Review Article

Tiny Regulators in Viral Infection: Carving SARS-CoV-2 by miRNAs

Author(s): Natalia Martínez-Acuña*, Sonia Amelia Lozano-Sepúlveda, María del Carmen Martínez-Guzmán and Ana María Rivas-Estilla

Volume 11, Issue 3, 2022

Published on: 29 September, 2022

Page: [185 - 189] Pages: 5

DOI: 10.2174/2211536611666220816124650

Price: $65

Abstract

Viruses are microscopic biological entities that can cause diseases. Viruses require a host cell to replicate and generate progeny. Once inside, viruses hijack the main cellular machinery for their benefit, disrupting cell functions and causing detrimental effects on cell physiology. MicroRNAs are short, non-coding RNAs that regulate gene expression. Recent works have shown that cell-miRNAs can modulate antiviral defense during viral infection, and viruses can disrupt these existing miRNA networks. Furthermore, multiple RNA viruses encode their own miRNAs to evade the host immune response. In this review, we analyze the activities of both, miRNAs as pro-viral modulators and miRNAs as anti-viral agents and their relationship with the development of the disease.

Keywords: MicroRNA, viral-microRNA, RNA viruses, SARS-CoV-2, v-miRNAs features, cytokine, storm.

Graphical Abstract
[1]
Palermo E, Di Carlo D, Sgarbanti M, Hiscott J. Type I interferons in covid-19 pathogenesis. Biology (Basel) 2021; 10(9): 1-18.
[http://dx.doi.org/10.3390/biology10090829] [PMID: 34571706]
[2]
Otsuka M, Jing Q, Georgel P, et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 2007; 27(1): 123-34.
[http://dx.doi.org/10.1016/j.immuni.2007.05.014] [PMID: 17613256]
[3]
Pedersen IM, Cheng G, Wieland S, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007; 449(7164): 919-22.
[http://dx.doi.org/10.1038/nature06205] [PMID: 17943132]
[4]
Guo XK, Zhang Q, Gao L, Li N, Chen XX, Feng WH. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J Virol 2013; 87(2): 1159-71.
[http://dx.doi.org/10.1128/JVI.02386-12] [PMID: 23152505]
[5]
Li L, Gao F, Jiang Y, et al. Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo. Sci Rep 2015; 5: 17010.
[http://dx.doi.org/10.1038/srep17010] [PMID: 26581169]
[6]
Peng S, Wang J, Wei S, et al. Endogenous cellular microRNAs mediate antiviral defense against influenza a virus. Mol Ther Nucleic Acids 2018; 10: 361-75.
[http://dx.doi.org/10.1016/j.omtn.2017.12.016] [PMID: 29499948]
[7]
Li Q, Lowey B, Sodroski C, et al. Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat Commun 2017; 8(1): 1789.
[http://dx.doi.org/10.1038/s41467-017-01954-x] [PMID: 29176620]
[8]
Wu N, Gao N, Fan D, et al. miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. 2014; 16: 911-22.
[9]
Lodge R, Ferreira Barbosa JA, Lombard-Vadnais F, et al. Host microRNAs-221 and -222 inhibit HIV-1 entry in macrophages by targeting the CD4 viral receptor. Cell Rep 2017; 21(1): 141-53.
[http://dx.doi.org/10.1016/j.celrep.2017.09.030] [PMID: 28978468]
[10]
McCaskill JL, Ressel S, Alber A, et al. Broad-spectrum inhibition of respiratory virus infection by microRNA mimics targeting p38 MAPK signaling. Mol Ther Nucleic Acids 2017; 7: 256-66.
[http://dx.doi.org/10.1016/j.omtn.2017.03.008] [PMID: 28624201]
[11]
Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded MicroRNAs. Science 2004; 304: 734-6.
[12]
Chaitanya KV. Structure and organization of virus genomes. In: Genome and Genomics. Singapore: Springer 2019.
[http://dx.doi.org/10.1007/978-981-15-0702-1_1]
[13]
Rosewick N, Momont M, Durkin K, et al. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leuke-mia/lymphoma. Proc Natl Acad Sci USA 2013; 110(6): 2306-11.
[http://dx.doi.org/10.1073/pnas.1213842110] [PMID: 23345446]
[14]
Whisnant AW, Kehl T, Bao Q, et al. Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus. J Virol 2014; 88(9): 4679-86.
[http://dx.doi.org/10.1128/JVI.03587-13] [PMID: 24522910]
[15]
Li X, Fu Z, Liang H, et al. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2. Cell Res 2018; 28(2): 157-71.
[http://dx.doi.org/10.1038/cr.2018.3] [PMID: 29327729]
[16]
Hussain M, Asgari S. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci 2014; 111: 2746-51.
[http://dx.doi.org/10.1073/pnas.1320123111]
[17]
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101(Pt A): 108172.
[http://dx.doi.org/10.1016/j.intimp.2021.108172] [PMID: 34601331]
[18]
Liu Z, Wang J, Ge Y, et al. SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response. J Biomed Res 2021; 35(3): 216-27.
[http://dx.doi.org/10.7555/JBR.35.20200154] [PMID: 33963094]
[19]
Saçar Demirci MD, Adan A. Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ 2020; 8: e9369-.
[http://dx.doi.org/10.7717/peerj.9369] [PMID: 32547891]
[20]
Marchi R, Sugita B, Centa A, et al. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: A systematic review. Infect Genet Evol 2021; 91: 104832.
[http://dx.doi.org/10.1016/j.meegid.2021.104832] [PMID: 33812037]
[21]
Meng F, Siu GK-H, Mok BW-Y, et al. Viral microRNAs encoded by nucleocapsid gene of SARS-CoV-2 are detected during infection, and targeting metabolic pathways in host cells. Cells 2021; 10(7): 10.
[http://dx.doi.org/10.3390/cells10071762] [PMID: 34359932]
[22]
Morales L, Oliveros JC, Fernandez-Delgado R, tenOever BR, Enjuanes L, Sola I. SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe 2017; 21(3): 344-55.
[http://dx.doi.org/10.1016/j.chom.2017.01.015] [PMID: 28216251]
[23]
Pawlica P, Yario TA, White S, et al. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proc Natl Acad Sci USA 2021; 118(52): e2116668118.
[http://dx.doi.org/10.1073/pnas.2116668118] [PMID: 34903581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy