Generic placeholder image

Current Nutrition & Food Science


ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Short Communication

Triacylglycerols are a Rich Source of Polyunsaturated Fatty Acids in Red King Crab Juveniles (Paralithodes camtschaticus)

Author(s): Tatyana V. Sikorskaya*

Volume 19, Issue 8, 2023

Published on: 17 October, 2022

Page: [853 - 856] Pages: 4

DOI: 10.2174/1573401318666220907164351

Price: $65


In the Sea of Japan and the Okhotsk Sea, the red king crab Paralithodes camtschaticus is the major commercial species of the crab. The crab is a rich source of polyunsaturated fatty acids (PUFAs). The composition of triacylglycerol (TG) molecular species in freshly collected juveniles of P. camtschaticus has been determined for the first time. By supercritical fluid chromatography with mass-spectrometry, 45 molecular species of TG were identified. Most of the molecular species contained docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3), arachidonic acid (AA, 20:4n-6), and monounsaturated fatty acid 18:1. Thus, DHA, EPA, and AA received from the diet are used to build phospholipids (PL) and also stored in TG in P. camtschaticus juveniles. Therefore, the crab is a rich source of PUFAs, which are concentrated both in structural PL and in reserve TG.

Keywords: Lipidomics, Paralithodes camtschaticus, mass-spectrometry, fatty acids, supercritical fluid chromatography, Sea of Japan.

« Previous
Graphical Abstract
Latyshev NA, Kasyanov SP, Kharlamenko VI, Svetashev VI. Lipids and of fatty acids of edible crabs of the North Western Pacific. Food Chem 2009; 116(3): 657-61.
Copeman LA, Stoner AW, Ottmar ML, Daly B, Parrish CC, Eckert GL. Total lipids, lipid classes, and fatty acids of newly settled red king crab (Paralithodes camtschaticus): Comparison of hatchery-cultured and wild crabs. J Shellfish Res 2012; 31(1): 153-65.
Fichera LV. Handbook of essential fatty acid biology, biochemistry, physiology and behavioral neurobiology. Int J Psychophysiol 1997; 27(2): 167-8.
Budge SM, Iverson SJ, Koopman HN. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar Mamm Sci 2006; 22(4): 759-801.
Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 1993; 35(1): 155-61.
Navarro JC, Henderson RJ, McEvoy LA, Bell MV, Amat F. Lipid conversions during enrichment of Artemia. Aquaculture 1999; 174(1-2): 155-66.
Sorgeloos P, Dhert P, Candreva P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 2001; 200(1-2): 147-59.
Limbourn AJ, Nichols PD. Lipid, fatty acid and protein content of late larval to early juvenile stages of the western rock lobster, Panulirus cygnus. Comp Biochem Physiol B Biochem Mol Biol 2009; 152(3): 292-8.
[] [PMID: 19135545]
Mercier L, Racotta IS, Yepiz-Plascencia G, et al. Effect of diets containing different levels of highly unsaturated fatty acids on physiological and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei (Boone) exposed to handling stress. Aquacult Res 2009; 40(16): 1849-63.
Merican ZO, Shim KF. Qualitative requirements of essential fatty acids for juvenile Penaeus monodon. Aquaculture 1996; 147(3-4): 275-91.
Suprayudi MA, Takeuchi T, Hamasaki K. Essential fatty acids for larval mud crab Scylla serrata: Implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture 2004; 231(1-4): 403-16.
Zmora O, Findiesen A, Stubblefield J, Frenkel V, Zohar Y. Large-scale juvenile production of the blue crab Callinectes sapidus. Aquaculture 2005; 244(1-4): 129-39.
Ouellet P, Taggart CT, Frank KT. Lipid condition and survival in shrimp (Pandalus borealis) larvae. Can J Fish Aquat Sci 1992; 49(2): 368-78.
Nates SF, McKenney CL Jr. Growth, lipid class and fatty acid composition in juvenile mud crabs (Rhithropanopeus harrisii) following larval exposure to Fenoxycarb, insect juvenile hormone analog. Comp Biochem Physiol C Toxicol Pharmacol 2000; 127(3): 317-25.
[PMID: 11246503]
Hakanson JL. The long and short term feeding condition in field-caught Calanus pacificus, as determined from the lipid content. Limnol Oceanogr 1984; 29(4): 794-804.
Coutteau P, Geurden I, Camara MR, Bergot P, Sorgeloos P. Review on the dietary effects of phospholipids in fish and Crustacean larviculture. Aquaculture 1997; 155(1-4): 149-64.
Fraser AJ. Triacylglycerol content as a condition index for fish, bivalve, and Crustacean larvae. Can J Fish Aquat Sci 1989; 46(11): 1868-73.
Beder AM, Copeman LA, Eckert GL. The effects of dietary essential fatty acids on the condition, stress response, and survival of the larvae of the red king crab Paralithodes camtschaticus Tilesius, 1815 (Decapoda: Anomura: Lithodidae). J Crustac Biol 2018; 38(6): 728-38.
Dvoretsky AG, Bichkaeva FA, Baranova NF, Dvoretsky VG. Fatty acid composition in the hepatopancreas of the barents sea red king crab. Biol Bull Russ Acad Sci 2020; 47(4): 332-8.
Dvoretsky AG, Bichkaeva FA, Baranova NF, Dvoretsky VG. Fatty acid composition of the Barents Sea red king crab (Paralithodes camtschaticus) leg meat. J Food Compos Anal 2021; 98: 103826.
Stoner AW, Ottmar ML, Copeman LA. Temperature effects on the molting, growth, and lipid composition of newly-settled red king crab. J Exp Mar Biol Ecol 2010; 393(1-2): 138-47.
Swingle JS, Daly B, Hetrick J. Temperature effects on larval survival, larval period, and health of hatchery-reared red king crab, Paralithodes camtschaticus. Aquaculture 2013; 384-387: 13-8.
Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. J Lipid Res 2003; 44(6): 1071-9.
[] [PMID: 12671038]
Kovatcheva NP, Borisov RR, Kryakhova NV, et al. Technological scheme and biotechnical indices of industrial cultivation of red king crab juveniles in aquaculture. Trudy VNIRO 2018; 172: 172-83.
Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509.
[] [PMID: 13428781]
Sikorskaya TV, Ermolenko EV, Efimova KV. Lipids of Indo-Pacific gorgonian corals are modified under the influence of microbial associations. Coral Reefs 2022; 41(2): 277-91.
Byrdwell WC. The bottom-up solution to the triacylglycerol lipidome using atmospheric pressure chemical ionization mass spectrometry. Lipids 2005; 40(4): 383-417.
[] [PMID: 16028721]
Sikorskaya TV, Imbs AB. Study of total lipidome of the Sinularia siaesensis soft coral. Russ J Bioorganic Chem 2018; 44(6): 712-23.
Sikorskaya TV, Efimova KV, Imbs AB. Lipidomes of phylogenetically different symbiotic dinoflagellates of corals. Phytochemistry 2021; 181: 112579.
[] [PMID: 33166751]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy