Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential

Author(s): Somia Gul, Khadija Aslam, Quratulain Pirzada, Abdur Rauf*, Anees Ahmed Khalil, Prabhakar Semwal, Sami Bawazeer, Yahya Saleh Al-Awthan, Omar Salem Bahattab, Mohammed Ali Al Duais and Muthu Thiruvengadam*

Volume 22, Issue 23, 2022

Published on: 03 October, 2022

Page: [1930 - 1949] Pages: 20

DOI: 10.2174/1568026622666220901145002

Price: $65

Abstract

Xanthones (9H xanthen-9-one) are an important class of heterocyclic compounds containing oxygen and a moiety of gamma-pirone, dense with a two-benzene ring structure, distributed widely in nature. Naturally occurring xanthones are found in micro-organisms and higher plants as secondary metabolites in fungi and lichens. Compounds of the family Caryophyllaceae, Guttiferae and Gentianaceae, are the most common natural source of xanthones. The structure of the xanthones nucleus, coupled with its biogenetic source, imposes that the carbons are numbered according to the biosynthetic pact. The characteristics oxygenation pattern of xanthones earlier is mixed shikimateacetate biogenesis. The major class of xanthones includes simple oxygenated, non-oxygenated, xanthonolignoids, bisxanthones, prenylated and related xanthones, miscellaneous xanthones. Their great pharmacological importance and interesting scaffolds were highly encouraged by scientists to investigate either the synthesis design or natural products for cancer treatment. Because currently used antitumor drugs possess high toxicity and low selectivity, efficacious treatment may be compromised. This review is limited to the antitumor activity of xanthones and the chemistry of xanthone core, which may help provide fundamental knowledge to the medicinal chemist for new and advanced research in drug development.

Keywords: Xanthone derivatives, Cancer, Pharmacophore, Antitumor activity, Bioactive compounds, Biomedical uses.

Graphical Abstract
[1]
El-Seedi, H.; El-Barbary, M.; El-Ghorab, D.; Bohlin, L.; Borg-Karlson, A.K.; Göransson, U.; Verpoorte, R. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr. Med. Chem., 2010, 17(9), 854-901.
[http://dx.doi.org/10.2174/092986710790712147] [PMID: 20156171]
[2]
El-Seedi, H.; El-Ghorab, D.; El-Barbary, M.; Zayed, M.; Göransson, U.; Larsson, S.; Verpoorte, R. Naturally occurring xanthones; latest investigations: Isolation, structure elucidation and chemosystematic significance. Curr. Med. Chem., 2009, 16(20), 2581-2626.
[http://dx.doi.org/10.2174/092986709788682056] [PMID: 19601799]
[3]
Negi, J.; Bisht, V.; Singh, P.; Rawat, M.; Joshi, G. Naturally occurring xanthones: Chemistry and biology. J. Appl. Chem., 2013, 2013, 621459.
[http://dx.doi.org/10.1155/2013/621459]
[4]
Kurniawan, Y.S.; Priyangga, K.T.A. Jumina; Pranowo, H.D.; Sholikhah, E.N.; Zulkarnain, A.K.; Fatimi, H.A.; Julianus, J. An update on the anticancer activity of xanthone derivatives: A review. Pharmaceuticals (Basel), 2021, 14(11), 1144.
[http://dx.doi.org/10.3390/ph14111144] [PMID: 34832926]
[5]
Jindarat, S. Xanthones from mangosteen (Garcinia mangostana): Multi-targeting pharmacological properties. J. Med. Assoc. Thai., 2014, 97, S196-S201.
[6]
Fernandes, C.; Carraro, M.; Ribeiro, J.; Araújo, J.; Tiritan, M.; Pinto, M. Synthetic chiral derivatives of xanthones: Biological activities and enantioselectivity studies. Molecules, 2019, 24(4), 791.
[http://dx.doi.org/10.3390/molecules24040791] [PMID: 30813236]
[7]
Panda, S.S.; Chand, M.; Sakhuja, R.; Jain, S.C. Xanthones as potential antioxidants. Curr. Med. Chem., 2013, 20(36), 4481-4507.
[http://dx.doi.org/10.2174/09298673113209990144] [PMID: 23834190]
[8]
Shagufta; Ahmad, I. Recent insight into the biological activities of synthetic xanthone derivatives. Eur. J. Med. Chem., 2016, 116, 267-280.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.058] [PMID: 27111599]
[9]
Araújo, J.; Fernandes, C.; Pinto, M.; Tiritan, M. Chiral derivatives of xanthones with antimicrobial activity. Molecules, 2019, 24(2), 314.
[http://dx.doi.org/10.3390/molecules24020314] [PMID: 30654546]
[10]
Cruz, M.I.; Cidade, H.; Pinto, M. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: Where do we stand? Future Med. Chem., 2017, 9(14), 1611-1630.
[http://dx.doi.org/10.4155/fmc-2017-0086] [PMID: 28832188]
[11]
Feng, Z.; Lu, X.; Gan, L.; Zhang, Q.; Lin, L. Xanthones, a promising anti-inflammatory scaffold: Structure, activity, and drug likeness analysis. Molecules, 2020, 25(3), 598.
[http://dx.doi.org/10.3390/molecules25030598] [PMID: 32019180]
[12]
Gunter, N.V.; Teh, S.S.; Lim, Y.M.; Mah, S.H. Natural xanthones and skin inflammatory diseases: Multitargeting mechanisms of action and potential application. Front. Pharmacol., 2020, 11, 594202.
[http://dx.doi.org/10.3389/fphar.2020.594202] [PMID: 33424605]
[13]
Salman, Z.; Yu-Qing, J.; Bin, L.; Cai-Yun, P.; Iqbal, C.M.; Atta-ur, R.; Wei, W. Antioxidant nature adds further therapeutic value: An updated review on natural xanthones and their glycosides. Digital Chinese Med., 2019, 2(3), 166-192.
[http://dx.doi.org/10.1016/j.dcmed.2019.12.005]
[14]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[15]
Huang, Q.; Wang, Y.; Wu, H.; Yuan, M.; Zheng, C.; Xu, H. Xanthone glucosides: Isolation, bioactivity and synthesis. Molecules, 2021, 26(18), 5575.
[http://dx.doi.org/10.3390/molecules26185575] [PMID: 34577044]
[16]
Na, Y. Recent cancer drug development with xanthone structures. J. Pharm. Pharmacol., 2010, 61(6), 707-712.
[http://dx.doi.org/10.1211/jpp.61.06.0002] [PMID: 19505360]
[17]
Szkaradek, N.; Sypniewski, D.; Żelaszczyk, D.; Gałka, S.; Borzdziłowska, P.; Marona, H.; Bednarek, I. Influence of new synthetic xanthones on the proliferation and migration potential of cancer cell lines in vitro. Anticancer. Agents Med. Chem., 2019, 19(16), 1949-1965.
[18]
Li, W.; Guofan, X.; Jianzhong, Z.; Yang, B.; Qian, Z.; Chen, Y.; Haiming, G.; Zhou, J.; Huang, L. 5,6-dimethyl xanthone-4-acetic acid derivatives and method of preparing the same. US Patents US20100099754A1, 2013.
[19]
Chitra, V.; Narayanan, J. In vitro screening for anti-cholinesterase and anti oxidant activity of extract of Garcinia hanburyi. Res. J. Pharm. Technol., 2018, 11(7), 2918-2921.
[http://dx.doi.org/10.5958/0974-360X.2018.00538.3]
[20]
Marona, H. Synthesis and anticonvulsant effects of some aminoalkanolic derivatives of xanthone. Pharmazie, 1998, 53(10), 672-676.
[PMID: 9812332]
[21]
Keiser, J.; Vargas, M.; Winter, R. Anthelminthic properties of mangostin and mangostin diacetate. Parasitol. Int., 2012, 61(2), 369-371.
[http://dx.doi.org/10.1016/j.parint.2012.01.004] [PMID: 22265670]
[22]
de Oliveira Caleare, A.; Lazarin-Bidóia, D.; Cortez, D.A.G.; Ueda-Nakamura, T.; Dias Filho, B.P.; de Oliveira Silva, S.; Nakamura, C.V. Trypanocidal activity of 1,3,7-trihydroxy-2-(3-methylbut-2-enyl)-xanthone isolated from Kielmeyera coriacea. Parasitol. Int., 2013, 62(5), 405-411.
[http://dx.doi.org/10.1016/j.parint.2013.05.001] [PMID: 23680754]
[23]
Groweiss, A.; Cardellina, J.H.; Boyd, M.R. HIV-Inhibitory prenylated xanthones and flavones from Maclura tinctoria. J. Nat. Prod., 2000, 63(11), 1537-1539.
[http://dx.doi.org/10.1021/np000175m] [PMID: 11087602]
[24]
Marona, H.; Librowski, T.; Cegła, M.; Erdođan, C.; Sahin, N.O. Antiarrhythmic and antihypertensive activity of some xanthone derivatives. Acta Poloniae Pharmaceut. Drug Res., 2008, 65(3), 383-390.
[25]
Chen, L.G.; Yang, L.L.; Wang, C.C. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol., 2008, 46(2), 688-693.
[http://dx.doi.org/10.1016/j.fct.2007.09.096] [PMID: 18029076]
[26]
Hay, A.E.; Hélesbeux, J.J.; Duval, O.; Labaïed, M.; Grellier, P.; Richomme, P. Antimalarial xanthones from Calophyllum caledonicum and Garcinia vieillardii. Life Sci., 2004, 75(25), 3077-3085.
[http://dx.doi.org/10.1016/j.lfs.2004.07.009] [PMID: 15474559]
[27]
Yasunaka, K.; Abe, F.; Nagayama, A.; Okabe, H.; Lozada-Pérez, L.; López-Villafranco, E.; Muñiz, E.E.; Aguilar, A.; Reyes-Chilpa, R. Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. J. Ethnopharmacol., 2005, 97(2), 293-299.
[http://dx.doi.org/10.1016/j.jep.2004.11.014] [PMID: 15707768]
[28]
Zhang, H.; Tao, L.; Fu, W.W.; Liang, S.; Yang, Y.F.; Yuan, Q.H.; Yang, D.J.; Lu, A.P.; Xu, H.X. Prenylated benzoylphloroglucinols and xanthones from the leaves of Garcinia oblongifolia with antienteroviral activity. J. Nat. Prod., 2014, 77(4), 1037-1046.
[http://dx.doi.org/10.1021/np500124e] [PMID: 24679044]
[29]
Al-Massarani, S.; El Gamal, A.; Al-Musayeib, N.; Mothana, R.; Basudan, O.; Al-Rehaily, A.; Farag, M.; Assaf, M.; El Tahir, K.; Maes, L. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative. Molecules, 2013, 18(9), 10599-10608.
[http://dx.doi.org/10.3390/molecules180910599] [PMID: 24002136]
[30]
Lin, C.N.; Hsieh, H.K.; Liou, S.J.; Ko, H.H.; Lin, H.C.; Chung, M.I.; Ko, F.N.; Liu, H.W.; Teng, C.M. Synthesis and antithrombotic effect of xanthone derivatives. J. Pharm. Pharmacol., 2011, 48(9), 887-890.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05994.x] [PMID: 8910846]
[31]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Practice, 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[32]
Kotecha, R.; Takami, A.; Espinoza, J.L. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget, 2016, 7(32), 52517-52529.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[33]
Kumar, S.; Gupta, S. Dietary phytochemicals and their role in cancer chemoprevention. J. Cancer Metastasis Treat., 2021, 7, 7.
[http://dx.doi.org/10.20517/2394-4722.2021.125] [PMID: 34888417]
[34]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[35]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[36]
Carugo, A.; Draetta, G.F. Academic discovery of anticancer drugs: Historic and future perspectives. Annu. Rev. Cancer Biol., 2019, 3(1), 385-408.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055645]
[37]
Olgen, S. Overview on anticancer drug design and development. Curr. Med. Chem., 2018, 25(15), 1704-1719.
[http://dx.doi.org/10.2174/0929867325666171129215610] [PMID: 29189124]
[38]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[39]
Su, Q.G.; Liu, Y.; Cai, Y.C.; Sun, Y.L.; Wang, B.; Xian, L.J. Anti-tumour effects of xanthone derivatives and the possible mechanisms of action. Invest. New Drugs, 2011, 29(6), 1230-1240.
[http://dx.doi.org/10.1007/s10637-010-9468-5] [PMID: 20577894]
[40]
Ames, B.N.; Gold, L.S.; Willett, W.C. The causes and prevention of cancer. Proc. Natl. Acad. Sci. USA, 1995, 92(12), 5258-5265.
[http://dx.doi.org/10.1073/pnas.92.12.5258] [PMID: 7777494]
[41]
da Silva, V.V. Antitumor activity of xanthone derivatives: Effects on the immune microenvironment; Universidade do Porto: Portugal, 2014.
[42]
Liu, J.; Zhang, J.; Wang, H.; Liu, Z.; Zhang, C.; Jiang, Z.; Chen, H. Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them. Eur. J. Med. Chem., 2017, 133, 50-61.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.068] [PMID: 28376372]
[43]
Klein-Júnior, L.C.; Campos, A.; Niero, R.; Corrêa, R.; Vander Heyden, Y.; Filho, V.C. Xanthones and cancer: From natural sources to mechanisms of action. Chem. Biodivers., 2020, 17(2), e1900499.
[http://dx.doi.org/10.1002/cbdv.201900499] [PMID: 31794156]
[44]
Resende, D.I.S.P.; Durães, F.; Maia, M.; Sousa, E.; Pinto, M.M.M. Recent advances in the synthesis of xanthones and azaxanthones. Org. Chem. Front., 2020, 7(19), 3027-3066.
[http://dx.doi.org/10.1039/D0QO00659A]
[45]
Meng, W.; Dong, Y.; Liu, J.; Wang, Z.; Zhong, X.; Chen, R.; Zhou, H.; Lin, M.; Jiang, L.; Gao, F.; Xu, T.; Chen, Q.; Zeng, X. A clinical evaluation of amlexanox oral adhesive pellicles in the treatment of recurrent aphthous stomatitis and comparison with amlexanox oral tablets: A randomized, placebo controlled, blinded, multicenter clinical trial. Trials, 2009, 10(1), 30.
[http://dx.doi.org/10.1186/1745-6215-10-30] [PMID: 19419555]
[46]
Miladiyah, I.; Jumina, J.; Haryana, S.M.; Mustofa, M. Biological activity, quantitative structure–activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs. Drug Des. Devel. Ther., 2018, 12, 149-158.
[http://dx.doi.org/10.2147/DDDT.S149973] [PMID: 29391779]
[47]
Li, X.; Liu, S.; Huang, H.; Liu, N.; Zhao, C.; Liao, S.; Yang, C.; Liu, Y.; Zhao, C.; Li, S.; Lu, X.; Liu, C.; Guan, L.; Zhao, K.; Shi, X.; Song, W.; Zhou, P.; Dong, X.; Guo, H.; Wen, G.; Zhang, C.; Jiang, L.; Ma, N.; Li, B.; Wang, S.; Tan, H.; Wang, X.; Dou, Q.P.; Liu, J. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo. Cell Rep., 2013, 3(1), 211-222.
[http://dx.doi.org/10.1016/j.celrep.2012.11.023] [PMID: 23260670]
[48]
Wang, X.; Chen, W. Gambogic acid is a novel anti-cancer agent that inhibits cell proliferation, angiogenesis and metastasis. Anticancer. Agents Med. Chem., 2012, 12(8), 994-1000.
[49]
Ruan, J.; Zheng, C.; Liu, Y.; Qu, L.; Yu, H.; Han, L.; Zhang, Y.; Wang, T. Chemical and biological research on herbal medicines rich in xanthones. Molecules, 2017, 22(10), 1698.
[http://dx.doi.org/10.3390/molecules22101698] [PMID: 29019929]
[50]
Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[51]
Tang, Y.P.; Li, P.G.; Kondo, M.; Ji, H.P.; Kou, Y.; Ou, B. Effect of a mangosteen dietary supplement on human immune function: A randomized, double-blind, placebo-controlled trial. J. Med. Food, 2009, 12(4), 755-763.
[http://dx.doi.org/10.1089/jmf.2008.0204] [PMID: 19697997]
[52]
Qian, W.; Brown, J.; Chen, J.J.; Cheng, Y. Regioselective synthesis of multiply halogenated azaxanthones. Tetrahedron Lett., 2014, 55(52), 7229-7232.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.032]
[53]
Yan, J.; Cheng, M.; Hu, F.; Hu, Y. Direct synthesis of functional azaxanthones by using a domino three-component reaction. Org. Lett., 2012, 14(12), 3206-3209.
[http://dx.doi.org/10.1021/ol3013099] [PMID: 22668316]
[54]
Zhang, X.; Yang, L.; Wu, Y.; Du, J.; Mao, Y.; Wang, X.; Luan, S.; Lei, Y.; Li, X.; Sun, H.; You, Q. Microwave-assisted transition-metal-free intramolecular Ullmann-type O-arylation in water for the synthesis of xanthones and azaxanthones. Tetrahedron Lett., 2014, 55(35), 4883-4887.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.003]
[55]
Shin, Y.; Han, S.; De, U.; Park, J.; Sharma, S.; Mishra, N.K.; Lee, E.K.; Lee, Y.; Kim, H.S.; Kim, I.S. Ru(II)-catalyzed selective C-H amination of xanthones and chromones with sulfonyl azides: Synthesis and anticancer evaluation. J. Org. Chem., 2014, 79(19), 9262-9271.
[http://dx.doi.org/10.1021/jo501709f] [PMID: 25225782]
[56]
Cheng, M.; Yan, J.; Hu, F.; Chen, H.; Hu, Y. Palladium-catalyzed cascade reactions of 3-iodochromones with aryl iodides and norbornadiene leading to annulated xanthones. Chem. Sci. (Camb.), 2013, 4(1), 526-530.
[http://dx.doi.org/10.1039/C2SC21335D]
[57]
Koh, J.J.; Zou, H.; Mukherjee, D.; Lin, S.; Lim, F.; Tan, J.K.; Tan, D.Z.; Stocker, B.L.; Timmer, M.S.M.; Corkran, H.M.; Lakshminarayanan, R.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Dick, T.; Liu, S. Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. Eur. J. Med. Chem., 2016, 123, 684-703.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.068] [PMID: 27517813]
[58]
Lin, S.; Koh, J.J.; Aung, T.T.; Lim, F.; Li, J.; Zou, H.; Wang, L.; Lakshminarayanan, R.; Verma, C.; Wang, Y.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Symmetrically substituted xanthone amphiphiles combat gram-positive bacterial resistance with enhanced membrane selectivity. J. Med. Chem., 2017, 60(4), 1362-1378.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01403] [PMID: 28122182]
[59]
Priya, B.; Cherkadu, V.; Kalavagunta, P.; Ningegowda, M.; Shivananju, N.; Madegowda, M. FeCl3-Catalyzed Three-Component One-Pot Synthesis of Novel 4-[(Benzo[d]thiazol-2-ylamino)(phenyl)methyl]-3-hydroxy-9H-xanthen-9-ones. Synlett, 2016, 27(7), 1116-1120.
[http://dx.doi.org/10.1055/s-0035-1561219]
[60]
Kodama, T.; Ito, T.; Dibwe, D.F.; Woo, S.Y.; Morita, H. Syntheses of benzophenone-xanthone hybrid polyketides and their antibacterial activities. Bioorg. Med. Chem. Lett., 2017, 27(11), 2397-2400.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.017] [PMID: 28416134]
[61]
Woydziak, Z.R.; Fu, L.; Peterson, B.R. Synthesis of fluorinated benzophenones, xanthones, acridones, and thioxanthones by iterative nucleophilic aromatic substitution. J. Org. Chem., 2012, 77(1), 473-481.
[http://dx.doi.org/10.1021/jo202062f] [PMID: 22111869]
[62]
Chaiyakunvat, P.; Anantachoke, N.; Reutrakul, V.; Jiarpinitnun, C. Caged xanthones: Potent inhibitors of global predominant MRSA USA300. Bioorg. Med. Chem. Lett., 2016, 26(13), 2980-2983.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.030] [PMID: 27216998]
[63]
Chantarasriwong, O.; Milcarek, A.T.; Morales, T.H.; Settle, A.L.; Rezende, C.O., Jr; Althufairi, B.D.; Theodoraki, M.A.; Alpaugh, M.L.; Theodorakis, E.A. Synthesis, structure-activity relationship and in vitro pharmacodynamics of A-ring modified caged xanthones in a preclinical model of inflammatory breast cancer. Eur. J. Med. Chem., 2019, 168, 405-413.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.047] [PMID: 30831408]
[64]
Turner, P.A. Samiullah; Geden, J.V.; White, A.; Clarkson, G.J.; Shipman, M. New strategies for the synthesis and functionalization of tetrahydroxanthones. Tetrahedron, 2015, 71(50), 9433-9438.
[http://dx.doi.org/10.1016/j.tet.2015.10.051]
[65]
Yuanita, E.; Pranowo, H.D.; Jumina, J.; Mustofa, M. Design of hydroxy xanthones derivatives as anticancer using quantitative structure-activity relationship. Asian J. Pharm. Clin. Res., 2016, 9(2), 180-185.
[66]
Zhang, X.J.; Ye, S.F.; Zhang, Y.; Meng, H.Y.; Zhang, M.Q.; Gao, W.L.; You, Q.D. Microwave-assisted efficient and green synthesis of hydroxyxanthone in water. Synth. Commun., 2012, 42(20), 2952-2958.
[http://dx.doi.org/10.1080/00397911.2011.573170]
[67]
Wu, X-F.; Shen, C. Selective preparation of xanthones from 2-bromofluorobenzenes and salicylaldehydes via palladium-catalyzed acylation–SNAr approach. Synlett, 2016, 27(8), 1269-1273.
[http://dx.doi.org/10.1055/s-0035-1561563]
[68]
Fuse, S.; Matsumura, K.; Johmoto, K.; Uekusa, H.; Tanaka, H.; Hirose, T.; Sunazuka, T.; Ōmura, S.; Takahashi, T. The design, synthesis, and evaluation of 1,5,7-trisubstituted-3-pyridyl-xanthones for use as insecticides starting from pyripyropene A. Chemistry, 2016, 22(51), 18450-18455.
[http://dx.doi.org/10.1002/chem.201603980] [PMID: 27862416]
[69]
Azevedo, C.M.G.; Afonso, C.M.M.; Soares, J.X.; Reis, S.; Sousa, D.; Lima, R.T.; Vasconcelos, M.H.; Pedro, M.; Barbosa, J.; Gales, L.; Pinto, M.M.M. Pyranoxanthones: Synthesis, growth inhibitory activity on human tumor cell lines and determination of their lipophilicity in two membrane models. Eur. J. Med. Chem., 2013, 69, 798-816.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.012] [PMID: 24113365]
[70]
Malekpoor, M.; Gharaghani, S.; Sharifzadeh, A.; Mirsattari, S.N.; Massah, A.R. Synthesis and antibacterial evaluation of novel xanthone sulfonamides. J. Chem. Res., 2015, 39(8), 433-437.
[http://dx.doi.org/10.3184/174751915X14373971129805]
[71]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: A-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[72]
Zou, Y.; Zhao, Q.; Hu, H.; Hu, L.; Yu, S.; Xu, M.; Wu, Q. Synthesis and in vitro antitumor activities of xanthone derivatives containing 1,4-disubstituted-1,2,3-triazole moiety. Arch. Pharm. Res., 2012, 35(12), 2093-2104.
[http://dx.doi.org/10.1007/s12272-012-1206-4] [PMID: 23263803]
[73]
Nasseri, M.; Alizadeh, S.; Zakerinasb, B.; Beni, A. A green and regioselsctive synthesis of xanthone and thioxanthone derivatives in the presence of heteropoly acid under microwave irradiation. Lett. Org. Chem., 2014, 11(5), 338-344.
[http://dx.doi.org/10.2174/1570178610666131231000006]
[74]
Song, G.; Li, S.; Si, H.; Li, Y.; Li, Y.; Fan, J.; Liang, Q.; He, H.; Ye, H.; Cui, Z. Synthesis and bioactivity of novel xanthone and thioxanthone L-rhamnopyranosides. RSC Advances, 2015, 5(45), 36092-36103.
[http://dx.doi.org/10.1039/C5RA02846A]
[75]
Giallombardo, D.; Nevin, A.C.; Lewis, W.; Nawrat, C.C.; Kitson, R.R.A.; Moody, C.J. Synthesis of toxyloxanthone B. Tetrahedron, 2014, 70(6), 1283-1288.
[http://dx.doi.org/10.1016/j.tet.2013.12.055]
[76]
Luo, L.; Qin, J.K.; Dai, Z.K.; Gao, S.H. Synthesis and biological evaluation of novel benzo[b]xanthone derivatives as potential antitumor agents. J. Serb. Chem. Soc., 2013, 78(9), 1301-1308.
[http://dx.doi.org/10.2298/JSC120925060L]
[77]
Żelaszczyk, D.; Jakubczyk, M.; Pytka, K.; Rapacz, A.; Walczak, M.; Janiszewska, P.; Pańczyk, K.; Żmudzki, P.; Słoczyńska, K.; Marona, H.; Waszkielewicz, A.M. Design, synthesis and evaluation of activity and pharmacokinetic profile of new derivatives of xanthone and piperazine in the central nervous system. Bioorg. Med. Chem. Lett., 2019, 29(21), 126679.
[http://dx.doi.org/10.1016/j.bmcl.2019.126679] [PMID: 31537425]
[78]
Alawi, M.S.; Awad, T.A.; Mohamed, M.A.; Khalid, A.; Ismail, E.M.O.; Alfatih, F.; Naz, S. UL-Haq, Z. Insights into the molecular basis of acetylcholinesterase inhibition by xanthones: An integrative in silico and in vitro approach. Mol. Simul., 2020, 46(4), 253-261.
[http://dx.doi.org/10.1080/08927022.2019.1691203]
[79]
Bairy, P.S.; Das, A.; Nainwal, L.M.; Mohanta, T.K.; Kumawat, M.K.; Mohapatra, P.K.; Parida, P. Design, synthesis and anti-diabetic activity of some novel xanthone derivatives targeting α-glucosidase. Bangladesh J. Pharmacol., 2016, 11(2), 308-318.
[http://dx.doi.org/10.3329/bjp.v11i2.25851]
[80]
Goshain, O.; Ahmed, B. Antihypertensive activity, toxicity and molecular docking study of newly synthesized xanthon derivatives (xanthonoxypropanolamine). PLoS One, 2019, 14(8), e0220920.
[http://dx.doi.org/10.1371/journal.pone.0220920] [PMID: 31415607]
[81]
Park, S.; Hong, E.; Kwak, S.Y.; Jun, K.Y.; Lee, E.S.; Kwon, Y.; Na, Y. Synthesis and biological evaluation of C1-O-substituted-3-(3-butylamino-2-hydroxy-propoxy)-xanthen-9-one as topoisomerase IIα catalytic inhibitors. Eur. J. Med. Chem., 2016, 123, 211-225.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.046] [PMID: 27484510]
[82]
Szkaradek, N.; Sypniewski, D.M.; Waszkielewicz, A.; Gunia-Krzyżak, A.; Galilejczyk, A.; Marona, H.; Bednarek, I. Synthesis and in vitro evaluation of the anticancer potential of new aminoalkanol derivatives of xanthone. Anticancer. Agents Med. Chem., 2016, 16(12), 1587-1604.
[83]
Das, A.; Shaikh, M.M.; Jana, S. Design, synthesis, and in vitro antibacterial screening of some novel 3-pentyloxy-1-hydroxyxanthone derivatives. Med. Chem. Res., 2014, 23(1), 436-444.
[http://dx.doi.org/10.1007/s00044-013-0653-x]
[84]
Li, G.L.; Cai, C.Y.; He, J.Y.; Rao, L.; Ma, L.; Liu, Y.; Wang, B. Synthesis of 3-acyloxyxanthone derivatives as α-glucosidase inhibitors: A further insight into the 3-substituents’ effect. Bioorg. Med. Chem., 2016, 24(7), 1431-1438.
[http://dx.doi.org/10.1016/j.bmc.2016.01.022] [PMID: 26917220]
[85]
Motavallizadeh, S.; Fallah-Tafti, A.; Maleki, S.; Shirazi, A.N.; Pordeli, M.; Safavi, M.; Ardestani, S.K.; Asd, S.; Tiwari, R.; Oh, D.; Shafiee, A.; Foroumadi, A.; Parang, K.; Akbarzadeh, T. Synthesis and evaluation of antiproliferative activity of substituted N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides. Tetrahedron Lett., 2014, 55(2), 373-375.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.033] [PMID: 24453382]
[86]
Guo, N.; Liu, J.; Qin, L.; Jiang, D.; You, X.; Lu, K.; Teng, Y.O.; Yu, P. Synthesis and antitumor activity evaluation of a novel series of xanthone derivatives. J. Asian Nat. Prod. Res., 2015, 17(4), 377-383.
[http://dx.doi.org/10.1080/10286020.2014.1003048] [PMID: 25628155]
[87]
Elbel, K.M.; Guizzunti, G.; Theodoraki, M.A.; Xu, J.; Batova, A.; Dakanali, M.; Theodorakis, E.A. A-ring oxygenation modulates the chemistry and bioactivity of caged Garcinia xanthones. Org. Biomol. Chem., 2013, 11(20), 3341-3348.
[http://dx.doi.org/10.1039/c3ob40395e] [PMID: 23563530]
[88]
Cruz, I.; Puthongking, P.; Cravo, S.; Palmeira, A.; Cidade, H.; Pinto, M.; Sousa, E. Xanthone and flavone derivatives as dual agents with acetylcholinesterase inhibition and antioxidant activity as potential anti-alzheimer agents. J. Appl. Chem., 2017, 2017(3), 1-16.
[http://dx.doi.org/10.1155/2017/8587260]
[89]
Fernandes, C.; Oliveira, L.; Tiritan, M.E.; Leitao, L.; Pozzi, A.; Noronha-Matos, J.B.; Correia-de-Sá, P.; Pinto, M.M. Synthesis of new chiral xanthone derivatives acting as nerve conduction blockers in the rat sciatic nerve. Eur. J. Med. Chem., 2012, 55, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.049] [PMID: 22819594]
[90]
Wei, X.; Liang, D.; Ning, M.; Wang, Q.; Meng, X.; Li, Z. Semi-synthesis of neomangiferin from mangiferin. Tetrahedron Lett., 2014, 55(19), 3083-3086.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.129]
[91]
Wang, R.; Chen, R.; Li, J.; Liu, X.; Xie, K.; Chen, D.; Peng, Y.; Dai, J. Regiospecific prenylation of hydroxyxanthones by a plant flavonoid prenyltransferase. J. Nat. Prod., 2016, 79(8), 2143-2147.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00417] [PMID: 27466696]
[92]
Zhang, X.; Li, X.; Sun, H.; Wang, X.; Zhao, L.; Gao, Y.; Liu, X.; Zhang, S.; Wang, Y.; Yang, Y.; Zeng, S.; Guo, Q.; You, Q. Garcinia xanthones as orally active antitumor agents. J. Med. Chem., 2013, 56(1), 276-292.
[http://dx.doi.org/10.1021/jm301593r] [PMID: 23167526]
[93]
Gobbi, S.; Hu, Q.; Negri, M.; Zimmer, C.; Belluti, F.; Rampa, A.; Hartmann, R.W.; Bisi, A. Modulation of cytochromes P450 with xanthone-based molecules: From aromatase to aldosterone synthase and steroid 11β-hydroxylase inhibition. J. Med. Chem., 2013, 56(4), 1723-1729.
[http://dx.doi.org/10.1021/jm301844q] [PMID: 23363058]
[94]
Azevedo, C.M.G.; Afonso, C.M.M.; Sousa, D.; Lima, R.T.; Helena Vasconcelos, M.; Pedro, M.; Barbosa, J.; Corrêa, A.G.; Reis, S.; Pinto, M.M.M. Multidimensional optimization of promising antitumor xanthone derivatives. Bioorg. Med. Chem., 2013, 21(11), 2941-2959.
[http://dx.doi.org/10.1016/j.bmc.2013.03.079] [PMID: 23623253]
[95]
Yen, C.T.; Nakagawa-Goto, K.; Hwang, T.L.; Morris-Natschke, S.L.; Bastow, K.F.; Wu, Y.C.; Lee, K.H. Design and synthesis of gambogic acid analogs as potent cytotoxic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2012, 22(12), 4018-4022.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.084] [PMID: 22595179]
[96]
Wang, P.; Jiang, L.; Cao, Y.; Zhang, X.; Chen, B.; Zhang, S.; Huang, K.; Ye, D.; Zhou, L. Xanthone derivatives as phosphoglycerate mutase 1 inhibitors: Design, synthesis, and biological evaluation. Bioorg. Med. Chem., 2018, 26(8), 1961-1970.
[http://dx.doi.org/10.1016/j.bmc.2018.02.044] [PMID: 29530347]
[97]
Akrawi, O.A.; Mohammed, H.H.; Patonay, T.; Villinger, A.; Langer, P. Synthesis of arylated xanthones by site-selective Suzuki–Miyaura reactions of the bis(triflate) of 1,3-dihydroxyxanthone. Tetrahedron, 2012, 68(31), 6298-6304.
[http://dx.doi.org/10.1016/j.tet.2012.05.046]
[98]
Hoppmann, C.; Alexiev, U.; Irran, E.; Rück-Braun, K. Synthesis and fluorescence of xanthone amino acids. Tetrahedron Lett., 2013, 54(34), 4585-4587.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.113]
[99]
Ding, S.M.; Lan, T.; Ye, G.J.; Huang, J.J.; Hu, Y.; Zhu, Y.R.; Wang, B. Novel oxazolxanthone derivatives as a new type of α-glucosidase inhibitor: Synthesis, activities, inhibitory modes and synergetic effect. Bioorg. Med. Chem., 2018, 26(12), 3370-3378.
[http://dx.doi.org/10.1016/j.bmc.2018.05.008] [PMID: 29776833]
[100]
Shen, R.; Chen, Y.; Li, Z.; Qi, H.; Wang, Y. Synthesis and biological evaluation of disubstituted amidoxanthones as potential telomeric G-quadruplex DNA-binding and apoptosis-inducing agents. Bioorg. Med. Chem., 2016, 24(4), 619-626.
[http://dx.doi.org/10.1016/j.bmc.2015.12.025] [PMID: 26740156]
[101]
Khurana, J.M.; Chaudhary, A.; Lumb, A.; Nand, B. Efficient one-pot syntheses of dibenzo[ a, i]xanthene-diones and evaluation of their antioxidant activity. Can. J. Chem., 2012, 90(9), 739-746.
[http://dx.doi.org/10.1139/v2012-033]
[102]
Fernandes, C.; Masawang, K.; Tiritan, M.E.; Sousa, E.; de Lima, V.; Afonso, C.; Bousbaa, H.; Sudprasert, W.; Pedro, M.; Pinto, M.M. New chiral derivatives of xanthones: Synthesis and investigation of enantioselectivity as inhibitors of growth of human tumor cell lines. Bioorg. Med. Chem., 2014, 22(3), 1049-1062.
[http://dx.doi.org/10.1016/j.bmc.2013.12.042] [PMID: 24411197]
[103]
Lemos, A.; Gomes, A.S.; Loureiro, J.B.; Brandão, P.; Palmeira, A.; Pinto, M.M.M.; Saraiva, L.; Sousa, M.E. Synthesis, biological evaluation, and in silico studies of novel aminated xanthones as potential p53-activating agents. Molecules, 2019, 24(10), 1975.
[http://dx.doi.org/10.3390/molecules24101975] [PMID: 31121972]
[104]
Waszkielewicz, A.M.; Gunia, A.; Szkaradek, N.; Pytka, K.; Siwek, A.; Satała, G.; Bojarski, A.J.; Szneler, E.; Marona, H. Synthesis and evaluation of pharmacological properties of some new xanthone derivatives with piperazine moiety. Bioorg. Med. Chem. Lett., 2013, 23(15), 4419-4423.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.062] [PMID: 23787101]
[105]
Dai, M.; Yuan, X.; Kang, J.; Zhu, Z.J.; Yue, R.C.; Yuan, H.; Chen, B.Y.; Zhang, W.D.; Liu, R.H.; Sun, Q.Y. Synthesis and biological evaluation of phenyl substituted polyoxygenated xanthone derivatives as anti-hepatoma agents. Eur. J. Med. Chem., 2013, 69, 159-166.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.020] [PMID: 24013415]
[106]
Matsumoto, T.; Fujimoto, Y.; Itakura, R.; Hoshi, H.; Yanai, H.; Ando, Y.; Suzuki, K. Novel one-pot synthesis of xanthones via sequential fluoride ion-promoted fries-type rearrangement and nucleophilic aromatic substitution. Synlett, 2013, 24(19), 2575-2580.
[http://dx.doi.org/10.1055/s-0033-1339881]
[107]
Matsumoto, T.; Fujimoto, Y.; Watabe, Y.; Yanai, H.; Taguchi, T. An efficient isoprenylation of xanthones at the C1 position by utilizing anion-accelerated aromatic Oxy-Cope rearrangement. Synlett, 2016, 27(6), 848-853.
[http://dx.doi.org/10.1055/s-0035-1561326]
[108]
Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446.
[http://dx.doi.org/10.2174/092986705774370682] [PMID: 16250871]
[109]
Bennett, G.J.; Lee, H.H. Xanthones from guttiferae. Phytochemistry, 1989, 28(4), 967-998.
[http://dx.doi.org/10.1016/0031-9422(89)80170-0]
[110]
Mandal, S.; Das, P.; Joshi, P. Naturally occurring xanthones from terrestrial flora. ChemInform, 1994, 1994, 621459.
[111]
Sultanbawa, M.U.S. Xanthonoids of tropical plants. Tetrahedron, 1980, 36(11), 1465-1506.
[http://dx.doi.org/10.1016/S0040-4020(01)83114-8]
[112]
Tchamo Diderot, N.; Silvere, N.; Etienne, T. Xanthones as therapeutic agents: Chemistry and pharmacology. Adv. Phytomed., 2006, 2, 273-298.
[http://dx.doi.org/10.1016/S1572-557X(05)02016-7]
[113]
Bringmann, G.; Lang, G.; Steffens, S.; Günther, E.; Schaumann, K. Evariquinone, isoemericellin, and stromemycin from a sponge derived strain of the fungus Emericella variecolor. Phytochemistry, 2003, 63(4), 437-443.
[http://dx.doi.org/10.1016/S0031-9422(03)00189-4] [PMID: 12770594]
[114]
Nguyen, L.H.D.; Harrison, L.J. Xanthones and triterpenoids from the bark of Garcinia vilersiana. Phytochemistry, 2000, 53(1), 111-114.
[http://dx.doi.org/10.1016/S0031-9422(99)00391-X] [PMID: 10656417]
[115]
Rukachaisirikul, V.; Kamkaew, M.; Sukavisit, D.; Phongpaichit, S.; Sawangchote, P.; Taylor, W.C. Antibacterial xanthones from the leaves of Garcinia nigrolineata. J. Nat. Prod., 2003, 66(12), 1531-1535.
[http://dx.doi.org/10.1021/np0303254] [PMID: 14695790]
[116]
Abou-shoer, M.; Habib, A.A.; Chang, C.J.; Cassady, J.M. Seven xanthonolignoids from Psorospermum febrifugum. Phytochemistry, 1989, 28(9), 2483-2487.
[http://dx.doi.org/10.1016/S0031-9422(00)98010-5]
[117]
Castelão, J.F., Jr; Gottlieb, O.R.; De Lima, R.A.; Mesquita, A.A.L.; Gottliebb, H.E.; Wenkert, E. Xanthonolignoids from Kielmeyera and Caraipa species—13C NMR spectroscopy of xanthones. Phytochemistry, 1977, 16(6), 735-740.
[http://dx.doi.org/10.1016/S0031-9422(00)89243-2]
[118]
Chen, M-T. Xanthonolignoids from Hypericum subalatum. Heterocycles, 1988, 27(11), 2589-2594.
[http://dx.doi.org/10.3987/COM-88-4619]
[119]
Ishiguro, K.; Nagata, S.; Oku, H.; Yamaki, M. Bisxanthones from Hypericum japonicum: Inhibitors of PAF-induced hypotension. Planta Med., 2002, 68(3), 258-261.
[http://dx.doi.org/10.1055/s-2002-23125] [PMID: 11914965]
[120]
Nkengfack, A.; Mkounga, P.; Meyer, M.; Fomum, Z.T.; Bodo, B.; Globulixanthones, C.; Globulixanthones, C. D and E three prenylated xanthones with antimicrobial properties from the root bark of Symphonia globulifera. Phytochemistry, 2002, 61(2), 181-187.
[http://dx.doi.org/10.1016/S0031-9422(02)00222-4] [PMID: 12169313]
[121]
Kumagai, K.; Hosotani, N.; Kikuchi, K.; Kimura, T.; Saji, I. Xanthofulvin, a novel semaphorin inhibitor produced by a strain of Penicillium. J. Antibiot. (Tokyo), 2003, 56(7), 610-616.
[http://dx.doi.org/10.7164/antibiotics.56.610] [PMID: 14513903]
[122]
Terui, Y.; Yiwen, C.; Jun-ying, L.; Ando, T.; Yamamoto, H.; Kawamura, Y.; Tomishima, Y.; Uchida, S.; Okazaki, T.; Munetomo, E.; Seki, T.; Yamamoto, K.; Murakami, S.; Kawashima, A. Xantholipin, a novel inhibitor of HSP47 gene expression produced by Streptomyces sp. Tetrahedron Lett., 2003, 44(29), 5427-5430.
[http://dx.doi.org/10.1016/S0040-4039(03)01318-2]
[123]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[124]
Ullah, M.F.; Bhat, S.H.; Husain, E.; Abu-Duhier, F.; Hadi, S.M.; Sarkar, F.H.; Ahmad, A. Cancer chemopreventive pharmacology of phytochemicals derived from plants of dietary and non-dietary origin: Implication for alternative and complementary approaches. Phytochem. Rev., 2014, 13(4), 811-833.
[http://dx.doi.org/10.1007/s11101-014-9341-9]
[125]
Mariano, L.N.B.; Vendramini-Costa, D.B.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Corrêa, R.; Cechinel Filho, V.; Delle Monache, F.; Niero, R. In vitro antiproliferative activity of uncommon xanthones from branches of Garcinia achachairu. Pharm. Biol., 2016, 54(9), 1697-1704.
[http://dx.doi.org/10.3109/13880209.2015.1123279] [PMID: 26704644]
[126]
Kostakis, I.; Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A.L.; Leonce, S.; Caignard, D.H.; Atassi, G. Synthesis and cytotoxic activity of 2-dialkylaminoethylamino substituted xanthenone and thioxanthenone derivatives. Farmaco, 2000, 55(6-7), 455-460.
[http://dx.doi.org/10.1016/S0014-827X(00)00068-9] [PMID: 11204746]
[127]
Peng, Z-G.; Luo, J.; Xia, L-H.; Chen, Y.; Song, S-J. CML cell line K562 cell apoptosis induced by mangiferin. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2004, 12(5), 590-594.
[PMID: 15498116]
[128]
Wu, X.; Cao, S.; Goh, S.; Hsu, A.; Tan, B.K.H. Mitochondrial destabilisation and caspase-3 activation are involved in the apoptosis of Jurkat cells induced by gaudichaudione A, a cytotoxic xanthone. Planta Med., 2002, 68(3), 198-203.
[http://dx.doi.org/10.1055/s-2002-23142] [PMID: 11914953]
[129]
Wang, T.C.; Zhao, Y.L.; Liou, S.S. Synthesis and cytotoxic evaluation of potential bis-intercalators: Tetramethylenebis(oxy)- and hexamethylenebis(oxy)-linked assemblies consisting of flavone, xanthone, anthraquinone, and dibenzofuran. Helv. Chim. Acta, 2002, 85(5), 1382-1389.
[http://dx.doi.org/10.1002/1522-2675(200205)85:5<1382:AID-HLCA1382>3.0.CO;2-Y]
[130]
Atwell, G.J.; Rewcastle, G.W.; Baguley, B.C.; Denny, W.A. Potential antitumor agents. 60. Relationships between structure and in vivo colon 38 activity for 5-substituted 9-oxoxanthene-4-acetic acids. J. Med. Chem., 1990, 33(5), 1375-1379.
[http://dx.doi.org/10.1021/jm00167a015] [PMID: 2329557]
[131]
Cao, Z.; Baguley, B.C.; Ching, L-M. Interferon-inducible protein 10 induction and inhibition of angiogenesis in vivo by the antitumor agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Res., 2001, 61(4), 1517-1521.
[PMID: 11245459]
[132]
Joseph, W.R.; Cao, Z.; Mountjoy, K.G.; Marshall, E.S.; Baguley, B.C.; Ching, L-M. Stimulation of tumors to synthesize tumor necrosis factor-α in situ using 5,6-dimethylxanthenone-4-acetic acid: A novel approach to cancer therapy. Cancer Res., 1999, 59(3), 633-638.
[PMID: 9973211]
[133]
McKeage, M.J.; Kelland, L.R. 5,6-Dimethylxanthenone-4-Acetic Acid (DMXAA). Am. J. Cancer, 2006, 5(3), 155-162.
[http://dx.doi.org/10.2165/00024669-200605030-00002]
[134]
Ito, C.; Itoigawa, M.; Furukawa, H.; Rao, K.S.; Enjo, F.; Bu, P.; Takayasu, J.; Tokuda, H.; Nishino, H. Xanthones as inhibitors of epstein–barr virus activation. Cancer Lett., 1998, 132(1-2), 113-117.
[http://dx.doi.org/10.1016/S0304-3835(98)00173-6] [PMID: 10397461]
[135]
Ito, C.; Itoigawa, M.; Mishina, Y.; Filho, V.C.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. Chemical constituents of Calophyllum brasiliense. 2. Structure of three new coumarins and cancer chemopreventive activity of 4-substituted coumarins. J. Nat. Prod., 2003, 66(3), 368-371.
[http://dx.doi.org/10.1021/np0203640] [PMID: 12662094]
[136]
Mackeen, M.M.; Ali, A.M.; Lajis, N.H.; Kawazu, K.; Hassan, Z.; Amran, M.; Habsah, M.; Mooi, L.Y.; Mohamed, S.M. Antimicrobial, antioxidant, antitumour-promoting and cytotoxic activities of different plant part extracts of Garcinia atroviridis Griff. ex T. Anders. J. Ethnopharmacol., 2000, 72(3), 395-402.
[http://dx.doi.org/10.1016/S0378-8741(00)00245-2] [PMID: 10996278]
[137]
Saha, P.; Mandal, S.; Das, A.; Das, P.C.; Das, S. Evaluation of the anticarcinogenic activity ofSwertia chirata Buch.Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother. Res., 2004, 18(5), 373-378.
[http://dx.doi.org/10.1002/ptr.1436] [PMID: 15173996]
[138]
Atkins, J.H.; Gershell, L.J. Selective anticancer drugs. Nat. Rev. Drug Discov., 2002, 1(7), 491-492.
[http://dx.doi.org/10.1038/nrd842] [PMID: 12120255]
[139]
Rothenberg, M.L.; Carbone, D.P.; Johnson, D.H. Improving the evaluation of new cancer treatments: Challenges and opportunities. Nat. Rev. Cancer, 2003, 3(4), 303-309.
[http://dx.doi.org/10.1038/nrc1047] [PMID: 12671669]
[140]
Moongkarndi, P.; Kosem, N.; Kaslungka, S.; Luanratana, O.; Pongpan, N.; Neungton, N. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J. Ethnopharmacol., 2004, 90(1), 161-166.
[http://dx.doi.org/10.1016/j.jep.2003.09.048] [PMID: 14698525]
[141]
Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone derivatives: New insights in biological activities. Curr. Med. Chem., 2005, 12(21), 2517-2538.
[http://dx.doi.org/10.2174/092986705774370691] [PMID: 16250875]
[142]
Recanatini, M.; Bisi, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Rampa, A.; Valenti, P.; Palzer, M.; Palusczak, A.; Hartmann, R.W. A new class of nonsteroidal aromatase inhibitors: Design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 α-hydroxylase/C17,20-lyase. J. Med. Chem., 2001, 44(5), 672-680.
[http://dx.doi.org/10.1021/jm000955s] [PMID: 11262078]
[143]
Gales, L.; Damas, A.M. Xanthones--a structural perspective. Curr. Med. Chem., 2005, 12(21), 2499-2515.
[http://dx.doi.org/10.2174/092986705774370727] [PMID: 16250874]
[144]
Ding, G.; Maume, G.; Milat, M-L.; Humbert, C.; Blein, J-P. MAUME, B.F. Inhibition of cellular growth and steroid 11β-Hydroxylation INRAS-Transformed Adrenocortical cells by the fungal toxins Beticolins. Cell Biol. Int., 1996, 20(8), 523-530.
[http://dx.doi.org/10.1006/cbir.1996.0068] [PMID: 8938985]
[145]
Nabandith, V.; Suzui, M.; Morioka, T.; Kaneshiro, T.; Kinjo, T.; Matsumoto, K.; Akao, Y.; Iinuma, M.; Yoshimi, N. Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1, 2-dimethylhydrazine in the rat. Asian Pac. J. Cancer Prev., 2004, 5(4), 433-438.
[PMID: 15546251]
[146]
Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E. Xanthones from mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs. Curr. Mol. Med., 2011, 11(8), 666-677.
[http://dx.doi.org/10.2174/156652411797536679] [PMID: 21902651]
[147]
TOSA. H.; Iinuma, M.; Tanaka, T.; Nozaki, H.; Ikeda, S.; Tsutsui, K.; Tsutusi, K.; Yamada, M.; Fujimori, S. Inhibitory activity of xanthone derivatives isolated from some guttiferaeous plants against DNA toposiomerases I and II. Chem. Pharm. Bull. (Tokyo), 1997, 45(2), 418-420.
[http://dx.doi.org/10.1248/cpb.45.418]
[148]
De Moliner, E.; Moro, S.; Sarno, S.; Zagotto, G.; Zanotti, G.; Pinna, L.A.; Battistutta, R. Inhibition of protein kinase CK2 by anthraquinone-related compounds. A structural insight. J. Biol. Chem., 2003, 278(3), 1831-1836.
[http://dx.doi.org/10.1074/jbc.M209367200] [PMID: 12419810]
[149]
Sarkar, A.; Sreenivasan, Y.; Ramesh, G.T.; Manna, S.K. β-D-Glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappaB but potentiates apoptosis. J. Biol. Chem., 2004, 279(32), 33768-33781.
[http://dx.doi.org/10.1074/jbc.M403424200] [PMID: 15161907]
[150]
Ruckstuhl, M.; Landry, Y. Inhibition of lung cyclic AMP- and cyclic GMP-phosphodiesterases by flavonoids and other chromone-like compounds. Biochem. Pharmacol., 1981, 30(7), 697-702.
[http://dx.doi.org/10.1016/0006-2952(81)90153-2] [PMID: 6264919]
[151]
Resende, D.I.S.P.; Pereira-Terra, P.; Moreira, J.; Freitas-Silva, J.; Lemos, A.; Gales, L.; Pinto, E.; de Sousa, M.E.; da Costa, P.M.; Pinto, M.M.M. Synthesis of a small library of nature-inspired xanthones and study of their antimicrobial activity. Molecules, 2020, 25(10), 2405.
[http://dx.doi.org/10.3390/molecules25102405] [PMID: 32455828]
[152]
Seo, E.K.; Kim, N.C.; Wani, M.C.; Wall, M.E.; Navarro, H.A.; Burgess, J.P.; Kawanishi, K.; Kardono, L.B.S.; Riswan, S.; Rose, W.C.; Fairchild, C.R.; Farnsworth, N.R.; Kinghorn, A.D. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzophenones from Cratoxylum sumatranum. J. Nat. Prod., 2002, 65(3), 299-305.
[http://dx.doi.org/10.1021/np010395f] [PMID: 11908969]
[153]
Sato, A.; Fujiwara, H.; Oku, H.; Ishiguro, K.; Ohizumi, Y. α-mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J. Pharmacol. Sci., 2004, 95(1), 33-40.
[http://dx.doi.org/10.1254/jphs.95.33] [PMID: 15153648]
[154]
Abdel-Lateff, A.; Klemke, C.; König, G.M.; Wright, A.D. Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J. Nat. Prod., 2003, 66(5), 706-708.
[http://dx.doi.org/10.1021/np020518b] [PMID: 12762814]
[155]
Khurana, R.K.; Kaur, R.; Lohan, S.; Singh, K.K.; Singh, B. Mangiferin: A promising anticancer bioactive. Pharm. Pat. Anal., 2016, 5(3), 169-181.
[http://dx.doi.org/10.4155/ppa-2016-0003] [PMID: 27088726]
[156]
Gutierrez-Orozco, F.; Failla, M. Biological activities and bioavailability of mangosteen xanthones: A critical review of the current evidence. Nutrients, 2013, 5(8), 3163-3183.
[http://dx.doi.org/10.3390/nu5083163] [PMID: 23945675]
[157]
Pérez-Rojas, J.M.; González-Macías, R.; González-Cortes, J.; Jurado, R.; Pedraza-Chaverri, J.; García-López, P. Synergic effect of α-mangostin on the cytotoxicity of cisplatin in a cervical cancer model. Oxid. Med. Cell. Longev., 2016, 2016, 7981397.
[http://dx.doi.org/10.1155/2016/7981397]
[158]
Ibrahim, M.Y.; Hashim, N.M.; Mariod, A.A.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab. J. Chem., 2016, 9(3), 317-329.
[http://dx.doi.org/10.1016/j.arabjc.2014.02.011]
[159]
Zhang, K.-j.; Gu, Q.-l.; Yang, K.; Ming, X.-j.; Wang, J.-x. Anticarcinogenic effects of α-mangostin: A review. Planta Med., 2017, 83(03/04), 188-202.
[160]
Lee, H.N.; Jang, H.Y.; Kim, H.J.; Shin, S.A.; Choo, G.S.; Park, Y.S.; Kim, S.K.; Jung, J.Y. Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells. Int. J. Mol. Med., 2016, 37(4), 939-948.
[http://dx.doi.org/10.3892/ijmm.2016.2517] [PMID: 26951885]
[161]
Kwak, H-H.; Kim, I-R.; Kim, H-J.; Park, B-S.; Yu, S-B. α-Mangostin induces apoptosis and cell cycle arrest in oral squamous cell carcinoma cell. Evid.-. Based Complement Altern. Med., 2016, 2016, 5352412.
[162]
Han, A.R.; Kim, J.A.; Lantvit, D.D.; Kardono, L.B.S.; Riswan, S.; Chai, H.; Carcache de Blanco, E.J.; Farnsworth, N.R.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic xanthone constituents of the stem bark of Garcinia mangostana (mangosteen). J. Nat. Prod., 2009, 72(11), 2028-2031.
[http://dx.doi.org/10.1021/np900517h] [PMID: 19839614]
[163]
Nakagawa, Y.; Iinuma, M.; Naoe, T.; Nozawa, Y.; Akao, Y. Characterized mechanism of α-mangostin-induced cell death: Caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg. Med. Chem., 2007, 15(16), 5620-5628.
[http://dx.doi.org/10.1016/j.bmc.2007.04.071] [PMID: 17553685]
[164]
Johnson, J.J.; Petiwala, S.M.; Syed, D.N.; Rasmussen, J.T.; Adhami, V.M.; Siddiqui, I.A.; Kohl, A.M. Mukhtar, H. -Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth. Carcinogenesis, 2012, 33(2), 413-419.
[http://dx.doi.org/10.1093/carcin/bgr291] [PMID: 22159229]
[165]
Jittiporn, K.; Suwanpradid, J.; Patel, C.; Rojas, M.; Thirawarapan, S.; Moongkarndi, P.; Suvitayavat, W.; Caldwell, R.B. Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative α-mangostin. Microvasc. Res., 2014, 93, 72-79.
[http://dx.doi.org/10.1016/j.mvr.2014.03.005] [PMID: 24721607]
[166]
Kaomongkolgit, R. Alpha-mangostin suppresses MMP-2 and MMP-9 expression in head and neck squamous carcinoma cells. Odontology, 2013, 101(2), 227-232.
[http://dx.doi.org/10.1007/s10266-012-0081-2] [PMID: 22832848]
[167]
Wang, J.J.; Sanderson, B.J.; Zhang, W. Significant anti-invasive activities of α-mangostin from the mangosteen pericarp on two human skin cancer cell lines. Anticancer Res., 2012, 32(9), 3805-3816.
[PMID: 22993323]
[168]
Menasria, F.; Azebaze, A.G.B.; Billard, C.; Faussat, A.M.; Nkengfack, A.E.; Meyer, M.; Kolb, J.P. Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferaes. Leuk. Res., 2008, 32(12), 1914-1926.
[http://dx.doi.org/10.1016/j.leukres.2008.05.017] [PMID: 18656257]
[169]
Kikuchi, H.; Ohtsuki, T.; Koyano, T.; Kowithayakorn, T.; Sakai, T.; Ishibashi, M. Activity of mangosteen xanthones and teleocidin a-2 in death receptor expression enhancement and tumor necrosis factor related apoptosis-inducing ligand assays. J. Nat. Prod., 2010, 73(3), 452-455.
[http://dx.doi.org/10.1021/np900404e] [PMID: 19788289]
[170]
Markowicz, J.; Uram, Ł.; Sobich, J.; Mangiardi, L.; Maj, P.; Rode, W. Antitumor and anti-nematode activities of α-mangostin. Eur. J. Pharmacol., 2019, 863, 172678.
[http://dx.doi.org/10.1016/j.ejphar.2019.172678] [PMID: 31542481]
[171]
Chao, A.C.; Hsu, Y.L.; Liu, C.K.; Kuo, P.L. α-Mangostin, a dietary xanthone, induces autophagic cell death by activating the AMP-activated protein kinase pathway in glioblastoma cells. J. Agric. Food Chem., 2011, 59(5), 2086-2096.
[http://dx.doi.org/10.1021/jf1042757] [PMID: 21314123]
[172]
Shibata, M.A.; Iinuma, M.; Morimoto, J.; Kurose, H.; Akamatsu, K.; Okuno, Y.; Akao, Y.; Otsuki, Y. α-Mangostin extracted from the pericarp of the mangosteen (Garcinia mangostana Linn) reduces tumor growth and lymph node metastasis in an immunocompetent xenograft model of metastatic mammary cancer carrying a p53 mutation. BMC Med., 2011, 9(1), 69.
[http://dx.doi.org/10.1186/1741-7015-9-69] [PMID: 21639868]
[173]
Chen, G.; Li, Y.; Wang, W.; Deng, L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: A review. Expert Opin. Ther. Pat., 2018, 28(5), 415-427.
[http://dx.doi.org/10.1080/13543776.2018.1455829] [PMID: 29558225]
[174]
Chang, H.F.; Yang, L.L. Gamma-mangostin, a micronutrient of mangosteen fruit, induces apoptosis in human colon cancer cells. Molecules, 2012, 17(7), 8010-8021.
[http://dx.doi.org/10.3390/molecules17078010] [PMID: 22759914]
[175]
Chang, H.F.; Wu, C.H.; Yang, L.L. Antitumour and free radical scavenging effects of γ-mangostin isolated from Garcinia mangostana pericarps against hepatocellular carcinoma cell. J. Pharm. Pharmacol., 2013, 65(9), 1419-1428.
[http://dx.doi.org/10.1111/jphp.12111] [PMID: 23927480]
[176]
Doi, H.; Shibata, M-A.; Shibata, E.; Morimoto, J.; Akao, Y.; Iinuma, M.; Tanigawa, N.; Otsuki, Y. Panaxanthone isolated from pericarp of Garcinia mangostana L. suppresses tumor growth and metastasis of a mouse model of mammary cancer. Anticancer Res., 2009, 29(7), 2485-2495.
[PMID: 19596918]
[177]
Hung, S.H.; Shen, K.H.; Wu, C.H.; Liu, C.L.; Shih, Y.W. α-mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J. Agric. Food Chem., 2009, 57(4), 1291-1298.
[http://dx.doi.org/10.1021/jf8032683] [PMID: 19178296]
[178]
Lee, Y.B.; Ko, K.C.; Shi, M.D.; Liao, Y.C.; Chiang, T.A.; Wu, P.F.; Shih, Y.X.; Shih, Y.W. α-Mangostin, a novel dietary xanthone, suppresses TPA-mediated MMP-2 and MMP-9 expressions through the ERK signaling pathway in MCF-7 human breast adenocarcinoma cells. J. Food Sci., 2010, 75(1), H13-H23.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01407.x] [PMID: 20492173]
[179]
Shih, Y.W.; Chien, S.T.; Chen, P.S.; Lee, J.H.; Wu, S.H.; Yin, L.T. α-mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via alphavbeta3 integrin/FAK/ERK and NF-kappaB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem. Biophys., 2010, 58(1), 31-44.
[http://dx.doi.org/10.1007/s12013-010-9091-2] [PMID: 20652762]
[180]
Núñez Selles, A.J.; Daglia, M.; Rastrelli, L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors, 2016, 42(5), 475-491.
[http://dx.doi.org/10.1002/biof.1299] [PMID: 27219221]
[181]
Gold-Smith, F.; Fernandez, A.; Bishop, K. Mangiferin and cancer: Mechanisms of action. Nutrients, 2016, 8(7), 396.
[http://dx.doi.org/10.3390/nu8070396] [PMID: 27367721]
[182]
Shoji, K.; Tsubaki, M.; Yamazoe, Y.; Satou, T.; Itoh, T.; Kidera, Y.; Tanimori, Y.; Yanae, M.; Matsuda, H.; Taga, A.; Nakamura, H.; Nishida, S. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expressions and nuclear entry of NF-κB in HL-60 cells. Arch. Pharm. Res., 2011, 34(3), 469-475.
[http://dx.doi.org/10.1007/s12272-011-0316-8] [PMID: 21547680]
[183]
Lv, J.; Wang, Z.; Zhang, L.; Wang, H-L.; Liu, Y.; Li, C.; Deng, J. Yi-Wang; Bao, J.-K. Mangiferin induces apoptosis and cell cycle arrest in MCF-7 cells both in vitro and in vivo. J. Anim. Vet. Adv., 2013, 12(3), 352-359.
[184]
Cuccioloni, M.; Bonfili, L.; Mozzicafreddo, M.; Cecarini, V.; Scuri, S.; Cocchioni, M.; Nabissi, M.; Santoni, G.; Eleuteri, A.M.; Angeletti, M. Mangiferin blocks proliferation and induces apoptosis of breast cancer cells via suppression of the mevalonate pathway and by proteasome inhibition. Food Funct., 2016, 7(10), 4299-4309.
[http://dx.doi.org/10.1039/C6FO01037G] [PMID: 27722367]
[185]
Liu, H.; Wu, B.; Pan, G.; He, L.; Li, Z.; Fan, M.; Jian, L.; Chen, M.; Wang, K.; Huang, C. Metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin-induced diabetic rats. Drug Metab. Dispos., 2012, 40(11), 2109-2118.
[http://dx.doi.org/10.1124/dmd.112.045849] [PMID: 22859782]
[186]
Kashyap, D.; Mondal, R.; Tuli, H.S.; Kumar, G.; Sharma, A.K. Molecular targets of gambogic acid in cancer: Recent trends and advancements. Tumour Biol., 2016, 37(10), 12915-12925.
[http://dx.doi.org/10.1007/s13277-016-5194-8] [PMID: 27448303]
[187]
Gu, H.; Wang, X.; Rao, S.; Wang, J.; Zhao, J.; Ren, F.L.; Mu, R.; Yang, Y.; Qi, Q.; Liu, W.; Lu, N.; Ling, H.; You, Q.; Guo, Q. Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells. Mol. Cancer Ther., 2008, 7(10), 3298-3305.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0212] [PMID: 18852133]
[188]
Rong, J.J.; Hu, R.; Qi, Q.; Gu, H.Y.; Zhao, Q.; Wang, J.; Mu, R.; You, Q.D.; Guo, Q.L. Gambogic acid down-regulates MDM2 oncogene and induces p21Waf1/CIP1 expression independent of p53. Cancer Lett., 2009, 284(1), 102-112.
[http://dx.doi.org/10.1016/j.canlet.2009.04.011] [PMID: 19428175]
[189]
Wu, L.; Guo, H.; Sun, H.; Zhang, W.; Sun, C.; Wang, J. UNC119 mediates gambogic acid-induced cell-cycle dysregulation through the Gsk3β/β-catenin pathway in hepatocellular carcinoma cells. Anticancer Drugs, 2016, 27(10), 988-1000.
[http://dx.doi.org/10.1097/CAD.0000000000000416] [PMID: 27669172]
[190]
Liu, F.; Huang, X.; Han, L.; Sang, M.; Hu, L.; Liu, B.; Duan, B.; Jiang, P.; Wang, X.; Qiao, Z.; Ma, C.; Liu, W.; Liu, J.; Feng, F.; Qu, W. Improved druggability of gambogic acid using core–shell nanoparticles. Biomater. Sci., 2019, 7(3), 1028-1042.
[http://dx.doi.org/10.1039/C8BM01154K] [PMID: 30608065]
[191]
Zhou, S.; Kestell, P.; Baguley, B.C.; Paxton, J.W. 5,6-dimethylxanthenone-4-acetic acid (DMXAA): A new biological response modifier for cancer therapy. Invest. New Drugs, 2002, 20(3), 281-295.
[http://dx.doi.org/10.1023/A:1016215015530] [PMID: 12201491]
[192]
Pan, S-T.; Zhou, Z-W.; He, Z-X.; Zhang, X.; Yang, T.; Yang, Y-X.; Wang, D.; Qiu, J-X.; Zhou, S-F. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach. Drug Des. Devel. Ther., 2015, 9, 937-968.
[PMID: 25733813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy