J. Mol. Biol., 2019, 431(4), 687-695.
[http://dx.doi.org/10.1016/j.jmb.2018.12.008] [PMID: 30580037]
[111]
Ahmadi, S.; Wu, B.; Song, R.; Zhu, R.; Simpson, A.; Wilson, D.J.; Kraatz, H.B. Exploring the interactions of iron and zinc with the microtubule binding repeats R1 and R4. J. Inorg. Biochem., 2020, 205, 110987.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110987]
[112]
Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 1989, 3(4), 519-526.
[http://dx.doi.org/10.1016/0896-6273(89)90210-9] [PMID: 2484340]
[113]
Kolarova, M.; Garcia-Sierra, F.; Bartos, A.; Ricny, J.; Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimer’s Disease, 2012, 2012, 731526.
[http://dx.doi.org/10.1155/2012/731526]
[114]
Shin, B.; Saxena, S. Insight into potential Cu(II)-binding motifs in the four pseudorepeats of tau protein. J. Phys. Chem. B, 2011, 115(50), 15067-15078.
[http://dx.doi.org/10.1021/jp204410h] [PMID: 22085212]
[115]
Bacchella, C.; Gentili, S.; Bellotti, D.; Quartieri, E.; Draghi, S.; Baratto, M.C.; Remelli, M.; Valensin, D.; Monzani, E.; Nicolis, S.; Casella, L.; Tegoni, M.; Dell’Acqua, S. Binding and reactivity of copper to R1 and R3 fragments of tau protein. Inorg. Chem., 2020, 59(1), 274-286.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02266] [PMID: 31820933]
[116]
Di Natale, G.; Bellia, F.; Sciacca, M.F.M.; Campagna, T.; Pappalardo, G. tau-peptide fragments and their Copper(II) complexes: Effects on Amyloid-β aggregation. Inorg. Chim. Acta, 2018, 472, 82-92.
[http://dx.doi.org/10.1016/j.ica.2017.09.061]
[117]
Barthélemy, N.R.; Gabelle, A.; Hirtz, C.; Fenaille, F.; Sergeant, N.; Schraen-Maschke, S.; Vialaret, J.; Buée, L.; Junot, C.; Becher, F.; Lehmann, S. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with lewy bodies. J. Alzheimers Dis., 2016, 51(4), 1033-1043.
[http://dx.doi.org/10.3233/JAD-150962] [PMID: 26923020]
[118]
Lukács, M.; Szunyog, G.; Grenács, Á.; Lihi, N.; Kállay, C.; Di Natale, G.; Campagna, T.; Lanza, V.; Tabbi, G.; Pappalardo, G.; Sóvágó, I.; Várnagy, K. Copper(II) coordination abilities of the tau protein’s N-terminus peptide fragments: A combined potentiometric, spectroscopic and mass spectrometric study. Chem. Plus Chem., 2019, 84(11), 1697-1708.
[http://dx.doi.org/10.1002/cplu.201900504] [PMID: 31943878]
[119]
Balogh, B.D.; Szakács, B.; Di Natale, G.; Tabbi, G.; Pappalardo, G.; Sóvágó, I.; Várnagy, K. Copper(II) binding properties of an octapeptide fragment from the R3 region of tau protein: A combined potentiometric, spectroscopic and mass spectrometric study. J. Inorg. Biochem., 2021, 217, 11358.
[120]
Balogh, B.D.; Szunyog, G.; Lukács, M.; Szakács, B.; Sóvágó, I.; Várnagy, K. Thermodynamics and structural characterization of the nickel( II ) and zinc( II ) complexes of various peptide fragments of tau protein. Dalton Trans., 2021, 50(40), 14411-14420.
[http://dx.doi.org/10.1039/D1DT02324A] [PMID: 34569575]
[121]
Bacchella, C.; Nicolis, S.; Dell’Acqua, S.; Rizzarelli, E.; Monzani, E.; Casella, L. Membrane binding strongly affecting the dopamine reactivity induced by copper prion and copper/amyloid-β (Aβ) peptides. A ternary copper/ Aβ/prion peptide complex stabilized and solubilized in sodium-dodecyl sulfate micellas. Inorg. Chem., 2020, 59(1), 900-912.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03153] [PMID: 31869218]
[122]
Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003, 25(3-4), 207-218.
[http://dx.doi.org/10.1007/s00726-003-0011-2] [PMID: 14661084]
[123]
Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol., 2017, 15(7), 385-396.
[http://dx.doi.org/10.1038/nrmicro.2017.26] [PMID: 28420885]
[124]
Bettinger, J.; Ghaemmaghami, S. Methionine oxidation within the prion protein. Prion, 2020, 14(1), 193-205.
[http://dx.doi.org/10.1080/19336896.2020.1796898] [PMID: 32744136]
[125]
Kállay, C.; Turi, I.; Timári, S.; Nagy, Z.; Sanna, D.; Pappalardo, G.; de Bona, P.; Rizzarelli, E.; Sóvágó, I. The effect of point mutations on copper(II) complexes with peptide fragments encompassing the 106–114 region of human prion protein. Monatsh. Chem., 2011, 142(4), 411-419.
[http://dx.doi.org/10.1007/s00706-010-0413-2]
[126]
Csire, G.; Nagy, L.; Várnagy, K.; Kállay, C. Copper(II) interaction with the Human Prion 103–112 fragment – Coordination and oxidation. J. Inorg. Biochem., 2017, 170, 195-201.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.02.018] [PMID: 28260678]
[127]
Csire, G.; Turi, I.; Sóvágó, I.; Kárpáti, E.; Kállay, C. Complex formation processes and metal ion catalyzed oxidation of model peptides related to the metal binding site of the human prion protein. J. Inorg. Biochem., 2020, 203, 110927.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110927] [PMID: 31810042]
[128]
Bodnár, N.; Várnagy, K.; Nagy, L.; Csire, G.; Kállay, C. Ambivalent role of ascorbic acid in the metal-catalyzed oxidation of oligopeptides. J. Inorg. Biochem., 2021, 222, 111510.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111510] [PMID: 34126320]
[129]
Singh, N.; Singh, A.; Das, D.; Mohan, M.L. Redox control of prion and disease pathogenesis. Antioxid. Redox Signal., 2010, 12(11), 1271-1294.
[http://dx.doi.org/10.1089/ars.2009.2628] [PMID: 19803746]
[130]
Smith, D.G.; Cappai, R.; Barnham, K.J. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim. Biophys. Acta Biomembr., 2007, 1768(8), 1976-1990.
[http://dx.doi.org/10.1016/j.bbamem.2007.02.002] [PMID: 17433250]
[131]
Sigurdsson, E.M.; Brown, D.R.; Alim, M.A.; Scholtzova, H.; Carp, R.; Meeker, H.C.; Prelli, F.; Frangione, B.; Wisniewski, T. Copper chelation delays the onset of prion disease. J. Biol. Chem., 2003, 278(47), 46199-46202.
[http://dx.doi.org/10.1074/jbc.C300303200] [PMID: 14519758]
[132]
Hider, R.C.; Ma, Y.; Molina-Holgado, F.; Gaeta, A.; Roy, S. Iron chelation as a potential therapy for neurodegenerative disease. Biochem. Soc. Trans., 2008, 36(6), 1304-1308.
[http://dx.doi.org/10.1042/BST0361304] [PMID: 19021545]
[133]
Cukierman, D.S.; Bodnár, N.; Evangelista, B.N.; Nagy, L.; Kállay, C.; Rey, N.A. Impact of pyridine-2-carboxaldehyde-derived aroylhydrazones on the copper-catalyzed oxidation of the M112A PrP103–112 mutant fragment. J. Biol. Inorg. Chem., 2019, 24(8), 1231-1244.
[http://dx.doi.org/10.1007/s00775-019-01700-2] [PMID: 31401689]
[134]
Cukierman, D.S.; Bodnár, N.; Diniz, R.; Nagy, L.; Kállay, C.; Rey, N.A. Full equilibrium picture in aqueous binary and ternary systems involving copper(II), 1-methylimidazole-containing hydrazonic ligands, and the 103–112 human prion protein fragment. Inorg. Chem., 2022, 61(1), 723-737.
[http://dx.doi.org/10.1021/acs.inorgchem.1c03598] [PMID: 34918515]
[135]
Devonport, J.; Bodnár, N.; McGown, A.; Bukar Maina, M.; Serpell, L.C.; Kállay, C.; Spencer, J.; Kostakis, G.E. Salpyran: A Cu(II) selective chelator with therapeutic potential. Inorg. Chem., 2021, 60(20), 15310-15320.
[http://dx.doi.org/10.1021/acs.inorgchem.1c01912] [PMID: 34609139]
[136]
Behar, A.E.; Sabater, L.; Baskin, M.; Hureau, C.; Maayan, G. A water‐soluble peptoid chelator that can remove Cu 2+ from amyloid‐β peptides and stop the formation of reactive oxygen species associated with Alzheimer’s disease. Angew. Chem. Int. Ed., 2021, 60(46), 24588-24597.
[http://dx.doi.org/10.1002/anie.202109758] [PMID: 34510664]
[137]
Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2001, 60(8), 759-767.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[138]
Swomley, A.M.; Förster, S.; Keeney, J.T.; Triplett, J.; Zhang, Z.; Sultana, R.; Butterfield, D.A. Abeta, oxidative stress in Alzheimer disease: Evidence based on proteomics studies. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1248-1257.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.015] [PMID: 24120836]
[139]
Tamagno, E.; Guglielmotto, M.; Vasciaveo, V.; Tabaton, M. Oxidative stress and beta amyloid in Alzheimer’s disease. which comes first: The chicken or the egg? Antioxidants, 2021, 10(9), 1479.
[http://dx.doi.org/10.3390/antiox10091479] [PMID: 34573112]
[140]
Balland, V.; Hureau, C.; Savéant, J.M. Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-β copper complex follow a preorganization mechanism. Proc. Natl. Acad. Sci., 2010, 107(40), 17113-17118.
[http://dx.doi.org/10.1073/pnas.1011315107] [PMID: 20858730]
[141]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[142]
Näslund, J.; Schierhorn, A.; Hellman, U.; Lannfelt, L.; Roses, A.D.; Tjernberg, L.O.; Silberring, J.; Gandy, S.E.; Winblad, B.; Greengard, P. Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc. Natl. Acad. Sci., 1994, 91(18), 8378-8382.
[http://dx.doi.org/10.1073/pnas.91.18.8378] [PMID: 8078890]
[143]
Kuo, Y.M.; Kokjohn, T.A.; Beach, T.G.; Sue, L.I.; Brune, D.; Lopez, J.C.; Kalback, W.M.; Abramowski, D.; Sturchler-Pierrat, C.; Stau fenbiel, M.; Roher, A.E. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J. Biol. Chem., 2001, 276(16), 12991-12998.
[http://dx.doi.org/10.1074/jbc.M007859200] [PMID: 11152675]
[144]
Friedemann, M.; Helk, E.; Tiiman, A.; Zovo, K.; Palumaa, P.; Tõugu, V. Effect of methionine-35 oxidation on the aggregation of amyloid-β peptide. Biochem. Biophys. Rep., 2015, 3, 94-99.
[http://dx.doi.org/10.1016/j.bbrep.2015.07.017] [PMID: 29124171]
[145]
Cheignon, C.; Faller, P.; Testemale, D.; Hureau, C.; Collin, F. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production. Metallomics, 2016, 8(10), 1081-1089.
[http://dx.doi.org/10.1039/C6MT00150E] [PMID: 27730227]
[146]
Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res., 2011, 55(1), 83-95.
[http://dx.doi.org/10.1002/mnfr.201000453] [PMID: 21207515]
[147]
Maina, M.B.; Burra, G.; Al-Hilaly, Y.K.; Mengham, K.; Fennell, K.; Serpell, L.C. Metal- and UV- catalyzed oxidation results in trapped amyloid-β intermediates revealing that self-assembly is required for Aβ-induced cytotoxicity. iScience, 2020, 23(10), 101537.
[http://dx.doi.org/10.1016/j.isci.2020.101537] [PMID: 33083713]
[148]
Golec, C.; Mortensen, S.; Anwar, S.; Martic-Milne, S. Dual roles of tau R peptides on Cu(II)/(I)-mediated reactive oxygen species formation. J. Biol. Inorg. Chem., 2021, 26(8), 919-931.
[http://dx.doi.org/10.1007/s00775-021-01902-7] [PMID: 34554340]
[149]
Ahmadi, S.; Zhu, S.; Sharma, R.; Wu, B.; Soong, R.; Dutta Majumdar, R.; Wilson, D.J.; Simpson, A.J.; Kraatz, H.B. Aggregation of microtubule binding repeats of tau protein is promoted by Cu2+. ACS Omega, 2019, 4(3), 5356-5366.
[http://dx.doi.org/10.1021/acsomega.8b03595] [PMID: 31001602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy