Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Research Progress of Plant Active Ingredients in Pharmaceutical Cocrystal

Author(s): Zimeng Wang, Hongzhou Shang, Linghuan Gao and Ning Qiao*

Volume 20, Issue 10, 2023

Published on: 23 September, 2022

Page: [1405 - 1424] Pages: 20

DOI: 10.2174/1567201819666220820115950

Price: $65

Abstract

The disadvantages of active ingredients extracted from medicinal plants due to poor solubility in the body and low bioavailability limit their clinical application. Pharmaceutical cocrystal as a new type of drug in solid form has attracted the attention of researchers. This article reviews the effects of cocrystal in various poorly soluble herbal active ingredients of medicinal plants on their physicochemical properties and biological properties and provides references for the application of pharmaceutical cocrystal in poorly soluble active compounds of medicinal plants.

Keywords: Herbal ingredients, pharmaceutical cocrystals, properties solubility, bioavailability, medicinal, API’s.

Next »
Graphical Abstract
[1]
Lu, Y.; Yang, J.; Wang, X.; Ma, Z.; Li, S.; Liu, Z.; Fan, X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed. Pharmacother., 2020, 127, 110136.
[http://dx.doi.org/10.1016/j.biopha.2020.110136] [PMID: 32335299]
[2]
Zhou, H.; Ma, C.; Wang, C.; Gong, L.; Zhang, Y.; Li, Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur. J. Pharmacol., 2021, 898, 173976.
[http://dx.doi.org/10.1016/j.ejphar.2021.173976] [PMID: 33639194]
[3]
An, X.; Zhang, Y.; Duan, L.; Jin, D.; Zhao, S.; Zhou, R.; Duan, Y.; Lian, F.; Tong, X. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed. Pharmacother., 2021, 137, 111267.
[http://dx.doi.org/10.1016/j.biopha.2021.111267] [PMID: 33508618]
[4]
Zhao, Z.; Li, Y.; Zhou, L.; Zhou, X.; Xie, B.; Zhang, W.; Sun, J. Prevention and treatment of COVID-19 using traditional Chinese medicine: A review. Phytomedicine, 2021, 85, 153308.
[http://dx.doi.org/10.1016/j.phymed.2020.153308] [PMID: 32843234]
[5]
Wang, Z.; Yang, L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. J. Ethnopharmacol., 2021, 270, 113869.
[http://dx.doi.org/10.1016/j.jep.2021.113869] [PMID: 33485973]
[6]
Song, L.; Zhang, J.; Lai, R.; Li, Q.; Ju, J.; Xu, H. Chinese herbal medicines and active metabolites: Potential antioxidant treatments for atherosclerosis. Front. Pharmacol., 2021, 12, 675999.
[http://dx.doi.org/10.3389/fphar.2021.675999] [PMID: 34054550]
[7]
Wang, Z.; Li, X.L.; Hong, K.F.; Zhao, T.T.; Dong, R.X.; Wang, W.M.; Li, Y.T.; Zhang, G.L.; Lin, J.; Gui, D.K.; Xu, Y.H. Total flavonoids of Astragalus ameliorated bile acid metabolism dysfunction in diabetes mellitus. Evid. Based Complement. Alternat. Med., 2021, 2021, 6675567.
[http://dx.doi.org/10.1155/2021/6675567] [PMID: 33953787]
[8]
Liu, F.; Sun, L.; You, G.; Liu, H.; Ren, X.; Wang, M. Effects of Astragalus polysaccharide on the solubility and stability of 15 flavonoids. Int. J. Biol. Macromol., 2020, 143, 873-880.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.148] [PMID: 31712148]
[9]
Fuster, M.G.; Carissimi, G.; Montalbán, M.G.; Víllora, G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials (Basel), 2020, 10(4), 718.
[http://dx.doi.org/10.3390/nano10040718] [PMID: 32290154]
[10]
Sanati, P.; Chua, L.S.; Nasiri, R.; Hashemi, S.S. Nanoencapsulation of andrographolide rich extract for the inhibition of cervical and neuroblastoma cancer cells. J. Biomed. Nanotechnol., 2020, 16(9), 1370-1380.
[http://dx.doi.org/10.1166/jbn.2020.2973] [PMID: 33419491]
[11]
Wang, L.; Yin, Q.; Liu, C.; Tang, Y.; Sun, C.; Zhuang, J. Nanoformulations of ursolic acid: A modern natural anticancer molecule. Front. Pharmacol., 2021, 12, 706121.
[http://dx.doi.org/10.3389/fphar.2021.706121] [PMID: 34295253]
[12]
Hettiarachchi, S.S.; Dunuweera, S.P.; Dunuweera, A.N.; Rajapakse, R.M.G. Synthesis of curcumin nanoparticles from raw turmeric rhizome. ACS Omega, 2021, 6(12), 8246-8252.
[http://dx.doi.org/10.1021/acsomega.0c06314] [PMID: 33817483]
[13]
Li, Y.X.; Zhang, Z.Y.; Li, B.D.; Zhao, C.X.; Li, Z.Y.; Zhang, H.M. Research progress of drug solubilization technology. Shandong Chem. Ind., 2021, 50(10), 70-71.
[http://dx.doi.org/10.3969/j.issn.1008-021X.2021.10.021]
[14]
Zhu, J.X.; Tang, D.; Feng, L.; Zheng, Z.G.; Wang, R.S.; Wu, A.G.; Duan, T.T.; He, B.; Zhu, Q. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Dev. Ind. Pharm., 2013, 39(3), 499-506.
[http://dx.doi.org/10.3109/03639045.2012.683875] [PMID: 22563917]
[15]
Decui, L.; Garbinato, C.L.L.; Schneider, S.E.; Mazon, S.C.; Almeida, E.R.; Aguiar, G.P.S.; Müller, L.G.; Oliveira, J.V.; Siebel, A.M. Micronized resveratrol shows promising effects in a seizure model in zebrafish and signalizes an important advance in epilepsy treatment. Epilepsy Res., 2020, 159, 106243.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.106243] [PMID: 31786493]
[16]
Yan, T.X.; Tao, Y.T.; Wang, X.X.; Lv, C.L.; Miao, G.Z.; Wang, S.S.; Wang, D.Q.; Wang, Z.X. Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. J. Supercrit. Fluids, 2021, 175, 105290.
[http://dx.doi.org/10.1016/j.supflu.2021.105290]
[17]
Zhang, Y.; Wang, S.; Dai, M.; Nai, J.; Zhu, L.; Sheng, H. Solubility and bioavailability enhancement of oridonin: A review. Molecules, 2020, 25(2), 332.
[http://dx.doi.org/10.3390/molecules25020332] [PMID: 31947574]
[18]
Kumar, S.; Nanda, A. Pharmaceutical cocrystals: An overview. Indian J. Pharm. Sci., 2017, 79, 858-871.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000302]
[19]
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm., 2011, 419(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037] [PMID: 21827842]
[20]
Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des., 2018, 18(10), 6370-6387.
[http://dx.doi.org/10.1021/acs.cgd.8b00933]
[21]
Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev., 2017, 117, 178-195.
[http://dx.doi.org/10.1016/j.addr.2017.07.008] [PMID: 28712924]
[22]
Zhang, Y.T.; Gao, X.J.; Fang, W.; Liu, B.; Jin, S.W.; Wang, D.Q.; Xu, W.Q. Crystal structure of five solid forms from isonicotinamide and carboxylic acids assembled by classical hydrogen bonds and other noncovalent interactions. J. Mol. Struct., 2021, 1233, 130048.
[http://dx.doi.org/10.1016/j.molstruc.2021.130048]
[23]
Zhang, Y.T.; Zhang, Y.Q.; Ye, W.; Li, Z.H.; Jin, S.W.; Guo, M.; Bai, L.Q. Eleven adducts constructed from 4-methylbenzo[d]] thiazol-2-amine and organic acids via coupling of classical H-bonds and noncovalent interactions. J. Mol. Struct., 2021, 1241, 130614.
[http://dx.doi.org/10.1016/j.molstruc.2021.130614]
[24]
Alexandru, T.; Maria, M.O.; Liviu, Z.; Maria, D.; Irina, K.; Gheorghe, B. New solid forms of the diuretic compound 4-chloro salicylic acid-5-sulfonamide. J. Mol. Struct., 2021, 1241, 130682.
[http://dx.doi.org/10.1016/j.molstruc.2021.130682]
[25]
Cui, W.; He, Z.; Zhang, Y.; Fan, Q.; Feng, N. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech, 2019, 20(3), 115.
[http://dx.doi.org/10.1208/s12249-019-1324-0] [PMID: 30771018]
[26]
Pawar, N.; Saha, A.; Nandan, N.; Parambil, J.V. Solution cocrystallization: A scalable approach for cocrystal production. Crystals (Basel), 2021, 11(3), 303.
[http://dx.doi.org/10.3390/cryst11030303]
[27]
Kumari, N.; Bhattacharya, B.; Roy, P.; Michalchuk, A.A.L.; Emmerling, F.; Ghosh, A. Enhancing the pharmaceutical properties of pirfenidone by mechanochemical cocrystallization. Cryst. Growth Des., 2019, 19(11), 6482-6492.
[http://dx.doi.org/10.1021/acs.cgd.9b00932]
[28]
Panzade, P.; Shendarkar, G. Design and preparation of zaltoprofen-nicotinamide pharmaceutical cocrystals via liquid assisted grinding method. Indian J. Pharm. Educ. Res., 2019, 53(4), S563-S570.
[http://dx.doi.org/10.5530/ijper.53.4s.151]
[29]
Panzade, P.S.; Shendarkar, G.R.; Kulkarni, D.A. Hot melt extrusion: An emerging green technique for the synthesis of high-quality pharmaceutical cocrystals. J. Pharm. Innov., 2020, 1-11.
[http://dx.doi.org/10.1007/s12247-020-09512-7]
[30]
Gajda, M.; Nartowski, K.P.; Pluta, J.; Karolewicz, B. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: A case of theophylline-nicotinamide cocrystal. Int. J. Pharm., 2019, 569, 118579.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118579] [PMID: 31362095]
[31]
Urano, M.; Kitahara, M.; Kishi, K.; Goto, E.; Tagami, T.; Fukami, T.; Ozeki, T. Physical characteristics of cilostazol-hydroxybenzoic acid cocrystals prepared using a spray drying method. Crystals (Basel), 2020, 10(4), 313.
[http://dx.doi.org/10.3390/cryst10040313]
[32]
Biscaia, I.F.B.; Gomes, S.N.; Bernardi, L.S.; Oliveira, P.R. Obtaining cocrystals by reaction crystallization method: Pharmaceutical applications. Pharmaceutics, 2021, 13(6), 898.
[http://dx.doi.org/10.3390/pharmaceutics13060898] [PMID: 34204318]
[33]
Kumari, N.; Ghosh, A. Cocrystallization: Cutting edge tool for physicochemical modulation of active pharmaceutical ingredients. Curr. Pharm. Des., 2020, 26(38), 4858-4882.
[http://dx.doi.org/10.2174/1381612826666200720114638] [PMID: 32691702]
[34]
Panzade, P.S.; Shendarkar, G.R. Pharmaceutical cocrystal: A game changing approach for the administration of old drugs in new crystalline form. Drug Dev. Ind. Pharm., 2020, 46(10), 1559-1568.
[http://dx.doi.org/10.1080/03639045.2020.1810270] [PMID: 32799687]
[35]
Shaikh, R.; Singh, R.; Walker, G.M.; Croker, D.M. Pharmaceutical cocrystal drug products: An outlook on product development. Trends Pharmacol. Sci., 2018, 39(12), 1033-1048.
[http://dx.doi.org/10.1016/j.tips.2018.10.006] [PMID: 30376967]
[36]
Emami, S.; Siahi-Shadbad, M.; Adibkia, K.; Barzegar-Jalali, M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts, 2018, 8(4), 305-320.
[http://dx.doi.org/10.15171/bi.2018.33] [PMID: 30397585]
[37]
Bolus, L.; Wang, K.; Pask, C.; Lai, X.; Li, M. Cocrystallisation of Daidzein with pyridine-derived molecules: Screening, structure determination and characterisation. J. Mol. Struct., 2020, 1222, 128893.
[http://dx.doi.org/10.1016/j.molstruc.2020.128893]
[38]
Barbas, R.; Bofill, L.; Sande, D.D.; Font-Bardia, M.; Prohens, R. Crystal engineering of nutraceutical phytosterols: New cocrystal solid solutions. CrystEngComm, 2020, 22(25), 4210-4214.
[http://dx.doi.org/10.1039/D0CE00704H]
[39]
Selivanova, I.A.; Terekhov, R.P. Crystal engineering as a scientific basis for modification of physicochemical properties of bioflavonoids. Russ. Chem. Bull., 2019, 68(12), 2155-2162.
[http://dx.doi.org/10.1007/s11172-019-2684-z]
[40]
Xu, D.; Zhang, G.Q.; Zhang, T.T.; Jin, B.; Ma, C. Pharmacokinetic comparisons of naringenin and naringenin-nicotinamide cocrystal in rats by LC-MS/MS. J. Anal. Methods Chem., 2020, 2020, 8364218.
[http://dx.doi.org/10.1155/2020/8364218] [PMID: 32322425]
[41]
Yin, H.M.; Wu, N.; Zhou, B.J.; Hong, M.H.; Zhu, B.; Qi, M.H.; Ren, G.B. Slow-release drug-drug cocrystals of oxaliplatin with flavonoids: Delaying hydrolysis and reducing toxicity. Cryst. Growth Des., 2021, 21(1), 75-85.
[http://dx.doi.org/10.1021/acs.cgd.0c00622]
[42]
Kumar, A.; Nanda, A. In silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals. J. Drug Deliv. Sci. Technol., 2021, 63, 102527.
[http://dx.doi.org/10.1016/j.jddst.2021.102527]
[43]
Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B, 2021, 11(8), 2537-2564.
[http://dx.doi.org/10.1016/j.apsb.2021.03.030] [PMID: 34522597]
[44]
Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M. J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discov. Today, 2019, 24(3), 796-804.
[http://dx.doi.org/10.1016/j.drudis.2018.11.023] [PMID: 30521935]
[45]
Guan, D.; Xuan, B.; Wang, C.; Long, R.; Jiang, Y.; Mao, L.; Kang, J.; Wang, Z.; Chow, S.F.; Zhou, Q. Improving the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients derived from traditional Chinese medicine through cocrystal engineering. Pharmaceutics, 2021, 13(12), 2160.
[http://dx.doi.org/10.3390/pharmaceutics13122160] [PMID: 34959440]
[46]
Wong, S.N.; Chen, Y.C.S.; Xuan, B.; Sun, C.C.; Chow, S.F. Cocrystal engineering of pharmaceutical solids: Therapeutic potential and challenges. CrystEngComm, 2021, 23, 7005-7038.
[http://dx.doi.org/10.1039/D1CE00825K]
[47]
Kumar Bandaru, R.; Rout, S.R.; Kenguva, G.; Gorain, B.; Alhakamy, N.A.; Kesharwani, P.; Dandela, R. Recent advances in pharmaceutical cocrystals: From bench to market. Front. Pharmacol., 2021, 12, 780582.
[http://dx.doi.org/10.3389/fphar.2021.780582] [PMID: 34858194]
[48]
Bayat, P.; Farshchi, M.; Yousefian, M.; Mahmoudi, M.; Yazdian-Robati, R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in Multiple Sclerosis (MS) therapy: A systematic review of preclinical evidence. Int. Immunopharmacol., 2021, 95, 107562.
[http://dx.doi.org/10.1016/j.intimp.2021.107562] [PMID: 33770729]
[49]
Wu, S.; Pang, Y.; He, Y.; Zhang, X.; Peng, L.; Guo, J.; Zeng, J. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed. Pharmacother., 2021, 140, 111741.
[http://dx.doi.org/10.1016/j.biopha.2021.111741] [PMID: 34087696]
[50]
Xia, Y.; Wei, Y.; Chen, H.; Qian, S.; Zhang, J.; Gao, Y. Competitive cocrystallization and its application in the separation of flavonoids. IUCrJ, 2021, 8(Pt 2), 195-207.
[http://dx.doi.org/10.1107/S2052252520015997] [PMID: 33708397]
[51]
Zhu, B.Q.; Zhang, Q.; Wang, J.R.; Mei, X.F. Cocrystals of baicalein with higher solubility and enhanced bioavailability. Cryst. Growth Des., 2017, 17(4), 1893-1901.
[http://dx.doi.org/10.1021/acs.cgd.6b01863]
[52]
Liu, L.X.; Su, X.; Zhang, Y.N.; Yin, H.M.; Zhang, Q.; Feng, Y.R.; Guo, Y.X.; Zou, D.Y.; Liu, Y.L. A cocrystal of baicalein and 4,4′-bipyridine with zipper-type architecture. J. Chem. Crystallogr., 2021, 51(3), 363-371.
[http://dx.doi.org/10.1007/s10870-020-00853-2]
[53]
Liu, F.; Wang, L.Y.; Yu, M.C.; Li, Y.T.; Wu, Z.Y.; Yan, C.W. A new cocrystal of isoniazid-quercetin with hepatoprotective effect: The design, structure, and in vitro/in vivo performance evaluation. Eur. J. Pharm. Sci., 2020, 144, 105216.
[http://dx.doi.org/10.1016/j.ejps.2020.105216] [PMID: 31945451]
[54]
Hong, C.; Xie, Y.; Yao, Y.; Li, G.; Yuan, X.; Shen, H. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: Myricetin cocrystals and a ternary phase diagram. Pharm. Res., 2015, 32(1), 47-60.
[http://dx.doi.org/10.1007/s11095-014-1443-y] [PMID: 24939640]
[55]
Jiang, C.; Zhang, J.; Xie, H.; Guan, H.; Li, R.; Chen, C.; Dong, H.; Zhou, Y.; Zhang, W. Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed. Pharmacother., 2022, 145, 112408.
[http://dx.doi.org/10.1016/j.biopha.2021.112408] [PMID: 34801855]
[56]
Liu, L.L.; Wang, C.G.; Dun, J.N.; Chow, A.H.L.; Sun, C.C.Q. Lack of dependence of mechanical properties of baicalein cocrystals on those of the constituent components. CrystEngComm, 2018, 20, 5486-5489.
[http://dx.doi.org/10.1039/C8CE00787J]
[57]
Zou, H.; Ye, H.; Kamaraj, R.; Zhang, T.; Zhang, J.; Pavek, P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine, 2021, 92, 153736.
[http://dx.doi.org/10.1016/j.phymed.2021.153736] [PMID: 34560520]
[58]
Zhang, L.; Kong, D.; Wang, H.; Jiao, L.; Zhao, X.; Song, J.; Yang, D.; Yang, H.; Yang, S.; Du, G.; Lu, Y. Cocrystal of apixaban-quercetin: Improving solubility and bioavailability of drug combination of two poorly soluble drugs. Molecules, 2021, 26(9), 2677.
[http://dx.doi.org/10.3390/molecules26092677] [PMID: 34063645]
[59]
Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother., 2021, 134, 111017.
[http://dx.doi.org/10.1016/j.biopha.2020.111017] [PMID: 33338751]
[60]
Liu, M.; Hong, C.; Yao, Y.; Shen, H.; Ji, G.; Li, G.; Xie, Y. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur. J. Pharm. Biopharm., 2016, 107, 151-159.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.008] [PMID: 27395394]
[61]
Ren, S.; Liu, M.; Hong, C.; Li, G.; Sun, J.; Wang, J.; Zhang, L.; Xie, Y. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharm. Sin. B, 2019, 9(1), 59-73.
[http://dx.doi.org/10.1016/j.apsb.2018.09.008] [PMID: 30766778]
[62]
Kushwaha, V.S.; Gupta, S.; Husain, N.; Khan, H.; Negi, M.P.; Jamal, N.; Ghatak, A. Gefitinib, Methotrexate and Methotrexate plus 5-Fluorouracil as palliative treatment in recurrent head and neck squamous cell carcinoma. Cancer Biol. Ther., 2015, 16(2), 346-351.
[http://dx.doi.org/10.4161/15384047.2014.961881] [PMID: 25756517]
[63]
Xu, H.; Yang, T.; Liu, X.; Tian, Y.; Chen, X.; Yuan, R.; Su, S.; Lin, X.; Du, G. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci., 2016, 144, 138-147.
[http://dx.doi.org/10.1016/j.lfs.2015.12.002] [PMID: 26656468]
[64]
Lv, W.T.; Liu, X.X.; Dai, X.L.; Long, X.T.; Chen, J.M.A. 5-fluorouracil-kaempferol drug-drug cocrystal: A ternary phase diagram, characterization and property evaluation. CrystEngComm, 2020, 22(46), 8127-8135.
[http://dx.doi.org/10.1039/D0CE01289K]
[65]
Zhang, Y.N.; Yin, H.M.; Zhang, Y.; Zhang, D.J.; Su, X.; Kuang, H.X. Cocrystals of kaempferol, quercetin and myricetin with 4,4′-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties. J. Mol. Struct., 2017, 1130, 199-207.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.034]
[66]
Su, X.; Zhang, Y.N.; Yin, H.M.; Liu, L.X.; Zhang, Y.; Wu, L.L.; Zhang, Q.; Wang, C.X.; Zhang, L.; Zhang, Y.J.; Zhang, Y.X. Preparation of a 1:1.5 cocrystal of kaempferol with 4,4′-bipyridine based on analyzing intermolecular interaction of building units. J. Mol. Struct., 2019, 1177, 107-116.
[http://dx.doi.org/10.1016/j.molstruc.2018.09.050]
[67]
Ma, X.Q.; Zhuang, C.; Wang, B.C.; Huang, Y.F.; Chen, Q.; Lin, N. Cocrystal of apigenin with higher solubility, enhanced oral bioavailability, and anti-inflammatory effect. Cryst. Growth Des., 2019, 19(10), 5531-5537.
[http://dx.doi.org/10.1021/acs.cgd.9b00249]
[68]
Huang, S.; Xue, Q.; Xu, J.; Ruan, S.; Cai, T. Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. J. Pharm. Sci., 2019, 108(9), 2982-2993.
[http://dx.doi.org/10.1016/j.xphs.2019.04.017] [PMID: 31029571]
[69]
Liu, P.; Li, J.; Liu, M.; Zhang, M.; Xue, Y.; Zhang, Y.; Han, X.; Jing, X.; Chu, L. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed. Pharmacother., 2021, 139, 111552.
[http://dx.doi.org/10.1016/j.biopha.2021.111552] [PMID: 33839495]
[70]
Teng, J.; Li, J.; Zhao, Y.L.; Wang, M.F. Hesperetin, a dietary flavonoid, inhibits AGEs-induced oxidative stress and inflammation in RAW264.7 cells. J. Funct. Foods, 2021, 81, 104480.
[http://dx.doi.org/10.1016/j.jff.2021.104480]
[71]
Chadha, K.; Karan, M.; Bhalla, Y.; Chadha, R.; Khullar, S.; Mandal, S.; Vasisht, K. Cocrystals of hesperetin: Structural, pharmacokinetic, and pharmacodynarnic evaluation. Cryst. Growth Des., 2017, 17(5), 2386-2405.
[http://dx.doi.org/10.1021/acs.cgd.6b01769]
[72]
Wang, J.; Dai, X.L.; Lu, T.B.; Chen, J.M. Temozolomide-hesperetin drug-drug cocrystal with optimized performance in stability, dissolution, and tabletability. Cryst. Growth Des., 2021, 21(2), 838-846.
[http://dx.doi.org/10.1021/acs.cgd.0c01153]
[73]
Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901.
[http://dx.doi.org/10.3390/molecules21070901] [PMID: 27409600]
[74]
Jantan, I.; Haque, M.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.A. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J. Nutr. Biochem., 2021, 93, 108634.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108634] [PMID: 33794330]
[75]
Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Kumar Patra, J.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; Battino, M.; Tundis, R.; Campos, M.G.; Farzaei, M.H.; Xiao, J. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res., 2020, 151, 104584.
[http://dx.doi.org/10.1016/j.phrs.2019.104584] [PMID: 31809853]
[76]
Rosa, J.; Machado, T.C.; da Silva, A.K.; Kuminek, G.; Bortolluzzi, A.J.; Caon, T.; Cardoso, S.G. Isoniazid-resveratrol cocrystal: A novel alternative for topical treatment of cutaneous tuberculosis. Cryst. Growth Des., 2019, 19(9), 5029-5036.
[http://dx.doi.org/10.1021/acs.cgd.9b00313]
[77]
Liu, W.; Ma, R.; Liang, F.; Duan, C.; Zhang, G.; Chen, Y.; Hao, C. New cocrystals of antipsychotic drug aripiprazole: Decreasing the dissolution through cocrystallization. Molecules, 2021, 26(9), 2414.
[http://dx.doi.org/10.3390/molecules26092414] [PMID: 33919175]
[78]
Pantwalawalkar, J.; More, H.; Bhange, D.; Patil, U.; Jadhav, N. Novel curcumin ascorbic acid cocrystal for improved solubility. J. Drug Deliv. Sci. Technol., 2021, 61, 102233.
[http://dx.doi.org/10.1016/j.jddst.2020.102233]
[79]
Dal Magro, C.; dos Santos, A.E.; Ribas, M.M.; Aguiar, G.P.S.; Volfe, C.R.B.; Lopes, M.L.L.C.; Siebel, A.M.; Müller, L.G.; Bortoluzzi, A.J.; Lanza, M.; Oliveira, J.V. Production of curcumin-resveratrol cocrystal using cocrystallization with supercritical solvent. J. Supercrit. Fluids, 2021, 171, 105190.
[http://dx.doi.org/10.1016/j.supflu.2021.105190]
[80]
Teng, W.L.; Huang, P.H.; Wang, H.C.; Tseng, C.H.; Yen, F.L. Pterostilbene attenuates particulate matter-induced oxidative stress, inflammation and aging in keratinocytes. Antioxidants, 2021, 10(10), 1552.
[http://dx.doi.org/10.3390/antiox10101552] [PMID: 34679686]
[81]
Liu, Y.; You, Y.; Lu, J.; Chen, X.; Yang, Z. Recent advances in synthesis, bioactivity, and pharmacokinetics of pterostilbene, an important analog of resveratrol. Molecules, 2020, 25(21), 5166.
[http://dx.doi.org/10.3390/molecules25215166] [PMID: 33171952]
[82]
Bethune, S.J.; Schultheiss, N.; Henck, J.O. Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Cryst. Growth Des., 2011, 11, 2817-2823.
[http://dx.doi.org/10.1021/cg1016092]
[83]
Bofill, L.; Barbas, R.; de Sande, D.; Font-Bardia, M.; Ràfols, C.; Albertí, J.; Prohens, R.A. Novel, extremely bioavailable cocrystal of pterostilbene. Cryst. Growth Des., 2021, 21(4), 2315-2323.
[http://dx.doi.org/10.1021/acs.cgd.0c01716]
[84]
Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 2021, 26(11), 3374.
[http://dx.doi.org/10.3390/molecules26113374] [PMID: 34204857]
[85]
Malhotra, B.; Kulkarni, G.T.; Dhiman, N.; Joshi, D.D.; Chander, S.; Kharkwal, A.; Sharma, A.K.; Kharkwal, H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J. Herb. Med., 2021, 27, 100433.
[http://dx.doi.org/10.1016/j.hermed.2021.100433]
[86]
Yang, D.; Cao, J.; Jiao, L.; Yang, S.; Zhang, L.; Lu, Y.; Du, G. Solubility and stability advantages of a new cocrystal of berberine chloride with fumaric acid. ACS Omega, 2020, 5(14), 8283-8292.
[http://dx.doi.org/10.1021/acsomega.0c00692] [PMID: 32309739]
[87]
Sa, R.J.; Zhang, Y.J.; Deng, Y.P.; Huang, Y.; Zhang, M.; Lou, B.Y. Novel salt cocrystal of chrysin with berberine: Preparation, characterization, and oral bioavailability. Cryst. Growth Des., 2018, 18(8), 4724-4730.
[http://dx.doi.org/10.1021/acs.cgd.8b00696]
[88]
Zhao, X.; Li, Q.; Wang, C.; Hu, S.; He, X.; Sun, C.C.Q. Simultaneous taste-masking and oral bioavailability enhancement of Ligustrazine by forming sweet salts. Int. J. Pharm., 2020, 577, 119089.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119089] [PMID: 32001292]
[89]
Li, X.J.; Liu, X.N.; Song, J.M.; Wang, C.G.; Li, J.H.; Liu, L.C.; He, X.; Zhao, X.H.; Sun, C.Q.C. Drug-drug cocrystallization simultaneously improves pharmaceutical properties of genistein and ligustrazine. Cryst. Growth Des., 2021, 21(6), 3461-3468.
[http://dx.doi.org/10.1021/acs.cgd.1c00229]
[90]
Zhao, T.; Fu, Y.; Sun, H.; Liu, X. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB Life, 2018, 70(1), 60-70.
[http://dx.doi.org/10.1002/iub.1704] [PMID: 29247598]
[91]
Ren, S.; Jiao, L.; Yang, S.; Zhang, L.; Song, J.; Yu, H.; Wang, J.; Lv, T.; Sun, L.; Lu, Y.; Du, G. A novel co-crystal of bexarotene and ligustrazine improves pharmacokinetics and tissue distribution of bexarotene in SD rats. Pharmaceutics, 2020, 12(10), 906.
[http://dx.doi.org/10.3390/pharmaceutics12100906] [PMID: 32977470]
[92]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
[93]
Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The birth of artemisinin. Pharmacol. Ther., 2020, 216, 107658.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107658] [PMID: 32777330]
[94]
Wang, J.G.; Xu, C.C.; Wong, Y.K.; Li, Y.J.; Liao, F.L.; Jiang, T.L.; Tu, Y.Y. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering, 2019, 5(1), 32-39.
[http://dx.doi.org/10.1016/j.eng.2018.11.011]
[95]
Zyad, A.; Tilaoui, M.; Jaafari, A.; Oukerrou, M.A.; Mouse, H.A. More insights into the pharmacological effects of artemisinin. Phytother. Res., 2018, 32(2), 216-229.
[http://dx.doi.org/10.1002/ptr.5958] [PMID: 29193409]
[96]
Makadia, J.; Madu, S.J.; Arroo, R.; Seaton, C.C.; Li, M. Artemisinin-acetylenedicarboxylic acid cocrystal: Screening, structure determination, and physicochemical property characterisation. CrystEngComm, 2022, 24, 1056-1067.
[http://dx.doi.org/10.1039/D1CE01400E]
[97]
Nisar, M.; Wong, L.W.Y.; Sung, H.H.Y.; Haynes, R.K.; Williams, I.D. Cocrystals of the antimalarial drug 11-azaartemisinin with three alkenoic acids of 1:1 or 2:1 stoichiometry. Acta Crystallogr. C Struct. Chem., 2018, 74(Pt 6), 742-751.
[http://dx.doi.org/10.1107/S2053229618006320] [PMID: 29870011]
[98]
Qu, J.; Liu, Q.; You, G.; Ye, L.; Jin, Y.; Kong, L.; Guo, W.; Xu, Q.; Sun, Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med. Res. Rev., 2022, 42(3), 1147-1178.
[http://dx.doi.org/10.1002/med.21873] [PMID: 34877672]
[99]
Suresh, K.; Goud, N.R.; Nangia, A. Andrographolide: Solving chemical instability and poor solubility by means of cocrystals. Chem. Asian J., 2013, 8(12), 3032-3041.
[http://dx.doi.org/10.1002/asia.201300859] [PMID: 24027244]
[100]
Nicolov, M.; Ghiulai, R.M.; Voicu, M.; Mioc, M.; Duse, A.O.; Roman, R.; Ambrus, R.; Zupko, I.; Moaca, E.A.; Coricovac, D.E.; Farcas, C.; Racoviceanu, R.M.; Danciu, C.; Dehelean, C.A.; Soica, C. Cocrystal formation of betulinic acid and ascorbic acid: Synthesis, physico-chemical assessment, antioxidant, and antiproliferative activity. Front Chem., 2019, 7, 92.
[http://dx.doi.org/10.3389/fchem.2019.00092] [PMID: 30847340]
[101]
Park, B.; Yoon, W.; Yun, J.; Ban, E.; Yun, H.; Kim, A. Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int. J. Pharm., 2019, 557, 26-35.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.027] [PMID: 30572078]
[102]
Huang, D.; Chan, H.C.S.; Wu, Y.S.; Li, L.; Zhang, L.; Lv, Y.; Yang, X.M.; Zhou, Z.Z. Phase solubility investigation and theoretical calculations on drug-drug cocrystals of carbamazepine with Emodin, Paeonol. J. Mol. Liq., 2021, 329, 115604.
[http://dx.doi.org/10.1016/j.molliq.2021.115604]
[103]
Zheng, K.; Xie, C.; Li, X.; Wu, W.; Li, A.; Qian, S.; Pang, Q. Crystal structures, thermal stabilities, and dissolution behaviours of tinidazole and the tinidazole-vanillic acid cocrystal: Insights from energy frameworks. Acta Crystallogr. C Struct. Chem., 2020, 76(Pt 5), 389-397.
[http://dx.doi.org/10.1107/S2053229620004180] [PMID: 32367818]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy