Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Base-assisted Michael Addition Reactions

Author(s): Rekala Shalini Mamatha Jyothi, Mydhili P. Sripathi and Ponnaboina Thirupathi*

Volume 26, Issue 13, 2022

Published on: 30 September, 2022

Page: [1264 - 1293] Pages: 30

DOI: 10.2174/1385272826666220827095110

Price: $65

conference banner
Abstract

The Michael addition is an important, highly efficient, and atom-economical method for the diastereoselective and enantioselective C-C bond formation. MA used in the synthesis of natural products and drugs is referred to as tandem sequenced reaction. An important tandem sequence of Michael and Aldol additions is the Robinson annulation. MA is a versatile reaction employed for efficient bond formation between electron-poor olefins as Michael acceptors and varied nucleophiles as Michael donors. Apart from being involved in C-C bond formation, MA is also employed in the formation of C-X bond (X=O, N, S, P, etc.), giving rise to oxa-, aza-, thia-, and phospha-Michael addition products. In recent years many articles have been published on MA. The mechanism of MA gives an insight into the reaction initiated by the base. The present review provides comprehensive information on recent advancements in base-assisted Michael addition reactions, including varied organic and inorganic bases, such as 1,8- diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-Diazabicyclo[2.2.2]octane (DABCO), 4-dimethylaminopyridine (DMAP), triethylamine (Et3N), tributylamine (Bu3N), N,N-diisopropylethylamine (DIEPA), diethylamine (NHEt2), guanidine derivatives, and bifunctional thiourea. A variety of inorganic bases, including metal alkoxides, metal acetates, metal hydroxides, metal hydrides, metal carbonates, metal halides, and triphenylphosphine (TPP), can also be successfully used in Michael reactions.

Keywords: Nucleophiles, Michael addition reaction, organic bases, inorganic bases, active methylene compounds, acrylonitriles, α, β- unsaturated esters, chalcones.

Graphical Abstract
[1]
Perlmutter, P. Conjugate addition reactions in organic synthesis; Pergamon Press: Oxford, 1992.
[2]
Tokoroyama, T. Discovery of the Michael reaction. Eur. J. Org. Chem., 2010, 2010(10), 2009-2016.
[http://dx.doi.org/10.1002/ejoc.200901130]
[3]
Paramarta, A.; Webster, D.C. The exploration of Michael-addition reaction chemistry to create high-performance, ambient cure thermoset coatings based on soybean oil. Prog. Org. Coat., 2017, 108, 59-67.
[http://dx.doi.org/10.1016/j.porgcoat.2017.04.004]
[4]
Nising, C.F.; Bräse, S. Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev., 2012, 41(3), 988-999.
[http://dx.doi.org/10.1039/C1CS15167C] [PMID: 21796323]
[5]
Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Org. Biomol. Chem., 2019, 17(15), 3670-3708.
[http://dx.doi.org/10.1039/C8OB03034K] [PMID: 30874264]
[6]
Hui, C.; Pu, F.; Xu, J. Metal-catalyzed asymmetric Michael addition in natural product synthesis. Chemistry, 2017, 23(17), 4023-4036.
[http://dx.doi.org/10.1002/chem.201604110] [PMID: 27992090]
[7]
Tokura, S.; Nishi, N.; Nishimura, S.; Ikeuchi, Y. Studies on chitin X. Cyanoethylation of chiti. Polym. J., 2006, 15(7), 553-556.
[http://dx.doi.org/10.1295/polymj.15.553]
[8]
Morpurgo, M.; Veronese, F.M.; Kachensky, D.; Harris, J.M. Preparation and characterization of poly(ethylene glycol) vinyl sulfone. Bioconjug. Chem., 1996, 7(3), 363-368.
[http://dx.doi.org/10.1021/bc9600224] [PMID: 8816961]
[9]
Zheng, Z.; Perkins, B.L.; Ni, B. Diarylprolinol silyl ether salts as new, efficient, water-soluble, and recyclable organocatalysts for the asymmetric Michael addition on water. J. Am. Chem. Soc., 2010, 132(1), 50-51.
[http://dx.doi.org/10.1021/ja9093583] [PMID: 20000764]
[10]
Ghosh, S.K.; Zheng, Z.; Ni, B. Highly active water-soluble and recyclable organocatalyst for the asymmetric 1,4-conjugate addition of nitroalkanes to α,β-unsaturated aldehydes. Adv. Synth. Catal., 2010, 352(14-15), 2378-2382.
[http://dx.doi.org/10.1002/adsc.201000344]
[11]
Chintala, P.; Ghosh, S.K.; Long, E.; Headley, A.D.; Ni, B. The application of a recyclable organocatalytic system to the asymmetric domino Michael/Henry reaction in aqueous media. Adv. Synth. Catal., 2011, 353(16), 2905-2909.
[http://dx.doi.org/10.1002/adsc.201100395]
[12]
Sukhorukov, A.Y.; Sukhanova, A.A.; Zlotin, S.G. Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72(41), 6191-6281.
[http://dx.doi.org/10.1016/j.tet.2016.07.067]
[13]
Choudary, B.M.; Rajasekhar, C.V.; Krishna, G.G.; Reddy, K.R. Synthesis of chiral benzimidazole‐pyrrolidine derivatives and their application in organocatalytic aldol and Michael addition reactions. Synth. Commun., 2007, 37, 91-98.
[http://dx.doi.org/10.1080/00397910600978218]
[14]
Liu, J.; Yang, Z.; Liu, X.; Wang, Z.; Liu, Y.; Bai, S.; Lin, L.; Feng, X. Organocatalyzed highly stereoselective Michael addition of ketones to alkylidene malonates and nitroolefins using chiral primary-secondary diamine catalysts based on bispidine. Org. Biomol. Chem., 2009, 7(19), 4120-4127.
[http://dx.doi.org/10.1039/b910939k] [PMID: 19763320]
[15]
Gao, W-M.; Yu, J-S.; Zhao, Y-L.; Liu, Y-L.; Zhou, F.; Wu, H-H.; Zhou, J. Highly enantioselective Michael addition of 3-arylthio- and 3-alkylthiooxindoles to nitroolefins catalyzed by a simple cinchona alkaloid derived phosphoramide. Chem. Commun., 2014, 50(96), 15179-15182.
[http://dx.doi.org/10.1039/C4CC06417H] [PMID: 25335923]
[16]
Kamal, A.; Sathish, M.; Srinivasulu, V.; Chetna, J.; Chandra Shekar, K.; Nekkanti, S.; Tangella, Y.; Shankaraiah, N. Asymmetric Michael addition of ketones to nitroolefins: Pyrrolidinyl-oxazole-carboxamides as new efficient organocatalysts. Org. Biomol. Chem., 2014, 12(40), 8008-8018.
[http://dx.doi.org/10.1039/C4OB01223B] [PMID: 25181422]
[17]
Liao, Y-H.; Chen, W-B.; Wu, Z-J.; Du, X-L.; Cun, L-F.; Zhang, X-M.; Yuan, W-C. Organocatalytic asymmetric Michael addition of pyrazolin-5-ones to nitroolefins with bifunctional thiourea: Stereocontrolled construction of contiguous quaternary and tertiary stereocenters. Adv. Synth. Catal., 2010, 352(5), 827-832.
[http://dx.doi.org/10.1002/adsc.200900764]
[18]
Mosse, S.S.; Alexakis, A. Chiral amines as organocatalysts for asymmetric conjugate addition to nitroolefins and vinyl sulfonesviaenamine activation. Chem. Commun. (Camb.), 2007, 43(30), 3123-3135.
[http://dx.doi.org/10.1039/b701216k]
[19]
Tisovský, P.; Peňaška, T.; Mečiarová, M.; Šebesta, R. Enantioselective Michael reaction of acetals with nitroalkenes: An improvement of the oseltamivir synthesis. ACS Sustain. Chem.& Eng., 2015, 3(12), 3429-3434.
[http://dx.doi.org/10.1021/acssuschemeng.5b01172]
[20]
Somanathan, R.; Chavez, D.; Servin, F.A.; Romero, J.A.; Navarrete, A.; Parra-Hake, M.; Aguirre, G.; Anaya, D.P.C.; González, J. Bifunctional organocatalysts in the asymmetric michael additions of carbonylic compounds to nitroalkenes. Curr. Org. Chem., 2012, 16(20), 2440-2461.
[http://dx.doi.org/10.2174/138527212803520128]
[21]
Venkateswarlu, K. Ashes from organic waste as reagents in synthetic chemistry: A review. Environ. Chem. Lett., 2021, 19(5), 3887-3950.
[http://dx.doi.org/10.1007/s10311-021-01253-4]
[22]
Sun, B-F. Total synthesis of natural and pharmaceutical products powered by organocatalytic reactions. Tetrahedron Lett., 2015, 56(17), 2133-2140.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.046]
[23]
Hayama, N.; Kobayashi, Y.; Takemoto, Y. Asymmetric hetero-Michael addition to α,β-unsaturated carboxylic acids using thioureaeboronic acid hybrid catalysts. Tetrahedron, 2021, 89, 32089-32096.
[http://dx.doi.org/10.1016/j.tet.2021.132089]
[24]
Malkar, R.S.; Jadhav, A.L.; Yadav, G.D. Innovative catalysis in Michael addition reactions for C-X bond formation. Mol. Catal., 2020, 485, 110814-110831.
[http://dx.doi.org/10.1016/j.mcat.2020.110814]
[25]
Bugaenko, D.I.; Karchava, A.V.; Yurovskaya, M.A. The versatility of DABCO: Synthetic applications of its basic, nucleophilic, and catalytic properties Part 2. Catalysis of Michael and Biginelli reactions and nucleophilic addition at C=X and C≡X bonds. Chem. Heterocycl. Compd., 2020, 56(2), 145-160.
[http://dx.doi.org/10.1007/s10593-020-02637-0]
[26]
Wadhwa, P.; Kharbanda, A.; Sharma, A. Thia-Michael addition: An emerging strategy in organic synthesis. Asian J. Org. Chem., 2018, 7(4), 634-661.
[http://dx.doi.org/10.1002/ajoc.201700609]
[27]
Wang, Y.; Du, D-M. Recent advances in organocatalytic asymmetric oxa-Michael addition triggered cascade reactions. Org. Chem. Front., 2020, 7(20), 3266-3283.
[http://dx.doi.org/10.1039/D0QO00631A]
[28]
Boyko, Y.D.; Dorokhov, V.S.; Sukhorukov, A.Y.; Ioffe, S.L. Conjugated nitrosoalkenes as Michael acceptors in carbon-carbon bond forming reactions: A review and perspective. Beilstein J. Org. Chem., 2017, 13, 2214-2234.
[http://dx.doi.org/10.3762/bjoc.13.220] [PMID: 29114327]
[29]
Hayashi, M.; Matsubara, R. Recent topics on catalytic asymmetric 1,4-addition. Tetrahedron Lett., 2017, 58(19), 1793-1805.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.044]
[30]
Ghosh, N. DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)–a nucleophillic base. Synlett, 2004, 3, 0574-0575.
[http://dx.doi.org/10.1055/s-2004-815436]
[31]
Chen, D-Y.; Song, S.; Chen, L-Y.; Ren, X.; Li, Y. Organo-catalyzed Michael addition of 2- fluoro-2-arylacetonitriles. Tetrahedron Lett., 2021, 68, 152919-152926.
[http://dx.doi.org/10.1016/j.tetlet.2021.152919]
[32]
Bai, Y-J.; Cheng, M-L.; Hu, X-M.; Bai, Y-J.; Zheng, X-H.; Zhang, S-Y.; Wang, P-A. DBU-catalyzed Michael addition of bulky glycine imine to α,β-unsaturated isoxazoles, and pyrazolamides. Tetrahedron, 2021, 101, 132511.
[http://dx.doi.org/10.1016/j.tet.2021.132511]
[33]
He, Z-Y.; Jang, H-C.; Teng, L-S.; Wei, Z-L.; Liao, W-W. Controllable Lewis base-catalyzed Michael addition of α-aminonitriles to activated alkenes: Facile synthesis of functionalized γ-amino acid esters and γ-lactams. Synthesis, 2021, 53(10), 1833-1841.
[http://dx.doi.org/10.1055/a-1337-4684]
[34]
Bergagnini-Kolev, M.; Howe, M.; Burgess, E.; Wright, P.; Hamburger, S.; Zhong, Z.; Ellis, T.K.; Ellis, T.K. Synthesis of trifluoromethyl substituted nucleophilic glycine equivalents and the investigation of their potential for the preparation of α-amino acids. Tetrahedron, 2021, 2021(77), 131741-131751.
[http://dx.doi.org/10.1016/j.tet.2020.131741]
[35]
Ara, G.; Miran, M.S.; Islam, M.; Mollah, M.Y.A.; Rahman, M.M.; Susan, M.A.B.H. 1,8-diazabicyclo[5.4.0]-undec-7-ene based protic ionic liquids and their binary systems with molecular solvents catalyzed Michael addition reaction. New J. Chem., 2020, 44(32), 13701-13706.
[http://dx.doi.org/10.1039/D0NJ03012K]
[36]
Tehri, P.; Peddinti, R.K. DBU-catalyzed [3 + 2] cycloaddition and Michael addition reactions of 3-benzylidene succinimides with 3-ylidene oxindoles and chalcones. Org. Biomol. Chem., 2019, 17(16), 3964-3970.
[http://dx.doi.org/10.1039/C9OB00385A] [PMID: 30942810]
[37]
Wei, Q.D.; Yao, Y-M.; Chang, S-Q.; Yang, W-D.; Tian, M-Y.; Liu, X-L.; Zhou, Y. DBU- Catalyzed inter-and intramolecular double Michael addition of donor-acceptor chromone-pyrazolone/benzofuranone synthons: Access to spiro-pyrazolone/benzofuranone-hexahydroxanthone hybrids. Synthesis, 2020, 52(01), 85-97.
[http://dx.doi.org/10.1055/s-0037-1610728]
[38]
Buyck, T.; Wang, Q.; Zhu, J. Integrated one-pot synthesis of 1,3-oxazinan-2-ones from isocyanoacetates and phenyl vinyl selenones. Chimia (Aarau), 2015, 69(4), 199-202.
[http://dx.doi.org/10.2533/chimia.2015.199] [PMID: 26668938]
[39]
Zhu, Y-S.; Wang, W-B.; Yuan, B-B.; Li, Y-N.; Wang, Q-L.; Bu, Z-W. A DBU-catalyzed Michael-Pinner-isomerization cascade reaction of 3-hydroxyoxindoles with isatylidene malononitriles: Access to highly functionalized bispirooxindoles containing a fully substituted dihydrofuran motif. Org. Biomol. Chem., 2017, 15(4), 984-990.
[http://dx.doi.org/10.1039/C6OB02254E] [PMID: 28067385]
[40]
He, X.; Xie, M.; Li, R.; Choy, P.Y.; Tang, Q.; Shang, Y.; Kwong, F.Y. organocatalytic approach for assembling flavanones via a cascade 1,4-conjugate addition/oxa-Michael addition between propargylamines with water. Org. Lett., 2020, 22(11), 4306-4310.
[http://dx.doi.org/10.1021/acs.orglett.0c01357] [PMID: 32441102]
[41]
Tang, C.; Qin, J.; Li, X. Atom-economic route to densely functionalized thiophenes via base catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones. Synth. Commun., 2015, 45(16), 1857-1863.
[http://dx.doi.org/10.1080/00397911.2015.1049617]
[42]
Fan, M-J.; Li, G-Q.; Liang, Y-M. DABCO catalyzed reaction of various nucleophiles with activated alkynes leading to the formation of alkenoic acid esters, 1,4-dioxane, morpholine, and piperazinone derivatives. Tetrahedron, 2006, 62(29), 6782-6791.
[http://dx.doi.org/10.1016/j.tet.2006.04.100]
[43]
Jangid, D.K. DABCO as base and an organocatalyst in organic synthesis: A review. Curr. Green Chem., 2019, 07(2), 146-162.
[http://dx.doi.org/10.2174/2213346107666191227101538]
[44]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22(3), 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[45]
Zheng, H.; Han, Y.; Sun, J.; Yan, C-G. Convenient synthesis of the substituted benzene derivatives via DABCO promoted domino reaction of arylidene malononitrile and dialkyl but-2- ynedioate. Chin. Chem. Lett., 2021, 32(5), 1683-1686.
[http://dx.doi.org/10.1016/j.cclet.2020.12.024]
[46]
Aghbash, K.O.; Pesyan, N.N.; Batmani, H. Fe3O4@silica-MCM41@DABCO: A novel magnetically reusable nanostructured catalyst for clean in situ synthesis of substituted 2-aminodihydropyrano-[3,2-b]pyran-3- cyano. Appl. Organomet. Chem., 2019, 33, 11, e5227.
[http://dx.doi.org/10.1002/aoc.5227]
[47]
Mostardeiro, V.B.; Dilelio, M.C.; Kaufman, T.S.; Silveira, C.C. Efficient synthesis of 4-sulfanylcoumarins from 3-bromo-coumarins via a highly selective DABCO-mediated one-pot thia-Michael addition/elimination process. RSC Advances, 2020, 10(1), 482-491.
[http://dx.doi.org/10.1039/C9RA09545D] [PMID: 35492534]
[48]
Imanzadeh, G.; Rezaei, H.; Asgharzadeh, R.; Soltanzadeh, Z. A green and novel method for synthesis of β-sulfonyl esters under solvent-free conditions. J. Sulfur Chem., 2021, 42(4), 359-368.
[http://dx.doi.org/10.1080/17415993.2021.1890738]
[49]
Sakakura, A.; Kawajiri, K.; Ohkubo, T.; Kosugi, Y.; Ishihara, K. Widely useful DMAP-catalyzed esterification under auxiliary base-and solvent-free conditions. J. Am. Chem. Soc., 2007, 129(47), 14775-14779.
[http://dx.doi.org/10.1021/ja075824w] [PMID: 17983230]
[50]
Wurz, R.P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis. Chem. Rev., 2007, 107(12), 5570-5595.
[http://dx.doi.org/10.1021/cr068370e] [PMID: 18072804]
[51]
Hofle, G.; Steglich, W.; Vorbruggen, H. 4-Dialkylaminopyridines as highly active acylation catalysts. Angew. Chem. Int. Ed. Engl., 1978, 17(8), 569-583.
[http://dx.doi.org/10.1002/anie.197805691]
[52]
Shkoor, M.; Bayari, R. DMAP-catalyzed reaction of diethyl 1,3-acetonedicarboxylate with 2- hydroxybenzylideneindenediones: Facile synthesis of fluorenone-fused coumarins. Synlett, 2021, 32(8), 795-799.
[http://dx.doi.org/10.1055/a-1385-2345]
[53]
Md, M.K.; Shareefa, S.; Sahoob, S.C.; Khan, S. Organocatalyzed highly efficient synthesis of densely functionalized pyrrole-fused 1,4-dihydropyridine derivatives. Synth. Commun., 2019, 49(21), 2884-2894.
[54]
Wang, Q-H.; Zhu, Z-X.; Huang, T.; Wu, M-S. Base catalyzed unexpected rearrangement of isatin-derived N,N′-cyclic azomethine imines, and Michael addition to hindered vinylidene bisphosphonates: Access to 3,3-disubstituted oxindole-fused pyrazolidin-3-one derivatives containing bisphosphonates. Tetrahedron, 2019, 75(3), 416-421.
[http://dx.doi.org/10.1016/j.tet.2018.12.014]
[55]
Zhang, Y.; Chen, F.; Yang, Y.; Tang, C-Z.; Tian, F.; Peng, L.; Wang, L-X. An unexpected metal-free DMAP catalyzed Michael addition-elimination domino reaction between 2-naphthols and bromomaleimides for the effective construction of 3-arylmaleimides. Tetrahedron Lett., 2016, 57(11), 1261-1264.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.016]
[56]
Kisszekelyi, P.; Nagy, S.; Tóth, B.; Zeller, B.; Hegedus, L.; Mátravölgyi, B.; Grün, A.; Németh, T.; Huszthy, P.; Kupai, J. Synthesis and recovery of pyridine-and piperidine-based camphorsulfonamide organocatalysts used for Michael addition reaction. Period. Polytech. Chem. Eng., 2018, 62(4), 489-496.
[http://dx.doi.org/10.3311/PPch.12719]
[57]
Iida, H.; Takahashi, K.; Akatsu, Y.; Mizukami, K. Microwave irradiation accelerates 4-dimethylaminopyridine-catalyzed Michael addition of phenols or anilines. Curr. Microw. Chem., 2017, 4(2), 108-114.
[http://dx.doi.org/10.2174/2213335603666161125122438]
[58]
Ni, C.; Yuan, Y.; Zhang, Y.; Chen, J.; Wang, D.; Tong, X. Construction of polycyclic frameworks via a DMAP-catalysed tandem addition-(4 + 2) annulation sequence of δ-acetoxy allenoate. Org. Biomol. Chem., 2017, 15(22), 4807-4810.
[http://dx.doi.org/10.1039/C7OB00688H] [PMID: 28548164]
[59]
Maripally, N.; Reddy, V.R.; Donthi, R.; Mutyala, R.; Chandra, R. DMAP catalyzed addition-cyclization reaction of 2-hydroxyphenyl-para-quinone methide with nitroalkenes: Facile entry into highly substituted chromane derivatives. Tetrahedron Lett., 2020, 61(9), 151554.
[http://dx.doi.org/10.1016/j.tetlet.2019.151554]
[60]
Tessema, E.; Elakkat, V.; Chiu, C-F.; Zheng, J-H.; Chan, K.L.; Shen, C-R.; Zhang, P.; Lu, N. Recoverable phospha-michael additions catalyzed by a 4-N,N-Dimethylaminopyridinium saccharinate salt or a fluorous long-chained pyridine: Two types of reusable base catalysts. Molecules, 2021, 26(4), 1159.
[http://dx.doi.org/10.3390/molecules26041159] [PMID: 33671544]
[61]
Wang, X.; Wu, L.; Yang, P.; Song, X-J.; Ren, H-X.; Peng, L.; Wang, L-X.; Isatin, N.N. ′-cyclic azomethine imine 1,3-dipole and base catalyzed Michael addition with β-nitrostyrene via C3 umpolung of oxindole. Org. Lett., 2017, 19(12), 3051-3054.
[http://dx.doi.org/10.1021/acs.orglett.7b01063] [PMID: 28571319]
[62]
Islam, M.S.; Barakat, A.; Al-Majid, A.M.; Ghabbour, H.A.; Fun, H-K.; Rafiq Siddiqui, M. Stereoselective synthesis of diazaspiro[5.5]undecane derivatives via base promoted [5+1] double Michael addition of N, N-dimethylbarbituric acid to diaryliedene acetones. Arab. J. Chem., 2017, 10(1), 11-19.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.007]
[63]
Barakat, A.; Al-Najjar, H.J.; Al-Majid, A.M.; Soliman, S.M.; Mabkhot, Y.N.; Ghabbour, H.A.; Fun, H-K. Synthesis and molecular characterization of 5,5′-((2,4- dichlorophenyl)methylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione). J. Mol. Struct., 2015, 1084, 207-215.
[http://dx.doi.org/10.1016/j.molstruc.2014.12.030]
[64]
Enders, D.; Kaya, U.; Mahajan, S.; Schobel, J-H.; Valkonen, A.; Rissanen, K. Diastereoselective synthesis of spiro[pyrazolone-4,3′-tetrahydrothio-phenes via a sulfa-Michael/Aldol domino reaction. Synthesis, 2016, 48(23), 4091-4098.
[http://dx.doi.org/10.1055/s-0035-1562473]
[65]
Forghani, A.; Garber, L.; Chen, C.; Tavangarian, F.; Tighe, T.B.; Devireddy, R.; Pojman, J.A.; Hayes, D. Fabrication and characterization of thiol-triacrylate polymer via Michael addition reaction for biomedical applications. Biomed. Mater., 2018, 14(1), 015001.
[http://dx.doi.org/10.1088/1748-605X/aae684] [PMID: 30355851]
[66]
Hasan, M.J.; Johnson, A.E.; Urena-Benavides, E.E. Greener chemical modification of cellulose nanocrystals via oxa-Michael addition with N-Benzylmaleimide. Curr. Res. Green Sustain. Chem., 2021, 4, 100081.
[http://dx.doi.org/10.1016/j.crgsc.2021.100081]
[67]
Rathod, P.B.; Ajish Kumar, K.S.; Athawale, A.A.; Pandey, A.K.; Chattopadhyay, S. Polymer- shell-encapsulated magnetite nanoparticles bearing hexamethylenetetramine for catalysing aza-Michael addition reactions. Eur. J. Org. Chem., 2018, 2018(43), 5980-5987.
[http://dx.doi.org/10.1002/ejoc.201801095]
[68]
Morita, S.; Yoshimura, T.; Matsuo, J-I. Intermolecular domino Michael/aldol reactions of α,β-unsaturated esters, aromatic aldehydes, and various nucleophiles promoted with a catalytic amount of a guanidine base in DMSO. Tetrahedron, 2021, 94, 132329-132339.
[http://dx.doi.org/10.1016/j.tet.2021.132329]
[69]
Nacsa, E.D.; Lambert, T.H. Higher-order cyclopropenimine superbases: Direct neutral brønsted base catalyzed Michael reactions with α-aryl esters. J. Am. Chem. Soc., 2015, 137(32), 10246-10253.
[http://dx.doi.org/10.1021/jacs.5b05033] [PMID: 26131761]
[70]
Roncak, R.; Tvrdonova, M.; Elecko, J.; Gonda, J. Novel carbohydrate-based thioureas as organocatalysts for asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroolefins. Tetrahedron, 2020, 76(30), 131339-131349.
[http://dx.doi.org/10.1016/j.tet.2020.131339]
[71]
Bai, Z.; Zhang, C.; Chen, Y.; Liu, A.; Wang, X.; Yan, C.; Liu, X.; Zhang, X.; Li, Y.; Yuan, Y.; Ge, Z.; Pang, J.; Chai, Y.; Wang, X.; Li, R. A vinylogous Michael reaction of 2-furanones dimers to α, β unsaturated nitroolefins for constructing chiral γ,γ-Disubstituted butenolides. Org. Chem. Front., 2020, 7(19), 2910-2915.
[http://dx.doi.org/10.1039/D0QO00376J]
[72]
Lin, Ye.; Song, Y-X.; Du, D-M. Enantioselective synthesis of CF3-containing 3,2′- Pyrrolidinyl spirooxindoles and dispirooxindoles via Thiourea-catalyzed domino Michael/Mannich [3+2] cycloaddition reactions. Adv. Synth. Catal., 2019, 361(5), 1064-1070.
[http://dx.doi.org/10.1002/adsc.201801608]
[73]
Ma, D.; Ni, D.; Wei, Y. Thiourea-catalyzed asymmetric Michael addition of carbazolones to 2-chloroacrylonitrile: Total synthesis of 5,22-dioxokopsane, kopsinidine C, and demethoxycarbonylkopsin. Angew. Chem., 2018, 130(32), 10364-10368.
[http://dx.doi.org/10.1002/ange.201805905]
[74]
Wang, Z.; Ban, S.; Yang, M.; Li, Q. Switching the enantioselectivities in Michael addition of pyrazolin-5-ones to nitroolefins by benzoylthiourea organocatalysts. ChemistrySelect, 2017, 2(12), 3419-3422.
[http://dx.doi.org/10.1002/slct.201700491]
[75]
Durmaz, M.; Tataroglu, A.; Yilmaz, H.; Sirit, A. Calixarene-derived chiral tertiary amine–thiourea organocatalyzed asymmetric Michael additions of acetyl acetone and dimethyl malonate to nitroolefins. Tetrahedron Asymmetry, 2016, 27(2-3), 148-156.
[http://dx.doi.org/10.1016/j.tetasy.2016.01.004]
[76]
Chen, P.; Bao, X.; Zhang, L-F.; Liu, G-J.; Jiang, Y-J. Jiang, Yi-J. Enantioselective construction of aryl-substituted all-carbon quaternary stereocenters by using tertiary amine-thiourea-catalyzed Michael additions. Eur. J. Org. Chem., 2016, 4(4), 704-715.
[http://dx.doi.org/10.1002/ejoc.201501420]
[77]
Zheng, Y.; Yao, Y.; Ye, L.; Shi, Z.; Li, X.; Zhao, Z.; Li, X. Highly enantioselective Michael addition of malononitrile to α,β-unsaturated pyrazolamides catalyzed by bifunctional thiourea. Tetrahedron, 2016, 72(7), 973-978.
[http://dx.doi.org/10.1016/j.tet.2015.12.067]
[78]
Bai, Z.; Ji, L.; Ge, Z.; Wang, X.; Li, R. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts. Org. Biomol. Chem., 2015, 13(19), 5363-5366.
[http://dx.doi.org/10.1039/C5OB00708A] [PMID: 25877691]
[79]
Lai, Q.; Li, Y.; Gong, Z.; Liu, Q.; Wei, C.; Song, Z. Novel chiral bifunctional L-thiazoline-thiourea derivatives: design and application in enantioselective Michael reactions. Chirality, 2015, 27(12), 979-988.
[http://dx.doi.org/10.1002/chir.22540] [PMID: 26427336]
[80]
Xu, D.; Zhang, X-L.; Feng, K-X.; Xia, A-B.; Zheng, Y-Y.; Li, C.; Du, X-H. Asymmetric synthesis of 2,3-dihydrofurans via one-pot Michael addition/I2-mediated cyclization. Eur. J. Org. Chem., 2018, 2018(23), 2918-2925.
[http://dx.doi.org/10.1002/ejoc.201800575]
[81]
Castán, A.; Badorrey, R.; Gálvez, J.A.; López-Ram-de-Víu, P.; Díaz-de-Villegas, M.D. Michael addition of carbonyl compounds to nitroolefins under the catalysis of new pyrrolidine-based bifunctional organocatalysts. Org. Biomol. Chem., 2018, 16(6), 924-935.
[http://dx.doi.org/10.1039/C7OB02798B] [PMID: 29335699]
[82]
Kaura, A.; Singha, K.N.; Shilpya, E.S.; Rania, P.; Sharma, S.K. Pyrrolidine-carbamate based new and efficient chiral organocatalyst for asymmetric Michael addition of ketones to nitroolefins. Tetrahedron, 2018, 74(42), 6137-6143.
[http://dx.doi.org/10.1016/j.tet.2018.09.002]
[83]
Thiyagarajan, S.; Krishnakumar, V.; Gunanathan, C. KOtBu-catalyzed Michael addition reactions under mild and solvent-free conditions. Chem. Asian J., 2020, 15(4), 518-523.
[http://dx.doi.org/10.1002/asia.201901647] [PMID: 31957937]
[84]
Maharani, S.; Kumar, R.R. Domino four-component synthesis of novel cycloocta[b]pyridines. Tetrahedron Lett., 2015, 56(1), 179-181.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.052]
[85]
Gein, V.L.; Buldakova, E.A.; Dmitriev, M.V. Synthesis of (3-aroyl-2-aryl-4-hydroxy-5- oxo-2,5-dihydro1h-pyrrol-1-yl)acetonitriles and their reaction with hydrazine hydrate. Russ. J. Org. Chem., 2019, 55(7), 951-957.
[http://dx.doi.org/10.1134/S1070428019070054]
[86]
Ashok, D.; Kavitha, R.; Srinivas, G.; Sarasija, M. Microwave assisted synthesis and antimicrobial evaluation of 6-[3-aryl-1-phenyl-4′,5′-dihydro[4,5′-bi-1H-pyrazol]-3′-yl]-2H- chromen-5-ols. J. Serb. Chem. Soc., 2019, 84(3), 237-244.
[http://dx.doi.org/10.2298/JSC171206113A]
[87]
Ashok, D.; Rao, V.H.; Kavitha, R. Microwave-assisted synthesis of 2-(2-(tetrazolo[1,5- a]quinolin-4-yl)-2,3-dihydro-1H-1,5-benzodiazepin-4-yl) substituted phenols and evaluation of their antimicrobial activity. J. Serb. Chem. Soc., 2016, 81(8), 851-858.
[http://dx.doi.org/10.2298/JSC150504041A]
[88]
Ashok, D.; Gandhi, M.D.; Kumar, V.A.; Srinivas, G. Microwave-assisted synthesis and antimicrobial evaluation of novel pyrazolines. Chem. Heterocycl. Compd., 2015, 51(10), 872-882.
[http://dx.doi.org/10.1007/s10593-015-1790-6]
[89]
Ashok, D.; Lakshmi, V.B.; Ravi, S.; Ganesh, A. Microwave-assisted synthesis of some new coumarin–pyrazoline hybrids and their antimicrobial activity. J. Serb. Chem. Soc., 2015, 80(3), 305-313.
[http://dx.doi.org/10.2298/JSC140021101A]
[90]
Mamedov, V.A.; Mustakimova, L.V.; Gerasimov, O.A.; Gubaidullin, A.T. Combination of the Claisen-Schmidt reaction, the Michael addition and the Hantzsch reaction in the synthesis of 2´,6´-bis-aryl-3,4´-bipyridines. Russ. Chem. Bull., 2020, 69(3), 517-524.
[http://dx.doi.org/10.1007/s11172-020-2792-9]
[91]
Vereshchagin, A.N.; Karpenko, K.A.; Elinson, M.N.; Minaeva, A.P.; Goloveshkin, A.S.; Hansford, K.A.; Egorov, M.P. One-pot five-component high diastereoselective synthesis of polysubstituted 2-piperidinones from aromatic aldehydes, nitriles, dialkyl malonates and ammonium acetate. Mol. Divers., 2020, 24(4), 1327-1342.
[http://dx.doi.org/10.1007/s11030-019-09997-6] [PMID: 31646447]
[92]
Vereshchagin, A.N.; Karpenko, K.A.; Elinson, M.N.; Goloveshkin, A.S.; Dorofeeva, E.O.; Egorov, M.P. Highly diastereoselective four-component synthesis of polysubstituted 2-piperidinones with three and four stereogenic centers. Res. Chem. Intermed., 2020, 46(2), 1183-1199.
[http://dx.doi.org/10.1007/s11164-019-04027-4]
[93]
Muthu, M.; Vishnu Priya, R.; Almansour, A.I.; Suresh Kumar, R.; Kumar, R.R. Synthesis of indole-cycloalkyl[b]pyridine hybrids via a four-component six-step tandem process. Beilstein J. Org. Chem., 2018, 14, 2907-2915.
[http://dx.doi.org/10.3762/bjoc.14.269] [PMID: 30546474]
[94]
Kumar, S.V.; Rani, M.A.; Almansour, A.I.; Kumar, R.S.; Athimoolam, S.; Kumar, R.R. A one-pot access to pyridine/benzo fused cyclododecanes via multi-component tandem reactions. Tetrahedron, 2018, 74(35), 4569-4577.
[http://dx.doi.org/10.1016/j.tet.2018.07.020]
[95]
Mayurachayakul, P.; Pluempanupat, W.; Srisuwannaket, C.; Chantarasriwong, O. Four-component synthesis of polyhydroquinolines under catalyst and solvent-free conventional heating conditions: Mechanistic studies. RSC Advances, 2017, 7(89), 56764-56770.
[http://dx.doi.org/10.1039/C7RA13120H]
[96]
Regal, M.K.A.; Shaban, S.S.; El-Metwally, S.A. Synthesis and antimicrobial activity of some new coumarin and dicoumarol derivatives. Russ. J. Bioorganic Chem., 2020, 46(3), 438-447.
[http://dx.doi.org/10.1134/S1068162020030176]
[97]
Jadhav, C.K.; Nipate, A.S.; Chate, A.V.; Patil, A.P.; Gill, C.H. Ionic liquid catalyzed one-pot multi-component synthesis of fused pyridine derivatives: A strategy for green and sustainable chemistry. J. Heterocycl. Chem., 2020, 57(12), 4291-4303.
[http://dx.doi.org/10.1002/jhet.4135]
[98]
Saia, M.; Kurouchi, H. Potassium base-catalyzed Michael additions of allylic alcohols to α,β-unsaturated amides: Scope and mechanistic insights. Adv. Synth. Catal., 2021, 363(14), 3585-3591.
[http://dx.doi.org/10.1002/adsc.202100272]
[99]
Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Parveen, H. Synthesis, characterization, stereochemistry and biological evaluation of novel cyclohexanol derivatives. Asian J. Chem., 2018, 30(5), 1102-1108.
[http://dx.doi.org/10.14233/ajchem.2018.21202]
[100]
Adiba, M.; Peytam, F.; Rahmanian-Jazi, M.; Khanaposhtani, M.M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Imanparast, S.; Faramarzif, M.A.; Mahdavi, M.; Larijani, B. Design, synthesis, in vitro α-glucosidase inhibition, molecular modeling, and kinetic study of novel coumarin fused pyridine derivatives as potent antidiabetic agents. New J. Chem., 2018, 42, 17268-17278.
[http://dx.doi.org/10.1039/C8NJ02495B]
[101]
Asressu, K.H.; Chan, C-K.; Wang, C-C. One-pot synthesis of 1,5-diketones under a transition metal-free condition: Application in the synthesis of 2,4,6-triaryl pyridine derivatives. ACS Omega, 2021, 6(11), 7296-7311.
[http://dx.doi.org/10.1021/acsomega.0c05328] [PMID: 33778244]
[102]
Xing, S.; Ren, J.; Wang, K.; Cui, H.; Xia, T.; Zhang, M.; Wanga, D. Facile, efficient and diastereoselective construction of indane fused pyrrolidin-2-ones via a potassium hydroxide-catalyzed domino reaction. Adv. Synth. Catal., 2016, 358(19), 3093-3099.
[http://dx.doi.org/10.1002/adsc.201600611]
[103]
Li, Z.; He, J.; Chen, X.; Cheng, Y.; Yang, J. Controllable single- or double-oxa-Michael addition of ynones with alcohols: Synthesis of 3-alkoxyprop-2-en-1-ones and 3,3-dialkoxypropan- 1-ones. Tetrahedron, 2018, 74(45), 6612-6619.
[http://dx.doi.org/10.1016/j.tet.2018.09.054]
[104]
Yang, J.; Li, T.; Zhou, H.; Li, N.; Xie, D.; Li, Z. Potassium hydroxide catalyzed intermolecular aza-Michael addition of 3-cyanoindole to aromatic enones. Synlett, 2017, 28(10), 1227-1231.
[http://dx.doi.org/10.1055/s-0036-1588152]
[105]
Li, Z.; Xie, D.; He, J.; Du, Y.; Yang, J. Synthesis of 7-arylethyl-5-arylpyrazolo[1,5- a]pyrimidines through an aza-Michael addition/nucleophilic addition/1,3-hydrogen transfer cascade. J. Chem. Sci., 2017, 129(10), 1579-1586.
[http://dx.doi.org/10.1007/s12039-017-1365-4]
[106]
Medvedev, J.J.; Meleshina, M.V.; Panikorovskii, T.L.; Schneider, C.; Nikolaev, V.A. Domino reactions of diazodicarbonyl compounds with α,β-unsaturated δ-amino esters: A convenient way towards 2-oxopiperidines, dihydropyridinones and isoquinolinediones. Org. Biomol. Chem., 2015, 13(34), 9107-9117.
[http://dx.doi.org/10.1039/C5OB01197C] [PMID: 26222918]
[107]
Duan, W-D.; Zhang, Y-F.; Hu, Y. NaH promoted one-pot tandem reactions of 3-(1-alkynyl) chromones to form 2-nitrogen-substituted xanthones. ACS Omega, 2020, 5(22), 13454-13461.
[http://dx.doi.org/10.1021/acsomega.0c01930] [PMID: 32548534]
[108]
Guan, Z-R.; Wan, Q.; Ding, M-W. Diastereoselective synthesis of multisubstituted isoindolines via Sequential Ugi and aza-Michael addition reaction. Tetrahedron, 2019, 75(33), 4626-4631.
[http://dx.doi.org/10.1016/j.tet.2019.07.006]
[109]
Stahl, J.; Yatham, V.R.; Crespi, S.; König, B. Cesium carbonate catalyzed oxa-Michael addition of oximes to acrylonitrile. ChemistrySelect, 2021, 6(17), 4107-4111.
[http://dx.doi.org/10.1002/slct.202100924]
[110]
Elinson, M.N.; Vereshchagin, A.N.; Anisina, Y.E.; Krymov, S.K.; Fakhrutdinov, A.N.; Egorov, M.P.; Cirrincione, G. Potassium fluoride catalysed multicomponent approach to medicinally privileged 5-[3-hydroxy-6-(hydroxymethyl)-4H-pyran- 2-yl] substituted chromeno[2,3-b]pyridine scaffold. ARKIVOC, 2019, 2(2), 38-49.
[http://dx.doi.org/10.24820/ark.5550190.p011.002]
[111]
Liu, R.; Liu, J.; Cao, J.; Li, R.; Zhou, R.; Qiao, Y.; Gao, W-C. Chemo-and diastereoselective synthesis of pyrrolidines from aroylformates and δ-tosylamino enones via P(NMe2)3-mediated reductive amination/base catalyzed Michael addition cascade. Org. Lett., 2020, 22(17), 6922-6926.
[http://dx.doi.org/10.1021/acs.orglett.0c02453] [PMID: 32808529]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy