Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

The Molecular Mechanism of CoenzymeQ10 on Pyroptosis and its Related Diseases: A Review

Author(s): Qiong Xiang, Chuan-Jun Fu and Xian-Hui Li*

Volume 29, Issue 11, 2022

Published on: 06 October, 2022

Page: [911 - 916] Pages: 6

DOI: 10.2174/0929866529666220829152631

Price: $65

Abstract

Background: In recent years, cell pyroptosis has made it widely concerned. Pyroptosis is characterized by the activation of pathways leading to the activation of NLRP3 inflammasome and its downstream effector, such as interleukin (IL)-1β and IL-18, which has close relationship with inflammation. Recent evidence supports that CoenzymeQ10 (CoQ10) reduces related inflammatory factors (NLRP3, IL-1β and IL-18), which are associated with cell pyroptosis.

This paper reviews the possible mechanisms of CoQ10 inhibiting pyroptosis of different cells and its possible mechanism. Further research is needed to better define the response effects of CoQ10 on specific aspects of cell pyroptosis (such as priming, promotion, and signaling), and to further investigate the organizational and cellular mechanisms by which CoQ10 reduces pyroptosis in different cells.

Keywords: Coenzyme, Q10, pyroptosis, NLRP3, inflammasome, mechanism.

[1]
Broz, P.; Pelegrín, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol., 2020, 20(3), 143-157.
[http://dx.doi.org/10.1038/s41577-019-0228-2] [PMID: 31690840]
[2]
Wang, T.; Yang, Y.; Sun, T.; Qiu, H.; Wang, J.; Ding, C.; Lan, R.; He, Q.; Wang, W. The pyroptosis related long noncoding RNA signature predicts prognosis and indicates immunotherapeutic efficiency in hepatocellular carcinoma. Front. Cell Dev. Biol., 2022, 10, 779269.
[http://dx.doi.org/10.3389/fcell.2022.779269] [PMID: 35712653]
[3]
Miao, E.A.; Rajan, J.V.; Aderem, A. Caspase-1-induced pyroptotic cell death. Immunol. Rev., 2011, 243(1), 206-214.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01044.x] [PMID: 21884178]
[4]
Li, Y.; Huang, H.; Liu, B.; Zhang, Y.; Pan, X.; Yu, X.Y.; Shen, Z.; Song, Y.H. Inflammasomes as therapeutic targets in human diseases. Signal Transduct. Target. Ther., 2021, 6(1), 247.
[http://dx.doi.org/10.1038/s41392-021-00650-z] [PMID: 34210954]
[5]
Dludla, P.V.; Orlando, P.; Silvestri, S.; Marcheggiani, F.; Cirilli, I.; Nyambuya, T.M.; Mxinwa, V.; Mokgalaboni, K.; Nkambule, B.B.; Johnson, R.; Mazibuko, M.S.E.; Muller, C.J.F.; Louw, J.; Tiano, L. Coenzyme Q10 supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome: A meta-analysis of randomized controlled trials. Int. J. Mol. Sci., 2020, 21(9), 3247.
[http://dx.doi.org/10.3390/ijms21093247] [PMID: 32375340]
[6]
Cordero, M.D.; Alcocer, G.E.; Culic, O.; Carrión, A.M.; de Miguel, M.; Díaz, P.E.; Pérez, V.E.M.; Bullón, P.; Battino, M.; Sánchez, A.J.A. NLRP3 inflammasome is activated in fibromyalgia: The effect of coenzyme Q10. Antioxid. Redox Signal., 2014, 20(8), 1169-1180.
[http://dx.doi.org/10.1089/ars.2013.5198] [PMID: 23886272]
[7]
Chokchaiwong, S.; Kuo, Y.T.; Lin, S.H.; Hsu, Y.C.; Hsu, S.P.; Liu, Y.T.; Chou, A.J.; Kao, S.H. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation. Free Radic. Res., 2018, 52(11-12), 1445-1455.
[http://dx.doi.org/10.1080/10715762.2018.1500695] [PMID: 30003820]
[8]
Zychlinsky, A.; Prevost, M.C.; Sansonetti, P.J. Shigella flexneri induces apoptosis in infected macrophages. Nature, 1992, 358(6382), 167-169.
[http://dx.doi.org/10.1038/358167a0] [PMID: 1614548]
[9]
Fink, S.L.; Cookson, B.T. Pyroptosis and host cell death responses during Salmonella infection. Cell. Microbiol., 2007, 9(11), 2562-2570.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01036.x] [PMID: 17714514]
[10]
Vasconcelos, N.M.; Opdenbosch, N.; Gorp, H.; Parthoens, E.; Lamkanfi, M. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ., 2019, 26(1), 146-161.
[http://dx.doi.org/10.1038/s41418-018-0106-7] [PMID: 29666477]
[11]
Xia, S.; Hollingsworth, L.R. I.V.; Wu, H. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb. Perspect. Biol., 2020, 12(3), a036400.
[http://dx.doi.org/10.1101/cshperspect.a036400] [PMID: 31451512]
[12]
Boal, C.I.; Mazel, S.B.; Silva, F.; Garnier, L.; Yildiz, S.; Bonifacio, J.P.P.L.; Niu, C.; Williams, N.; Francois, P.; Schwerk, N.; Schöning, J.; Carlens, J.; Viemann, D.; Hugues, S.; Schmolke, M. Influenza a viruses limit NLRP3‐NEK7‐complex formation and pyroptosis in human macrophages. EMBO Rep., 2020, 21(12), e50421.
[http://dx.doi.org/10.15252/embr.202050421] [PMID: 33180976]
[13]
Petrilli, V.; Papin, S.; Tschopp, J. The inflammasome. Curr. Biol., 2005, 15(15), R581.
[http://dx.doi.org/10.1016/j.cub.2005.07.049] [PMID: 16085473]
[14]
Hsu, S.K.; Li, C.Y.; Lin, I.L.; Syue, W.J.; Chen, Y.F.; Cheng, K.C.; Teng, Y.N.; Lin, Y.H.; Yen, C.H.; Chiu, C.C. Inflammation related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics, 2021, 11(18), 8813-8835.
[http://dx.doi.org/10.7150/thno.62521] [PMID: 34522213]
[15]
Christgen, S.; Place, D.E.; Kanneganti, T.D. Toward targeting inflammasomes: Insights into their regulation and activation. Cell Res., 2020, 30(4), 315-327.
[http://dx.doi.org/10.1038/s41422-020-0295-8] [PMID: 32152420]
[16]
Li, L.H.; Chen, T.L.; Chiu, H.W.; Hsu, C.H.; Wang, C.C.; Tai, T.T.; Ju, T.C.; Chen, F.H.; Chernikov, O.V.; Tsai, W.C.; Hua, K.F. Critical role for the NLRP3 inflammasome in mediating IL-1β production in Shigella sonnei-infected macrophages. Front. Immunol., 2020, 11, 1115.
[http://dx.doi.org/10.3389/fimmu.2020.01115] [PMID: 32582195]
[17]
Anzai, F.; Watanabe, S.; Kimura, H.; Kamata, R.; Karasawa, T.; Komada, T.; Nakamura, J.; Nagi, M.N.; Ohno, N.; Takeishi, Y.; Takahashi, M. Crucial role of NLRP3 inflammasome in a murine model of Kawasaki disease. J. Mol. Cell. Cardiol., 2020, 138, 185-196.
[http://dx.doi.org/10.1016/j.yjmcc.2019.11.158] [PMID: 31836541]
[18]
Luo, B.; Li, B.; Wang, W.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, M.; Zhang, Y.; An, F. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One, 2014, 9(8), e104771.
[http://dx.doi.org/10.1371/journal.pone.0104771] [PMID: 25136835]
[19]
Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun., 2017, 64, 367-383.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[20]
Zheng, X.; Li, W.; Ren, L.; Liu, J.; Pang, X.; Chen, X.; Kang, D.; Wang, J.; Du, G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol. Ther., 2019, 195, 85-99.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.011] [PMID: 30347210]
[21]
Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules, 2019, 9(12), 850.
[22]
Rashidi, M.; Simpson, D.S.; Hempel, A.; Frank, D.; Petrie, E.; Vince, A.; Feltham, R.; Murphy, J.; Chatfield, S.M.; Salvesen, G.S.; Murphy, J.M.; Wicks, I.P.; Vince, J.E. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release. J. Immunol., 2019, 203(3), 736-748.
[http://dx.doi.org/10.4049/jimmunol.1900228] [PMID: 31209100]
[23]
Xu, Y.J.; Zheng, L.; Hu, Y.W.; Wang, Q. Pyroptosis and its relationship to atherosclerosis. Clin. Chim. Acta, 2018, 476, 28-37.
[http://dx.doi.org/10.1016/j.cca.2017.11.005] [PMID: 29129476]
[24]
Yang, F.; He, Y.; Zhai, Z.; Sun, E. Programmed cell death pathways in the pathogenesis of systemic lupus erythematosus. J. Immunol. Res., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/3638562] [PMID: 31871956]
[25]
An, X.; Zhang, Y.; Cao, Y.; Chen, J.; Qin, H.; Yang, L. Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients, 2020, 12(5), 1516.
[http://dx.doi.org/10.3390/nu12051516] [PMID: 32456088]
[26]
Geng, Y.; Ma, Q.; Liu, Y.N.; Peng, N.; Yuan, F.F.; Li, X.G.; Li, M.; Wu, Y.S.; Li, B.; Song, W.; Zhu, W.; Xu, W.W.; Fan, J.; Su, L. Heatstroke induces liver injury via IL-1β and HMGB1-induced pyroptosis. J. Hepatol., 2015, 63(3), 622-633.
[http://dx.doi.org/10.1016/j.jhep.2015.04.010] [PMID: 25931416]
[27]
Han, C.; Yang, Y.; Guan, Q.; Zhang, X.; Shen, H.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Guo, L.; Jiao, Q. New mechanism of nerve injury in Alzheimer’s disease: Β‐amyloid‐induced neuronal pyroptosis. J. Cell. Mol. Med., 2020, 24(14), 8078-8090.
[http://dx.doi.org/10.1111/jcmm.15439] [PMID: 32521573]
[28]
Wu, X.; Li, K.; Yang, H.; Yang, B.; Lu, X.; Zhao, L.; Fei, Y.; Chen, H.; Wang, L.; Li, J.; Peng, L.; Zheng, W.; Hou, Y.; Jiang, Y.; Shi, Q.; Zhang, W.; Zhang, F.; Zhang, J.; Huang, B.; He, W.; Zhang, X. Complement C1q synergizes with PTX3 in promoting NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis. J. Autoimmun., 2020, 106, 102336.
[http://dx.doi.org/10.1016/j.jaut.2019.102336] [PMID: 31601476]
[29]
Voet, S.; Srinivasan, S.; Lamkanfi, M.; Loo, G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med., 2019, 11(6), e10248.
[http://dx.doi.org/10.15252/emmm.201810248] [PMID: 31015277]
[30]
Kaushal, V.; Dye, R.; Pakavathkumar, P.; Foveau, B.; Flores, J.; Hyman, B.; Ghetti, B.; Koller, B.H.; LeBlanc, A.C. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ., 2015, 22(10), 1676-1686.
[http://dx.doi.org/10.1038/cdd.2015.16] [PMID: 25744023]
[31]
Zhao, N.; Sun, C.; Zheng, M.; Liu, S.; Shi, R. Amentoflavone suppresses amyloid β1–42 neurotoxicity in Alzheimer’s disease through the inhibition of pyroptosis. Life Sci., 2019, 239, 117043.
[http://dx.doi.org/10.1016/j.lfs.2019.117043] [PMID: 31722188]
[32]
Tian, D.D.; Wang, M.; Liu, A.; Gao, M.R.; Qiu, C.; Yu, W.; Wang, W.J.; Zhang, K.; Yang, L.; Jia, Y.Y.; Yang, C.B.; Wu, Y.M. Antidepressant effect of paeoniflorin is through inhibiting pyroptosis CASP-11/GSDMD pathway. Mol. Neurobiol., 2021, 58(2), 761-776.
[http://dx.doi.org/10.1007/s12035-020-02144-5] [PMID: 33025508]
[33]
Feng, J.; Wang, J.X.; Du, Y.H.; Liu, Y.; Zhang, W.; Chen, J.F.; Liu, Y.J.; Zheng, M.; Wang, K.J.; He, G.Q. Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP 3 inflammasome activation in APP/PS 1 transgenic mice. CNS Neurosci. Ther., 2018, 24(12), 1207-1218.
[http://dx.doi.org/10.1111/cns.12983] [PMID: 29869390]
[34]
Zhang, Y.; Zhao, Y.; Zhang, J.; Yang, G. Mechanisms of NLRP3 inflammasome activation: Its role in the treatment of Alzheimer’s disease. Neurochem. Res., 2020, 45(11), 2560-2572.
[http://dx.doi.org/10.1007/s11064-020-03121-z] [PMID: 32929691]
[35]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[36]
White, C.S.; Lawrence, C.B.; Brough, D.; Rivers, A.J. Inflammasomes as therapeutic targets for Alzheimer’s disease. Brain Pathol., 2017, 27(2), 223-234.
[http://dx.doi.org/10.1111/bpa.12478] [PMID: 28009077]
[37]
Ge, H.; Sun, M.; Wei, X.; Zhang, M.; Tu, H.; Hao, Y.; Chen, R.; Ye, M.; Gao, Y. Protective effects of dihydromyricetin on primary hippocampal astrocytes from cytotoxicity induced by comorbid diabetic neuropathic pain and depression. Purinergic Signal., 2020, 16(4), 585-599.
[http://dx.doi.org/10.1007/s11302-020-09752-9] [PMID: 33155081]
[38]
Zhao, S.; Zhou, Y.; Fan, Y.; Gong, Y.; Yang, J.; Yang, R.; Li, L.; Zou, L.; Xu, X.; Li, G.; Liu, S.; Zhang, C.; Li, G.; Liang, S. Involvement of purinergic 2X4 receptor in glycoprotein 120‐induced pyroptosis in dorsal root ganglia. J. Neurochem., 2019, 151(5), 584-594.
[http://dx.doi.org/10.1111/jnc.14850] [PMID: 31418825]
[39]
Mirmalek, S.A.; Gholamrezaei, B.A.; Yavari, H.; Kardeh, B.; Parsa, Y.; Salimi, T.S.A.; Yadollah, D.S.; Parsa, T.; Shahverdi, E.; Jangholi, E. Antioxidant and anti-inflammatory effects of coenzyme Q10 on L-arginine-induced acute pancreatitis in rat. Oxid. Med. Cell. Longev., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/5818479] [PMID: 27190575]
[40]
Gutierrez, M.F.M.; Arenas, L.A.P.; Limia, P.L.; Romero, C.J.L.; Yubero, S.E.M.; López, M.J. Coenzyme Q10 supplementation for the reduction of oxidative stress: Clinical implications in the treatment of chronic diseases. Int. J. Mol. Sci., 2020, 21(21), 7870.
[http://dx.doi.org/10.3390/ijms21217870] [PMID: 33114148]
[41]
Halcox, J.P.J.; Schenke, W.H.; Zalos, G.; Mincemoyer, R.; Prasad, A.; Waclawiw, M.A.; Nour, K.R.A.; Quyyumi, A.A. Prognostic value of coronary vascular endothelial dysfunction. Circulation, 2002, 106(6), 653-658.
[http://dx.doi.org/10.1161/01.CIR.0000025404.78001.D8] [PMID: 12163423]
[42]
Gao, L.; Mao, Q.; Cao, J.; Wang, Y.; Zhou, X.; Fan, L. Effects of coenzyme Q10 on vascular endothelial function in humans: A meta-analysis of randomized controlled trials. Atherosclerosis, 2012, 221(2), 311-316.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.10.027] [PMID: 22088605]
[43]
Littarru, G.P.; Tiano, L.; Belardinelli, R.; Watts, G.F. Coenzyme Q10, endothelial function, and cardiovascular disease. Biofactors, 2011, 37(5), 366-373.
[http://dx.doi.org/10.1002/biof.154] [PMID: 21674640]
[44]
Pepe, S.; Marasco, S.F.; Haas, S.J.; Sheeran, F.L.; Krum, H.; Rosenfeldt, F.L. Coenzyme Q10 in cardiovascular disease. Mitochondrion, 2007, 7(Suppl.), S154-S167.
[http://dx.doi.org/10.1016/j.mito.2007.02.005] [PMID: 17485243]
[45]
O’Rourke, R.W. Adipose tissue and the physiologic underpinnings of metabolic disease. Surg. Obes. Relat. Dis., 2018, 14(11), 1755-1763.
[http://dx.doi.org/10.1016/j.soard.2018.07.032] [PMID: 30193906]
[46]
Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol., 2005, 115(5), 911-919.
[http://dx.doi.org/10.1016/j.jaci.2005.02.023] [PMID: 15867843]
[47]
Abdali, D.; Samson, S.E.; Grover, A.K. How effective are antioxidant supplements in obesity and diabetes? Med. Princ. Pract., 2015, 24(3), 201-215.
[http://dx.doi.org/10.1159/000375305] [PMID: 25791371]
[48]
Youssef, A.M.; Mohamed, D.A.; Hussein, S.; Abdullah, D.M.; Abdelrahman, S.A. Effects of quercetin and coenzyme Q10 on biochemical, molecular, and morphological parameters of skeletal muscle in trained diabetic rats. Curr. Mol. Pharmacol., 2022, 15(1), 239-251.
[http://dx.doi.org/10.2174/1874467214666210521170339] [PMID: 34061009]
[49]
Barra, N.G.; Henriksbo, B.D.; Anhê, F.F.; Schertzer, J.D. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem. J., 2020, 477(6), 1089-1107.
[http://dx.doi.org/10.1042/BCJ20190472] [PMID: 32202638]
[50]
Villarroya, F. Irisin, turning up the heat. Cell Metab., 2012, 15(3), 277-278.
[http://dx.doi.org/10.1016/j.cmet.2012.02.010] [PMID: 22405065]
[51]
Lally, J.S.V.; Ford, R.J.; Johar, J.; Crane, J.D.; Kemp, B.E.; Steinberg, G.R. Skeletal muscle AMPK is essential for the maintenance of FNDC5 expression. Physiol. Rep., 2015, 3(5), e12343.
[http://dx.doi.org/10.14814/phy2.12343] [PMID: 25948819]
[52]
Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front. Endocrinol. (Lausanne), 2019, 10, 524.
[http://dx.doi.org/10.3389/fendo.2019.00524] [PMID: 31428053]
[53]
Deng, X.; Huang, W.; Peng, J.; Zhu, T.T.; Sun, X.L.; Zhou, X.Y.; Yang, H.; Xiong, J.F.; He, H.Q.; Xu, Y.H.; He, Y.Z. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling. Inflammation, 2018, 41(1), 260-275.
[http://dx.doi.org/10.1007/s10753-017-0685-3] [PMID: 29098483]
[54]
Jin, Y.H.; Li, Z.Y.; Jiang, X.Q.; Wu, F.; Li, Z.T.; Chen, H.; Xi, D.; Zhang, Y.Y.; Chen, Z.Q. Irisin alleviates renal injury caused by sepsis via the NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(11), 6470-6476.
[PMID: 32572945]
[55]
Yue, R.; Zheng, Z.; Luo, Y.; Wang, X.; Lv, M.; Qin, D.; Tan, Q.; Zhang, Y.; Wang, T.; Hu, H. NLRP3-mediated pyroptosis aggravates pressure overload induced cardiac hypertrophy, fibrosis, and dysfunction in mice: Cardioprotective role of irisin. Cell Death Discov., 2021, 7(1), 50.
[http://dx.doi.org/10.1038/s41420-021-00434-y] [PMID: 33723236]
[56]
Arias, L.M.; Ranchal, I.; Romero, G.M.; Crespo, J. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int. J. Mol. Sci., 2014, 15(12), 23163-23178.
[http://dx.doi.org/10.3390/ijms151223163] [PMID: 25514415]
[57]
Xu, Z.; Huo, J.; Ding, X.; Yang, M.; Li, L.; Dai, J.; Hosoe, K.; Kubo, H.; Mori, M.; Higuchi, K.; Sawashita, J. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci. Rep., 2017, 7(1), 8253.
[http://dx.doi.org/10.1038/s41598-017-08899-7] [PMID: 28811612]
[58]
Soleimani, M.; Golab, F.; Alizadeh, A.; Rigi, S.; Samani, Z.N.; Vahabzadeh, G.; Peirovi, T.; Sarbishegi, M.; Katebi, M.; Azedi, F. Evaluation of the neuroprotective effects of electromagnetic fields and coenzyme Q 10 on hippocampal injury in mouse. J. Cell. Physiol., 2019, 234(10), 18720-18730.
[http://dx.doi.org/10.1002/jcp.28512] [PMID: 30932191]
[59]
Peng, J.; Wang, H.; Gong, Z.; Li, X.; He, L.; Shen, Q.; Pan, J.; Peng, Y. Idebenone attenuates cerebral inflammatory injury in ischemia and reperfusion via dampening NLRP3 inflammasome activity. Mol. Immunol., 2020, 123, 74-87.
[http://dx.doi.org/10.1016/j.molimm.2020.04.013] [PMID: 32438202]
[60]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[61]
Milanski, M.; Degasperi, G.; Coope, A.; Morari, J.; Denis, R.; Cintra, D.E.; Tsukumo, D.M.L.; Anhe, G.; Amaral, M.E.; Takahashi, H.K.; Curi, R.; Oliveira, H.C.; Carvalheira, J.B.C.; Bordin, S.; Saad, M.J.; Velloso, L.A. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity. J. Neurosci., 2009, 29(2), 359-370.
[http://dx.doi.org/10.1523/JNEUROSCI.2760-08.2009] [PMID: 19144836]
[62]
Pandey, S.; Agrawal, D.K. Immunobiology of Toll‐like receptors: Emerging trends. Immunol. Cell Biol., 2006, 84(4), 333-341.
[http://dx.doi.org/10.1111/j.1440-1711.2006.01444.x] [PMID: 16834572]
[63]
Yan, A.; Liu, Z.; Song, L.; Wang, X.; Zhang, Y.; Wu, N.; Lin, J.; Liu, Y.; Liu, Z. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and mptp-induced parkinson’s disease mice. Front. Cell. Neurosci., 2019, 12, 529.
[http://dx.doi.org/10.3389/fncel.2018.00529] [PMID: 30687016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy