Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Survey on Medicinal Plants and Herbs in Traditional Iranian Medicine with Anti-oxidant, Anti-viral, Anti-microbial, and Anti-inflammation Properties

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 20, Issue 11, 2023

Published on: 26 September, 2022

Page: [1707 - 1743] Pages: 37

DOI: 10.2174/1570180819666220816115506

Price: $65

conference banner
Abstract

The review aims to summarize the major and dominant natural antioxidants and their resources from medicinal and herbal plants with antiviral, anti-inflammation and antimicrobial activities. For this review manuscript, online databases, including Web of Science, Scopus, PubMed, and Science Direct, were searched for papers published from 1960 to November, 2021. Search terms consisted of “medicinal plants”, “traditional Iranian medicine”, “traditional Persian medicine”, “pharmaceutical properties”, “antioxidant activity”, “antiviral activity”, “anti-inflammation”, “antimicrobial” and “antibacterial activities”. (-)-Epicatechin, Caffeic acid, Gallic acid, Hydroxytyrosol, Kaempferol, and Resveratrol are some of the most important chemical compounds with antioxidant properties. Rosmarinic acid, Caffeic acid, Carnosol, P-Coumaric acid, Carnosic acid, Luteolin, Apigenin, and Kaempferol are the major chemical compounds with antiviral properties. Curcumin, Colchicine, Resveratrol, Capsaicin, (-)-Epigallocatechin, Quercetin, Myristicin, and Elmicin are the principal chemical compounds with anti-inflammatory properties. Isoeugenol, Coumarin, Piperonal, Scoparone, Spathulenol, D-Limonene, and Myrcene are the principal chemical compounds with antibacterial properties in traditional Iranian medicine. Persian traditional medicine, or Iranian traditional medicine, is one of the main ancient forms of traditional medicine, which has influenced knowledge regarding other medicinal plants in various countries. It has also been considered one of the most well-known traditional and holistic systems of medicine.

Keywords: Antioxidant, anti-bacterial, anti-viral, anti-inflammation, anti-microbial, natural products.

[1]
Shahrajabian, M.H.; Sun, W.; Zandi, P.; Cheng, Q. A review of Chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl. Ecol. Environ. Res., 2019, 17(6), 13355-13369.
[http://dx.doi.org/10.15666/aeer/1706_1335513369]
[2]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[3]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. B Soil Plant Sci., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[4]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum l.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol., 2019, 5(1673688), 1-25.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[5]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. The insight and survey on medicinal properties and nutritive components of shallot. J. Med. Plants Res., 2019, 13(18), 452-457.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[6]
Wrona, M.; Silva, F.; Salafranca, J.; Nerin, C.; Alfonso, M.J.; Caballero, M.A. Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control, 2021, 120, 107536.
[http://dx.doi.org/10.1016/j.foodcont.2020.107536]
[7]
Halliwell, B. How to characterize a biological antioxidant. Free Radic. Res. Commun., 1990, 9(1), 1-32.
[http://dx.doi.org/10.3109/10715769009148569] [PMID: 2159941]
[8]
Gong, Y.; Huang, X-Y.; Pei, D.; Duan, W-D.; Zhang, X.; Sun, X.; Di, D-L. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A, 2020, 1623, 461150.
[http://dx.doi.org/10.1016/j.chroma.2020.461150] [PMID: 32505270]
[9]
Keddar, M.N.; Ballesteros-Gomez, A.; Amiali, M.; Siles, M.A.; Zerrouki, D.; Martin, M.A.; Rubio, S. Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with superamolecular solvents. Separ. Purif. Tech., 2020, 251, 117327.
[http://dx.doi.org/10.1016/j.seppur.2020.117327]
[10]
Diamantis, D.A.; Oblukova, M.; Chatziathanasiadou, M.V.; Gemenetzi, A.; Papaemmanouil, C.; Gerogianni, P.S.; Syed, N.; Crook, T.; Galaris, D.; Deligiannakis, Y.; Sokolova, R.; Tzakos, A.G. Bioinspired tailoring of fluorogenic thiol responsive antioxidant precursors to protect cells against H2O2-induced DNA damage. Free Radic. Biol. Med., 2020, 160, 540-551.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.025] [PMID: 32871232]
[11]
Sarangarajan, R.; Meera, S.; Rukkumani, R.; Sankar, P.; Anuradha, G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med., 2017, 10(12), 1111-1116.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.017] [PMID: 29268965]
[12]
Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med., 1995, 18(1), 125-126.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[13]
Bi, X.; Soong, Y.Y.; Lim, S.W.; Henry, C.J. Evaluation of antioxidant capacity of Chinese five-spice ingredients. Int. J. Food Sci. Nutr., 2015, 66(3), 289-292.
[http://dx.doi.org/10.3109/09637486.2015.1007452] [PMID: 25666419]
[14]
Tlili, N.; Elfalleh, W.; Hannachi, H.; Yahia, Y.; Khaldi, A.; Ferchichi, A.; Nasri, N. Screening of natural antioxidants from selected medicinal plants. Int. J. Food Prop., 2013, 16(5), 1117-1126.
[http://dx.doi.org/10.1080/10942912.2011.576360]
[15]
Abd-ElGawad, A.; El Gendy, A.E-N.; El-Amier, Y.; Gaara, A.; Omer, E.; Al-Rowaily, S.; Assaeed, A.; Al-Rashed, S.; Elshamy, A. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale. Saudi J. Biol. Sci., 2020, 27(7), 1900-1906.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.018] [PMID: 32565712]
[16]
Zhao, Q.; Bowles, E.J.; Zhang, H-Y. Antioxidant activities of eleven Australian essential oils. Nat. Prod. Commun., 2008, 3(5), 837-842.
[http://dx.doi.org/10.1177/1934578X0800300531]
[17]
Wong, F-C.; Xiao, J.; Wang, S.; Ee, K-Y.; Chai, T-T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol., 2020, 99, 44-57.
[http://dx.doi.org/10.1016/j.tifs.2020.02.012]
[18]
Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol., 2020, 35, 101471.
[http://dx.doi.org/10.1016/j.redox.2020.101471] [PMID: 32127289]
[19]
Jäger, R.; Purpura, M.; Kerksick, C.M. Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging excersie. Nutrients, 2019, 11(7), E1692.
[http://dx.doi.org/10.3390/nu11071692] [PMID: 31340534]
[20]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Bioactive components and chemical constituents of some important legumes in traditional medicine. J. Stress Physiol. Biochem., 2021, 17(4), 30-45.
[21]
Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[22]
Juárez-Gómez, J.; Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Romero-Romo, M.; Palomar-Pardavé, M. Novel electrochemical method to evaluate the antioxidant capacity of infusions and beverages, based on in situ formation of free superoxide radicals. Food Chem., 2020, 332, 127409.
[http://dx.doi.org/10.1016/j.foodchem.2020.127409] [PMID: 32615388]
[23]
Lima, A.P.; dos Santos, W.T.P.; Nossol, E.; Richter, E.M.; Munoz, R.A.A. Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence for alumina on glassy-carbon electrodes alters the results. Electrochim. Acta, 2020, 358, 136925.
[http://dx.doi.org/10.1016/j.electacta.2020.136925]
[24]
Qin, L.; Wang, H.; Zhang, W.; Pan, M.; Xie, H.; Guo, X. Effects of different drying methods on phenolic substances and antioxidant activities of seedless raisins. Lebensm. Wiss. Technol., 2020, 131, 109807.
[http://dx.doi.org/10.1016/j.lwt.2020.109807]
[25]
Magro, A.E.A.; de Castro, R.J.S. Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatal. Agric. Biotechnol., 2020, 28, 101753.
[http://dx.doi.org/10.1016/j.bcab.2020.101753]
[26]
Serna-Escolano, V.; Martinez-Romero, D.; Gimenez, M.J.; Serrano, M.; Garcia-Martinez, S.; Valero, D.; Valverde, J.M.; Zapata, P.J. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem., 2020.
[http://dx.doi.org/10.1016/j.foodchem.2020.128044] [PMID: 32932092]
[27]
Casadey, R.; Broglia, M.; Barbero, C.; Criado, S.; Rivarola, C. Controlled release systems of natural phenolic antioxidants encapsulated inside biocompatible hydrogels. React. Funct. Polym., 2020, 156, 104729.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104729]
[28]
Rebelatto, E.A.; Rodriguez, L.G.G.; Rudke, A.R.; Andrade, K.S.; Ferreira, S.R.S. Sequential green-based extraction processes applied to recover antioxidant extracts from pink pepper fruits. J. Supercrit. Fluids, 2020, 166, 105034.
[http://dx.doi.org/10.1016/j.supflu.2020.105034]
[29]
Tinello, F.; Lante, A. Accelerated storage conditions effect on ginger- and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT. Lebensm. Wiss. Technol., 2020, 131, 109797.
[http://dx.doi.org/10.1016/j.lwt.2020.109797]
[30]
Saranchina, N.V.; Damzina, A.A.; Ermolaev, Y.E.; Urazov, E.V.; Gavrilenko, N.A.; Gavrilenko, M.A. Determination of antioxidant capacity of medicinal tinctures using cuprac method involving Cu(II) neocuproine immobilized into polymethacrylate matrix. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 240, 118581.
[http://dx.doi.org/10.1016/j.saa.2020.118581] [PMID: 32554138]
[31]
Arnaud, J.; Bost, M.; Vitoux, D.; Labarère, J.; Galan, P.; Faure, H.; Hercberg, S.; Bordet, J-C.; Roussel, A-M.; Chappuis, P. Effect of low dose antioxidant vitamin and trace element supplementation on the urinary concentrations of thromboxane and prostacyclin metabolites. J. Am. Coll. Nutr., 2007, 26(5), 405-411.
[http://dx.doi.org/10.1080/07315724.2007.10719629] [PMID: 17914127]
[32]
Zhang, X.; Liu, Q.; Chen, Z.; Zuo, X. Colorimetric sensor array for accurate detection and identification of antioxidants based on metal ions as sensor receptors. Talanta, 2020, 215, 120935.
[http://dx.doi.org/10.1016/j.talanta.2020.120935] [PMID: 32312471]
[33]
Birinci, Y.; Niazi, J.H.; Aktay-Çetin, O.; Basaga, H. Quercetin in the form of a nano-antioxidant (QTiO2) provides stabilization of quercetin and maximizes its antioxidant capacity in the mouse fibroblast model. Enzyme Microb. Technol., 2020, 138, 109559.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109559] [PMID: 32527528]
[34]
Jaberie, H.; Momeni, S.; Nabipour, I. Total antioxidant capacity assessment by a development of an antioxidant assay based on green synthesized MnO2 nanosheets. Microchem. J., 2020, 157, 104908.
[http://dx.doi.org/10.1016/j.microc.2020.104908]
[35]
Ran, L.; Chi, Y.; Huang, Y.; He, Q.; Ren, Y. Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosancoated liposomes. Lebensm. Wiss. Technol., 2020, 127, 109409.
[http://dx.doi.org/10.1016/j.lwt.2020.109409]
[36]
Ibrahim, T.A.; El-Hefnawy, H.M.; El-Hela, A.A. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat. Prod. Res., 2010, 24(16), 1537-1545.
[http://dx.doi.org/10.1080/14786419.2010.489049] [PMID: 20835955]
[37]
Liu, L.; Zhao, Y-F.; Han, W-H.; Chen, T.; Hou, G-X.; Tong, X-Z. Protective effect of antioxidant on renal damage caused by doxorubicin chemotherapy in mice with hepatic cancer. Asian Pac. J. Trop. Med., 2016, 9(11), 1101-1104.
[http://dx.doi.org/10.1016/j.apjtm.2016.08.003] [PMID: 27890372]
[38]
Undeğer, U.; Başaran, A.; Degen, G.H.; Başaran, N. Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem. Toxicol., 2009, 47(8), 2037-2043.
[http://dx.doi.org/10.1016/j.fct.2009.05.020] [PMID: 19477215]
[39]
Lu, M.; Yuan, B.; Zing, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int., 2011, 44(2), 530-536.
[http://dx.doi.org/10.1016/j.foodres.2010.10.055]
[40]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x] [PMID: 10784220]
[41]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I. Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[42]
Ziegler, D.; Nowak, H.; Kempler, P.; Vargha, P.; Low, P.A. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: A meta-analysis. Diabet. Med., 2004, 21(2), 114-121.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01109.x] [PMID: 14984445]
[43]
Song, Y.; Cook, N.R.; Albert, C.M.; Van Denburgh, M.; Manson, J.E. Effects of vitamins C and E and beta-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: A randomized controlled trial. Am. J. Clin. Nutr., 2009, 90(2), 429-437.
[http://dx.doi.org/10.3945/ajcn.2009.27491] [PMID: 19491386]
[44]
Szkudlinska, M.A.; von Frankenberg, A.D.; Utzschneider, K.M. The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes. J. Diabetes Complications, 2016, 30(4), 618-622.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.02.003] [PMID: 26922582]
[45]
Godic, A.; Poljšak, B.; Adamic, M.; Dahmane, R. The role of antioxidants in skin cancer prevention and treatment. Oxid. Med. Cell. Longev., 2014, 2014(5), 860479.
[http://dx.doi.org/10.1155/2014/860479] [PMID: 24790705]
[46]
Ma, J.; Zhang, Q.; Chen, S.; Fang, B.; Yang, Q.; Chen, C.; Miele, L.; Sarkar, F.H.; Xia, J.; Wang, Z. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One, 2013, 8(7), e69485.
[http://dx.doi.org/10.1371/journal.pone.0069485] [PMID: 23922721]
[47]
Rao, A.V.; Agarwal, S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr., 2000, 19(5), 563-569.
[http://dx.doi.org/10.1080/07315724.2000.10718953] [PMID: 11022869]
[48]
Borrás, C.; Gómez-Cabrera, M.C.; Viña, J. The dual role of p53: DNA protection and antioxidant. Free Radic. Res., 2011, 45(6), 643-652.
[http://dx.doi.org/10.3109/10715762.2011.571685] [PMID: 21452930]
[49]
Prasad, K.N. Simultaneous activation of Nrf2 and elevation of dietary and endogenous antioxidant chemicals for cancer prevention in humans. J. Am. Coll. Nutr., 2016, 35(2), 175-184.
[http://dx.doi.org/10.1080/07315724.2014.1003419] [PMID: 26151600]
[50]
Dastmalchi, N.; Baradaran, B.; Latifi-Navid, S.; Safaralizadeh, R.; Khojasteh, S.M.B.; Amini, M.; Roshani, E.; Lotfinejad, P. Antioxidants with two faces toward cancer. Life Sci., 2020, 258, 118186.
[http://dx.doi.org/10.1016/j.lfs.2020.118186] [PMID: 32768586]
[51]
Erdogan, M.K.; Gecibesler, I.H.; Behcet, L. Chemical constituents, antioxidant, antiproliferative and apoptotic effects of a new endemic Boraginaceae species. Paracaryumbingoelianum. Results Chem, 2020, 2, 100032.
[http://dx.doi.org/10.1016/j.rechem.2020.100032]
[52]
Fu, L.; Wei, J.; Gao, Y.; Chen, R. Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta, 2020.
[http://dx.doi.org/10.1016/j.talanta.2020.121635] [PMID: 33076155]
[53]
Meng, D-F.; Guo, L-L.; Peng, L-X.; Zheng, L-S.; Xie, P.; Mei, Y.; Li, C-Z.; Peng, X-S.; Lang, Y-H.; Liu, Z-J.; Wang, M-D.; Xie, DH.; Shu, D-T.; Hu, H.; Lin, S.T.; Li, H.F.; Luo, F.F.; Sun, R.; Huang, B.J.; Qian, C.N. Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun., 2020, 527(3), 770-777.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.093] [PMID: 32446561]
[54]
Shirinzadeh, H.; Neuhaus, E.; Ince Erguc, E.; Tascioglu Aliyev, A.; Gurer-Orhan, H.; Suzen, S. New indole-7-aldehyde derivatives as melatonin analogues; synthesis and screening their antioxidant and anticancer potential. Bioorg. Chem., 2020, 104, 104219.
[http://dx.doi.org/10.1016/j.bioorg.2020.104219] [PMID: 32916391]
[55]
Anderson, J.W.; Gowri, M.S.; Turner, J.; Nichols, L.; Diwadkar, V.A.; Chow, C.K.; Oeltgen, P.R. Antioxidant supplementation effects on low-density lipoprotein oxidation for individuals with type 2 diabetes mellitus. J. Am. Coll. Nutr., 1999, 18(5), 451-461.
[http://dx.doi.org/10.1080/07315724.1999.10718883] [PMID: 10511327]
[56]
Shankar, P.; Kumar, V.; Rao, N. Evaluation of antidiabetic activity of Ginkgo biloba in streptozotocin induced diabetic rats. Iran J Pharmacol Ther, 2005, 4(1), 16-19.
[57]
Khajehdehi, P. Turmeric: Reemerging of a neglected Asian traditional remedy. J. Nephropathol., 2012, 1(1), 17-22.
[http://dx.doi.org/10.5812/jnp.5] [PMID: 24475382]
[58]
Nasri, H.; Rafieian-Kopaei, M. Metformin and diabetic kidney disease: A mini-review on recent findings. Iran. J. Pediatr., 2014, 24(5), 565-568.
[PMID: 25793062]
[59]
Rahimi-Madiseh, M.; Bahmani, M.; Karimian, P.; Rafieian-kopaei, M. Herbalism in Iran: A systematic review. Der Pharma Chem, 2016, 8(2), 36-42.
[60]
Parthasarathy, L.; Khadilkar, V.; Chiplonkar, S.; Khadilkar, A. Effect of antioxidant supplementation on total antioxidant status in Indian children with type 1 diabetes. J. Diet. Suppl., 2019, 16(4), 390-400.
[http://dx.doi.org/10.1080/19390211.2018.1470123] [PMID: 29958027]
[61]
Franco, R.R.; Mota Alves, V.H.; Ribeiro Zabisky, L.F.; Justino, A.B.; Martins, M.M.; Saraiva, A.L.; Goulart, L.R.; Espindola, F.S. Antidiabetic potential of Bauhinia forficata Link leaves: A noncytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed. Pharmacother., 2020, 123, 109798.
[http://dx.doi.org/10.1016/j.biopha.2019.109798] [PMID: 31877553]
[62]
Sun, C.; Liu, Y.; Zhan, L.; Rayat, G.R.; Xiao, J.; Jiang, H.; Li, X.; Chen, K. Anti-diabetic effects of natural antioxidants from fruits. Trends Food Sci. Technol., 2020.
[http://dx.doi.org/10.1016/j.tifs.2020.07.024]
[63]
Stanner, S.A.; Hughes, J.; Kelly, C.N.; Buttriss, J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr., 2004, 7(3), 407-422.
[http://dx.doi.org/10.1079/PHN2003543] [PMID: 15153272]
[64]
Xia, Z.; Liu, M.; Wu, Y.; Sharma, V.; Luo, T.; Ouyang, J.; McNeill, J.H. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur. J. Pharmacol., 2006, 550(1-3), 134-142.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.044] [PMID: 17026986]
[65]
Bonello, S.; Zähringer, C. BelAiba, R.S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 755-761.
[http://dx.doi.org/10.1161/01.ATV.0000258979.92828.bc] [PMID: 17272744]
[66]
Ozkanlar, S.; Akcay, F. Antioxidant vitamins in atherosclerosis--animal experiments and clinical studies. Adv. Clin. Exp. Med., 2012, 21(1), 115-123.
[PMID: 23214308]
[67]
Maiolino, G.; Rossitto, G.; Caielli, P.; Bisogni, V.; Rossi, G.P.; Calò, L.A. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediators Inflamm., 2013, 2013(3), 714653.
[http://dx.doi.org/10.1155/2013/714653] [PMID: 24222937]
[68]
Bagherifard, A.; Amini Kadijani, A.; Yahyazadeh, H.; Rezazadeh, J.; Azizi, M.; Akbari, A.; Mirzaei, A. The value of serum total oxidant to the antioxidant ratio as a biomarker of knee osteoarthritis. Clin. Nutr. ESPEN, 2020, 38, 118-123.
[http://dx.doi.org/10.1016/j.clnesp.2020.05.019] [PMID: 32690145]
[69]
Huges, M.C.B.; Williams, G.M.; Pageon, H.; Foutanier, A.; Green, A.C. Dietary antioxidant capacity and skin photoaging: A 15-year longitudinal study. J. Invest. Dermatol., 2020.
[http://dx.doi.org/10.106/j.jid.2020.06.026] [PMID: 32682911]
[70]
Murugan, M.; Rajendran, K.; Velmurugan, T.; Muthu, S.; Gundappa, M.; Thangavel, S. Antagonistic and antioxidant potencies of Centrosema pubescens benth extracts against nosocomial infection pathogens. Biocatal. Agric. Biotechnol., 2020, 29, 101776.
[http://dx.doi.org/10.1016/j.bcab.2020.101776]
[71]
Avila-Nava, A.; Medina-Vera, I.; Rodriguez-Hernandez, P.; Guevara-Cruz, M.; Canton, P.K.H-G.; Tovar, A.R.; Torres, N. Oxalate content and antioxidant activity of different ethnic foods. J. Ren. Nutr., 2020.
[http://dx.doi.org/10.1053/j.jrn.2020.04.006] [PMID: 32709427]
[72]
Balaji, S.; Saravanan, R.; Kapilan, N. Influence of propyl gallate antioxidant on performance and emissions of a compression ignition engine fueled with Madhuca Indica B20 ester blends. Energt Source Part A: Recov. Energt Source Part A: Recov, Util Environ Effects, 2019.
[http://dx.doi.org/10.1080/15567036.2019.1644396]
[73]
Jeyakumar, N.; Narayanasamy, B.; Balasubramanian, D.; Viswanathan, K. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel, 2020, 281, 118614.
[http://dx.doi.org/10.1016/j.fuel.2020.118614]
[74]
Kerkel, F.; Brock, D.; Touraud, D.; Kunz, W. Stabilisation of biofuels with hydrophilic, natural antioxidants solubilised by glycerol derivatives. Fuel, 2021, 284, 119055.
[http://dx.doi.org/10.1016/j.fuel.2020.119055]
[75]
Mirshafiey, A.; Mohsenzadegan, M. Antioxidant therapy in multiple sclerosis. Immunopharmacol. Immunotoxicol., 2009, 31(1), 13-29.
[http://dx.doi.org/10.1080/08923970802331943] [PMID: 18763202]
[76]
Gohari, A.R.; Hajimehdipoor, H.; Saeidnia, S.; Ajani, Y.; Hadjiakhoondi, A. Antioxidant activity of some medicinal species using FRAP assay. Faslnamah-i Giyahan-i Daruyi, 2011, 10(37), 54-60.
[77]
Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson,s disease model of rats and SH-S5Y5 cells by preveting loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 104140.
[http://dx.doi.org/10.1016/j.jff.2020.104140]
[78]
Silva, C.; Pinto, M.; Fernandes, C.; Benfeito, S.; Borges, F. Antioxidant therapy and neurodegenerative disorders: Lessons from clinical trials. Syst. Med. (New Rochelle), 2021, 2, 97-110.
[79]
Canakçi, C.F.; Ciçek, Y.; Canakçi, V. Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry (Mosc.), 2005, 70(6), 619-628.
[http://dx.doi.org/10.1007/s10541-005-0161-9] [PMID: 16038603]
[80]
Carnelio, S.; Khan, S.A.; Rodrigues, G. Definite, probable or dubious: Antioxidants trilogy in clinical dentistry. Br. Dent. J., 2008, 204(1), 29-32.
[http://dx.doi.org/10.1038/bdj.2007.1186] [PMID: 18192996]
[81]
Miricescu, D.; Greabu, M.; Totan, A.; Didilescu, A.; Radulescu, R. The antioxidant potential of saliva: Clinical significance in oral diseases. Ther. Pharmacol. Clin. Toxicol., 2011, 15(2), 139-143.
[82]
Kumar, G.; Jalaluddin, M.; Rout, P.; Mohanty, R.; Dileep, C.L. Emerging trends of herbal care in dentistry. J. Clin. Diagn. Res., 2013, 7(8), 1827-1829.
[PMID: 24086929]
[83]
Parthiban, S.; Arnold, J.; Shankarram, V.; Kumar, T.; Kadhiresan, R. Antioxidants in vitro is it a need for oral precancerous lesion. J. Int. Oral Health, 2016, 8, 220-223.
[84]
Xu, D-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J-J.; Li, H-B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[85]
Ara, N.; Nur, H. In vitro antioxidant activity of methanolic leaves and flowers of Lippia alba. Res. J. Med. Med. Sci., 2009, 4(1), 107-110.
[86]
Sharma, P.; Bhat, T. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[87]
Piatti, E. Raw millefiori honey is packed full of antioxidants. Food Chem., 2006, 97(2), 217-222.
[http://dx.doi.org/10.1016/j.foodchem.2005.03.039]
[88]
Vichitphan, S.; Vichitphanl, K. Flavonoid content Lavonoid content and antioxidant activity of Kaempferia parviflora wine. Kmttl Sci. Tech. J., 2007, 7, 97-105.
[89]
Jayasri, M.A.; Mathew, L.; Radha, A.A. A report on the antioxidant activity of leaves and rhizomes of Costus pictms. Int. J. Integr. Biol., 2009, 5(1), 1-7.
[90]
Rach, P.R.; Patel, S.R. In vitro evaluation of antioxidant in vitro evaluation of antioxidant activity of Gymnema sylvestre leaf extract. Rom J Biol.-. Plant Biol., 2009, 54(2), 141-148.
[91]
Shukla, S.; Mehta, A.; John, J.; Singh, S.; Mehta, P.; Vyas, S.P. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food Chem. Toxicol., 2009, 47(8), 1848-1851.
[http://dx.doi.org/10.1016/j.fct.2009.04.040] [PMID: 19422871]
[92]
Agrawal Surendra, S.; Talele Gokul, S. Free radical scavenging activity of Capparis zeylanica, Medicinal Plants. Int. J. Phytomed. Related Ind., 2009, 1(2), 405-425.
[93]
Balakrishnam, N.; Panda, A.B.; Raj, N.R.; Shrivastava, A.; Prathani, R. The evaluation of nitric oxide scavenging activity of Acalypha Indica Liin root. Asian J. Res. Chem, 2009, 2(2), 148-150.
[94]
Payet, B.; Shum Cheong Sing, A.; Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agric. Food Chem., 2005, 53(26), 10074-10079.
[http://dx.doi.org/10.1021/jf0517703] [PMID: 16366697]
[95]
Teow, C.; Truong, V.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colors. Food Chem., 2007, 103(3), 829-838.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.033]
[96]
Asghar, M.N.; Ullah Khan, I. Evaluation of antioxidant activity using an improved DMBD radical action decolorization assay. Acta Chim. Slov., 2007, 54(2), 295-300.
[97]
Ehlenfeldt, M.K.; Prior, R.L. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J. Agric. Food Chem., 2001, 49(5), 2222-2227.
[http://dx.doi.org/10.1021/jf0013656] [PMID: 11368580]
[98]
Xu, B.J.; Yuan, S.H.; Chang, S.K. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci., 2007, 72(2), S167-S177.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00261.x] [PMID: 17995859]
[99]
Kadifkova Panovska, T.; Kulevanova, S.; Stefova, M. In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm., 2005, 55(2), 207-214.
[PMID: 16179134]
[100]
Zahin, M.; Aqil, A. The in vitro antioxidant activity and total phenolic content of four Indian medicinal plants. Int. J. Pharm. Pharm. Sci., 2009, 1(1), 88-95.
[101]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun., 2020, 15(8), 1-10.
[http://dx.doi.org/10.1177/1934578X20951431]
[102]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Product of natural evolution (SARS, MERS and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccines Immunother, 2020.
[http://dx.doi.org/10.1080/21645515.2020.1797369]
[103]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[104]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese star anise (Illicium verum) and pyrethrum (Chrysanthemum cinerariifolium) as natural alternatives for organic farming and health care- A review. Aust. J. Crop Sci., 2020, 14(03), 517-523.
[http://dx.doi.org/10.21475/ajcs.20.14.03.p2209]
[105]
Ao, C.; Zhou, W.; Gao, L.; Dong, B.; Yu, L. Prediction of antioxidant proteins using hybrid feature representation method and random forest. Genomics, 2020, 112(6), 4666-4674.
[http://dx.doi.org/10.1016/j.ygeno.2020.08.016] [PMID: 32818637]
[106]
Leite, K.C.D.S.; Garcia, L.F.; Lobon, G.S.; Thomaz, D.V.; Moreno, E.K.G.; Carvalho, M.F.D.; Rocha, M.L.; Santos, W.T.P.D.; Gil, E.D.S. Antioxidant activity evaluation of dried extracts: An electroanalytical approach. Rev. Bras. Farmacogn., 2018, 28(3), 325-332.
[http://dx.doi.org/10.1016/j.bjp.2018.04.004]
[107]
Abouseadaa, H.H.; Atia, M.A.M.; Younis, I.Y.; Issa, M.Y.; Ashour, H.A.; Saleh, I.; Osman, G.H.; Arif, I.A.; Mohsen, E. Genetargeted molecular phylogeny, phytochemical profiling, and antioxidant activity of nine species belonging to family Cactaceae. Saudi J. Biol. Sci., 2020, 27(6), 1649-1658.
[http://dx.doi.org/10.1016/j.sjbs.2020.03.007] [PMID: 32489307]
[108]
Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod., 2020, 154, 112569.
[http://dx.doi.org/10.1016/j.indcrop.2020.112569]
[109]
Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrovial and antioxidant applications. Grain Oil Sci. Technol., 2019, 2(2), 49-55.
[http://dx.doi.org/10.1016/j.gaost.2019.03.001]
[110]
Caldefie-Chézet, F.; Fusillier, C.; Jarde, T.; Laroye, H.; Damez, M.; Vasson, M.P.; Guillot, J. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother. Res., 2006, 20(5), 364-370.
[http://dx.doi.org/10.1002/ptr.1862] [PMID: 16619364]
[111]
Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc., 1998, 75(2), 199-212.
[http://dx.doi.org/10.1007/s11746-998-0032-9] [PMID: 32287334]
[112]
Modzelewska, A.; Sur, S.; Kumar, S.K.; Khan, S.R. Sesquiterpenes: Natural products that decrease cancer growth. Curr. Med. Chem. Anticancer Agents, 2005, 5(5), 477-499.
[http://dx.doi.org/10.2174/1568011054866973] [PMID: 16178774]
[113]
Noon, J.; Mills, T.B.; Norton, I.T. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. J. Food Eng., 2020, 281, 110006.
[http://dx.doi.org/10.1016/j.jfoodeng.2020.110006]
[114]
Aoussar, N.; Rhallabi, N.; Ait Mhand, R.; Manzali, R.; Bouksaim, M.; Douira, A.; Mellouki, F. Seasonal variation of antioxidant activity and phenolic content of Pseudeverniafurfuracea, Evernia prunastri and Ramalina farinaceae from Morocco. J. Saudi Soc. Agric. Sci., 2020, 19(1), 1-6.
[http://dx.doi.org/10.1016/j.jssas.2018.03.004]
[115]
Crespo, Y.A.; Bravo Sánchez, L.R.; Quintana, Y.G.; Cabrera, A.S.T.; Bermúdez Del Sol, A.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon, 2019, 5(6), e01942.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01942] [PMID: 31245650]
[116]
Kruzselyi, D.; Moricz, A.M.; Vetter, J. Comparison of different morphological mushroom parts based on the antioxidant activity. Lebensm. Wiss. Technol., 2020, 127, 109436.
[http://dx.doi.org/10.1016/j.lwt.2020.109436]
[117]
Ngoua-Meye-Misso, R-L.; Sima-Obiang, C.; Ndong, J.D.L.C.; Ondo, J.P.; Ovono, A.F.; Obame-Engonga, L-C. Phytochemical screening, antioxidant, anti-inflammatory and antiangiogenic activities of Lophira procera A. Chev. (Ochnaceae) medicinal plant from Gabon. Egyp. J. Basic Appl. Sci., 2018, 5(1), 80-86.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.003]
[118]
Bakasatae, N.; Kunworarath, N.; Yupanqui, C.T.; Voravuthikunchai, S.P.; Joycharat, N. Bioactive components, antioxidant, and anti-inflammatory activities of the wood of Albiziamyriophylla. Rev. Bras. Farmacogn., 2018, 28(4), 444-450.
[http://dx.doi.org/10.1016/j.bjp.2018.05.010]
[119]
Kolawole, A.O.; Olaleye, M.T.; Ajele, J.O. Antioxidant properties and glutathione S-transferases inhibitory activity of Alchornea cordifolia leaf extract in acetaminophen-induced liver injury. Iran J. Pharmacol. Ther., 2007, 6(1), 63-66.
[120]
Kumar, S.; Yadav, M.; Yadav, A.; Yadav, J.P. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. F. S. Afr. J. Bot., 2017, 111, 50-59.
[http://dx.doi.org/10.1016/j.sajb.2017.03.012]
[121]
Kumar, S.; Yadav, A.; Yadav, M.; Yadav, J.P. Effect of climate change on phytochemical diversity, totoal phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm. F. BMC Res. Notes, 2017, 10(1), 1-12.
[http://dx.doi.org/10.1186/s13104-017-2385-3] [PMID: 28057050]
[122]
Benzidia, B.; Barbouchi, M.; Hammouch, H.; Belahbib, M.; Zouarhi, M.; Erramli, H.; Daoud, N.A.; Badrane, N.; Hajjaji, N. Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. J. King Saud Sci., 2019, 31, 1175-1181.
[123]
Adegbola, P.I.; Adetutu, A.; Olaniyi, T.D. Antioxidant activity of Amaranthus species from the Amaranthaceae family- A review. A Afr. J. Bot., 2020, 133, 111-117.
[124]
Sanchez-Lopez, F.; Robles-Olvera, V.J.; Hidalgo-Morales, M.; Tsopmo, A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J. Cereal Sci., 2020, 95, 103075.
[http://dx.doi.org/10.1016/j.jcs.2020.103075]
[125]
Zhang, J.; Li, Z.; Zhou, L.; Bao, J.; Xu, J. The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. Int. J. Biol. Macromol., 2020, 164, 4435-4443.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.024] [PMID: 32910965]
[126]
Song, R.; Liang, T.; Shen, Q.; Liu, J.; Lu, Y.; Tang, C.; Chen, X.; Hou, T.; Chen, Y. The optimization of production and characterization of antioxidant peptides from protein hydrolysates of Agrocybe aegerita. Lebensm. Wiss. Technol., 2020, 134, 109987.
[http://dx.doi.org/10.1016/j.lwt.2020.109987]
[127]
Bandli, J.K.; Heidari, R. The evaluation of antioxidant activities and phenolic compounds in leaves and inflorescence of Artemisia dracunculus L. by HPLC. J. Med. Plant., 2014, 13(51), 41-50.
[128]
Ghosh, T.; Maity, T.K.; Das, M.; Bose, A.; Dash, D.K. In vitro antioxidant and hepatoprotective activity of ethanolic extract of Bacopa monnieri Linn aerial parts. Iran J. Pharmacol. Ther., 2007, 6(1), 77-85.
[129]
Ahmed, A.F.; Attia, F.A.K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant acitivty and total phenolic content of essential oils and extracts of sweet basil (Ocimumbasilicum L.) plants. Food Sci. Hum. Wellness, 2019, 8(3), 299-305.
[http://dx.doi.org/10.1016/j.fshw.2019.07.004]
[130]
Gupta, M.; Mazumder, U.K.; Kumar, T.S.; Gomathi, P.; Kumar, R.S. Antioxidant and hepatoprotective effects of Bauhinia racemosa against paracetamol and carbon tetrachloride induced liver damage in rats. Iran J. Pharmacol. Ther., 2004, 3(1), 12-20.
[131]
Fernández, N.J.; Damiani, N.; Podaza, E.A.; Martucci, J.F.; Fasce, D.; Quiroz, F.; Meretta, P.E.; Quintana, S.; Eguaras, M.J.; Gende, L.B. Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi J. Biol. Sci., 2019, 26(5), 906-912.
[http://dx.doi.org/10.1016/j.sjbs.2018.04.008] [PMID: 31303818]
[132]
Suryawanshi, J.A.S. An overview of Citrus aurantium used in treatment of various diseases. Afr. J. Plant Sci., 2011, 7, 390-395.
[133]
Djenane, D. Chemical profile, antibacterial and antioxidant activity of Algerian citrus essential oils and their application in Sardina pilchardus. Foods, 2015, 4(2), 208-228.
[http://dx.doi.org/10.3390/foods4020208] [PMID: 28231199]
[134]
Değirmenci, H.; Erkurt, H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J. Infect. Public Health, 2020, 13(1), 58-67.
[http://dx.doi.org/10.1016/j.jiph.2019.06.017] [PMID: 31296479]
[135]
Jitvaropas, R.; Saenthaweesuk, S.; Somparn, N.; Thuppia, A.; Sireeratawong, S.; Phoolcharoen, W. Antioxidant, antimicrobial and wound healing activities of Boesenbergia rotunda. Nat. Prod. Commun., 2012, 7(7), 909-912.
[http://dx.doi.org/10.1177/1934578X1200700727] [PMID: 22908579]
[136]
Fidelis, M.; de Oliveira, S.M.; Sousa Santos, J.; Bragueto Escher, G.; Silva Rocha, R.; Gomes Cruz, A.; Araújo Vieira do Carmo, M.; Azevedo, L.; Kaneshima, T.; Oh, W.Y.; Shahidi, F.; Granato, D. From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. J. Dairy Sci., 2020, 103(2), 1131-1140.
[http://dx.doi.org/10.3168/jds.2019-17173] [PMID: 31759605]
[137]
Fırtın, B.; Yenipazar, H.; Saygün, A.; Şahin-Yeşilçubuk, N. Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. Lebensm. Wiss. Technol., 2020, 134, 109947.
[http://dx.doi.org/10.1016/j.lwt.2020.109947] [PMID: 32834119]
[138]
Ozen, T.; Korkmaz, H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf extract on biotransformation enzyme systems, antioxidant enzymes, lactate dehydrogenase and lipid peroxidation in mice. Phytomedicine, 2003, 10(5), 405-415.
[http://dx.doi.org/10.1078/0944-7113-00275] [PMID: 12834006]
[139]
Chahardehi, A.M.; Ibrahim, D.; Sulaiman, S.F. Antioxidant activity and total phenloc content of some medicinal plants in Urticaceae family. J. Applied Biol. Sci., 2009, 3(2), 27-31.
[140]
Yener, Z.; Celik, I.; Ilhan, F.; Bal, R. Effects of Urtica dioica L. seed on lipid peroxidation, antioxidants and liver pathology in aflatoxin-induced tissue injury in rats. Food Chem. Toxicol., 2009, 47(2), 418-424.
[http://dx.doi.org/10.1016/j.fct.2008.11.031] [PMID: 19073231]
[141]
Güder, A.; Korkmaz, H. Evaluation of in vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iran. J. Pharm. Res., 2012, 11(3), 913-923.
[PMID: 24250519]
[142]
Kukric, Z.; Topalic-Trivunovic, L.; Kukavica, B.; Matos, S.; Pavicic, S.; Boroja, M.; Savic, A. Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L.). Acta Period. Technol., 2012, 43(43), 257-272.
[http://dx.doi.org/10.2298/APT1243257K]
[143]
Al Habsi, A.A.S.; Hossain, M.A. Isolation, structure characterization and prediction of antioxidant activity of two new compounds from the leaves of Dodonaeaviscosa native to the Sultanate of Oman. Egypt. J. Basic Appl. Sci., 2018, 5, 157-164.
[144]
Hassan, M.M.; Joshi, N. Hydrothermal effects on physicochemical, sensory attributes, vitamin C, and antioxidant activity of frozen immature Dolichos lablab. Heliyon, 2019, 6(1), e03136.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03136] [PMID: 31909287]
[145]
Molan, A.L.; De, S.; Meagher, L. Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins. Int. J. Food Sci. Nutr., 2009, 60(6), 497-506.
[http://dx.doi.org/10.1080/09637480701781490] [PMID: 18608546]
[146]
de Oliveira, S.Q.; Kappel, V.D.; Pires, V.S.; Lencina, C.L.; Sonnet, P.; Moreira, J.C.F.; Gosmann, G. Antioxidant properties of phenolic compounds from Baccharis articulata and B. usterii. Nat. Prod. Commun., 2014, 9(7), 941-942.
[http://dx.doi.org/10.1177/1934578X1400900714] [PMID: 25230498]
[147]
Sonowal, S.; Bordoloi, M.; Gogoi, R.; Tamuly, C. Antioxidant activity of flower buds of Musa spp. sold and consumed as vegetables. Int. J. Veg. Sci., 2016, 22(6), 564-569.
[http://dx.doi.org/10.1080/19315260.2015.1093574]
[148]
Al Amri, F.S.; Hossain, M.A. Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egyptian J Basci Appl Sci, 2018, 5(4), 245-251.
[http://dx.doi.org/10.1016/j.ejbas.2018.09.002]
[149]
Raheel, R.; Saddiqe, Z.; Iram, M.; Afzal, S. In vitro antimitotic, antiproliferative and antioxidant activity of stem barm extracts of Ficus benghalensis L. S. Afr. J. Bot., 2020, 111, 248-257.
[http://dx.doi.org/10.1016/j.sajb.2017.03.037]
[150]
Sabatini, L.; Fraternale, D.; Giacomo, B.D.; Mari, M.; Albertini, M.C.; Gordillo, B.; Rocchi, M.B.L.; Sisti, D.; Coppari, S.; Semprucci, F.; Guidi, L.; Colomba, M. Chemical composition, antioxidant, antimicrobial and anti-inflammatory activity of Prunus spinosa L. fruit ethanol extract. J. Funct. Foods, 2020, 67, 103885.
[http://dx.doi.org/10.1016/j.jff.2020.103885]
[151]
Duan, Y.; Melo Santiago, F.E.; dos Reis, A.R.; de Figueiredo, M.A.; Zhou, S.; Thannhauser, T.W.; Li, L. Genotypic variation of flavonols and antioxidant capacity in broccoli. Food Chem., 2020.
[http://dx.doi.org/10.1016/j.foodchem.2020.127997] [PMID: 33091988]
[152]
Guan, Y.; Hu, W.; Jiang, A.; Xu, Y.; Zhao, M.; Yu, J.; Ji, Y. Sarengaowa; Yang, X.; Feng, K. The effect of cutting style on the biosynthesis of phenolics and cellular antioxidant capacity in wounded broccoli. Food Res. Int., 2020, 137, 109565.
[http://dx.doi.org/10.1016/j.foodres.2020.109565] [PMID: 33233182]
[153]
Ma, Q.; Zhao, Y.; Wang, H-L.; Li, J.; Yang, Q-H.; Gao, L-C.; Murat, T.; Feng, D-L. Comparative study of the effects of buckweaht by roasting: Antioxidant properties, nutrients, pasting, and thermal properties. J. Cereal Sci., 2020, 95, 103041.
[http://dx.doi.org/10.1016/j.jcs.2020.103041]
[154]
Vidal-Gutierrez, M.; Robles-Zepeda, R.E.; Vilegas, W.; Gonzalez-Aguilar, G.A.; Torres-Moreno, H.; Lopez-Romero, J.C. Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Ind. Crops Prod., 2020, 152, 112412.
[http://dx.doi.org/10.1016/j.indcrop.2020.112412]
[155]
Nguyen, T.M.H.; Le, H.L.; Ha, T.T.; Bui, B.H.; Le, N.T.; Nguyen, V.H.; Nguyen, T.V.A. Inhibitory effect on human platelet aggregation and coagulation and antioxidant activity of C. edulis Ker Gawl rhizome and its secondary metabolites. J. Ethnopharmacol., 2020, 263, 113136.
[http://dx.doi.org/10.1016/j.jep.2020.113136] [PMID: 32758576]
[156]
Rokosik, E.; Siger, A.; Rudzinska, M.; Dwiecki, K. Antioxidant activity and synergism of canolol and α-tocopherol in rapeseed oil is affected by the presence of phospholipid association colloids. Lebensm. Wiss. Technol., 2020, 133, 110095.
[http://dx.doi.org/10.1016/j.lwt.2020.110095]
[157]
Esterhuizen, L.L.; Meyer, R.; Dubery, I.A. Antioxidant activity of metabolites from Coleonema album (Rutaceae). Nat. Prod. Commun., 2006, 1(5), 367-375.
[http://dx.doi.org/10.1177/1934578X0600100505]
[158]
Muthukrishnan, S.; Kumar, T.S.; Gangaprasad, A.; Maggi, F.; Rao, M.V. Phytochemical analysis, antioxidant and antimicrobial activity of wild and in vitro derived plants of Ceropegia thwaitesii Hook - An endemic species from Western Ghats, India. J. Genet. Eng. Biotechnol., 2018, 16(2), 621-630.
[http://dx.doi.org/10.1016/j.jgeb.2018.06.003] [PMID: 30733781]
[159]
Gao, N.; Sun, X.; Li, D.; Gong, E.; Tian, J.; Si, X.; Jiao, X.; Xing, J.; Wang, Y.; Meng, X.; Li, B. Optimization of anthocyanidins conversion using chokeberry pomace rich in polymeric proanthocyanidins and cellular antioxidant activity analysis. Lebensm. Wiss. Technol., 2020, 133, 109889.
[http://dx.doi.org/10.1016/j.lwt.2020.109889]
[160]
Murugesu, S.; Perumal, V.; Balan, T.; Fatinanthan, S.; Khatib, A.; Arifin, N.J.; Shukri, N.S.S.M.; Saleh, M.S.M.; Hin, L.W. The investigation of antioxidant and antidiabetic activities of Christia vespertilionis leaves extracts. S. Afr. J. Bot., 2020, 133, 227-235.
[http://dx.doi.org/10.1016/j.sajb.2020.07.015]
[161]
Muhammad, D.R.A.; Tuenter, E.; Patria, G.D.; Foubert, K.; Pieters, L.; Dewettinck, K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food Chem., 2021, 340, 127983.
[http://dx.doi.org/10.1016/j.foodchem.2020.127983] [PMID: 32919354]
[162]
Kar, P.; Dutta, S.; Chakraborty, A.K.; Roy, A.; Sen, S.; Kumar, A.; Lee, J.; Chaudhuri, T.K.; Sen, A. The antioxidant rich active principles of Clerodendrum sp. controls haloalkane xenobiotic induced hepatic damage in murine model. Saudi J. Biol. Sci., 2019, 26(7), 1539-1547.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.006] [PMID: 31762623]
[163]
Miranda Pedroso, T.F.D.; Bonamigo, T.R.; da Silva, J.; Vasconcelos, P.; Félix, J.M.; Cardoso, C.A.L.; Souza, R.I.C.; Dos Santos, A.C.; Volobuff, C.R.F.; Formagio, A.S.N.; Trichez, V.D.K. Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Biomed. Pharmacother., 2019, 111, 1383-1392.
[http://dx.doi.org/10.1016/j.biopha.2019.01.005] [PMID: 30841453]
[164]
de Abreu Pinheiro, F.; Ferreira Elias, L.; de Jesus Filho, M.; Uliana Modolo, M.; Gomes Rocha, J.C. Fumiere Lemos, M.; Scherer, R.; Soares Cardoso, W. Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes. Food Chem., 2021, 336, 127701.
[http://dx.doi.org/10.1016/j.foodchem.2020.127701] [PMID: 32781354]
[165]
Zhu, Y.; Yu, X.; Ge, Q.; Li, J.; Wang, D.; Wei, Y.; Ouyang, Z. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae. Int. J. Biol. Macromol., 2020, 157, 394-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.163] [PMID: 32339570]
[166]
Atere, T.G.; Akinloye, O.A.; Ugbaja, R.N.; Oko, D.A.; Dealtry, G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci. Hum. Wellness, 2018, 7(4), 266-272.
[http://dx.doi.org/10.1016/j.fshw.2018.09.004]
[167]
Goswami, S.; Das, R.; Ghosh, P.; Chakraborty, T.; Barman, A.; Ray, S. Comparative antioxidant and antimicrobial potentials of leaf successive extract fractions of poison bulb, Crinum asiaticum L. Ind. Crops Prod., 2020, 154, 112667.
[http://dx.doi.org/10.1016/j.indcrop.2020.112667]
[168]
Paudel, M.R.; Joshi, P.R.; Chand, K.; Sah, A.K.; Acharya, S.; Pant, B.; Pant, B. Antioxidant, anticancer and antimicrobial effects of In vitro developed protocorms of Dendrobium longicornu. Biotechnol. Rep. (Amst.), 2020, 28, e00527.
[http://dx.doi.org/10.1016/j.btre.2020.e00527] [PMID: 32983924]
[169]
Yang, L.; Liu, S.; Liu, R.; He, J. Bioassay-guided isolation of cyclooxygenase-2 inhibitory and antioxidant phenylpropanoid derivatives from the roots of Dendropanax dentiger. Bioorg. Chem., 2020, 104, 104211.
[http://dx.doi.org/10.1016/j.bioorg.2020.104211] [PMID: 32920357]
[170]
Barak, T.H.; Celep, E.; Inan, Y.; Yesialda, E. In vitro human digestion simulation of the bioavailability and antioxidant activity of phenolics from Sambucusebulus L. fruit extracts. Food Biosci., 2020, 37, 100711.
[http://dx.doi.org/10.1016/j.fbio.2020.100711]
[171]
Kiyekbayeva, L.; Mohamed, N.M.; Yerkebulan, O.; Mohamed, E.I.; Ubaidilla, D.; Nursulu, A.; Assem, M.; Srivedavyasasri, R.; Ross, S.A. Phytochemical constituents and antioxidant activity of Echinops albicaulis. Nat. Prod. Res., 2018, 32(10), 1203-1207.
[http://dx.doi.org/10.1080/14786419.2017.1323213] [PMID: 28475371]
[172]
Haddad, M.; Zein, S.; Shahrour, H.; Hamadeh, K.; Karaki, N.; Kanaan, H. Antioxidant activity of water-soluble polysaccharide extracted from Eucalyptus cultivated in Lebanon. Asian Pac. J. Trop. Biomed., 2017, 7(2), 157-160.
[http://dx.doi.org/10.1016/j.apjtb.2016.11.024]
[173]
Li, W.; Zhang, X.; He, Z.; Chen, Y.; Li, Z.; Meng, T.; Li, Y.; Cao, Y. In vitro and in vivo antioxidant activity of eucalyptus leaf polyphenols extract and its effect on chicken meat quality and cecum microbiota. Food Res. Int., 2020, 136, 109302.
[http://dx.doi.org/10.1016/j.foodres.2020.109302] [PMID: 32846514]
[174]
Badaoui, M.I.; Magid, A.A.; Voutquenne-Nazabadioko, L.; Benkhaled, M.; Harakat, D.; Robert, A.; Haba, H. Antioxidant activity-guided isolation of constituents from Euphorbia gaditana Coss. And their antioxidant and tyrosinase inhibitory activities. Phytochem. Lett., 2020, 39, 99-104.
[http://dx.doi.org/10.1016/j.phytol.2020.07.012]
[175]
Acemi, R.K.; Acemi, A.; Cakir, M.; Polat, E.G.; Ozen, F. Preliminary screening the antioxidant potential in vitro-propagated Amsonia orientalis: An example to sustainable use of rare medicinal plants in pharmaceutical studies. Sustain. Chem. Pharm., 2020, 17, 100302.
[http://dx.doi.org/10.1016/j.scp.2020.100302]
[176]
Samaei, S.P.; Ghorbani, M.; Tagliazucchi, D.; Martini, S.; Gotti, R.; Themelis, T.; Tesini, F.; Gianotti, A. Gallina Toschi, T.; Babini, E. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice. Food Chem., 2020, 330, 127120.
[http://dx.doi.org/10.1016/j.foodchem.2020.127120] [PMID: 32526646]
[177]
Abdellaoui, M.; Bouhlali, R.D.T.; Kasrati, A.; El-Rhaffari, L. The effect of domestication on seed yield, essential oil yield and antioxidant activities of fennel seed (Foeniculum vulgare Mill) grown in Moroccan oasis. J. Assoc. Arab Univ. Basic Appl. Sci., 2017, 24, 107-114.
[178]
Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness, 2019, 8(1), 67-72.
[http://dx.doi.org/10.1016/j.fshw.2019.03.004]
[179]
Mukthamba, P.; Srinivasan, K. Dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) alleviates oxidative stress in experimental myocardial infraction. Food Sci. Hum. Wellness, 2017, 6(2), 77-87.
[http://dx.doi.org/10.1016/j.fshw.2017.04.001]
[180]
Baba, W.N.; Tabasum, Q.; Muzzaffar, S.; Masoodi, F.A.; Wani, I.; Ganie, S.A.; Bhat, M.M. Some nutraceutical properties of fenugreek seeds and shoots (Trigonella foenum-graecum L.) from the high Himalayan region. Food Biosci., 2018, 23, 31-37.
[http://dx.doi.org/10.1016/j.fbio.2018.02.009]
[181]
Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Abayomi, O.O. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Mater. Sci. Energy Technol., 2019, 2(2), 349-355.
[http://dx.doi.org/10.1016/j.mset.2018.12.001]
[182]
Alkhalaf, M.I.; Hussein, R.H.; Hamza, A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J. Biol. Sci., 2020, 27(9), 2410-2419.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.005] [PMID: 32884424]
[183]
Viuda-Martos, M.; Sendra, E.; Sayas, E.; Pérez-Alvarez, J.A.; Fernández-López, J. Fig (Ficus carica) liquid co-products as new potential functional ingredient: Physico-chemical and in vitro antioxidant properties. Nat. Prod. Commun., 2015, 10(7), 1219-1223.
[http://dx.doi.org/10.1177/1934578X1501000721] [PMID: 26411015]
[184]
Lan, W.; Zhaojun, Z.; Zesheng, Z. Characterization of antioxidant activity of extracts from Flos Lonicerae. Drug Dev. Ind. Pharm., 2007, 33(8), 841-847.
[http://dx.doi.org/10.1080/03639040701378019] [PMID: 17729101]
[185]
Muhammad, H.; Qasim, M.; Ikram, A.; Versiani, M.A.; Tahiri, I.A.; Yasmeen, K.; Abbasi, M.W.; Azeem, M.; Ali, S.T.; Gul, B. Antioxidant and antimicrobial activities of Ixora coccinea root and quantification of phenolic compounds using HPLC. S. Afr. J. Bot., 2020, 135, 71-79.
[http://dx.doi.org/10.1016/j.sajb.2020.08.012]
[186]
Alqahtani, F.Y.; Aleanizy, F.S.; Mahmoud, A.Z.; Farshori, N.N.; Alfaraj, R.; Al-Sheddi, E.S.; Alsarra, I.A. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J. Biol. Sci., 2019, 26(5), 1089-1092.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.007] [PMID: 31303845]
[187]
Chen, I-N.; Ng, C-C.; Wang, C-Y.; Chang, T-L. Lactic fermentation and antioxidant activity of Zingiberaceae plants in Taiwan. Int. J. Food Sci. Nutr., 2009, 60(2)(Suppl. 2), 57-66.
[http://dx.doi.org/10.1080/09637480802375531] [PMID: 18946800]
[188]
Ali, A.M.A.; El-Nour, M.E.M.; Yagi, S.M. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J. Genet. Eng. Biotechnol., 2018, 16(2), 677-682.
[http://dx.doi.org/10.1016/j.jgeb.2018.03.003] [PMID: 30733788]
[189]
An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem., 2016, 197(Part B), 1292.
[190]
Idris, N.A.; Yasin, H.M.; Usman, A. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon, 2019, 5(5), e01717.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01717] [PMID: 31193231]
[191]
Jiang, B.; Chen, H.; Zhao, H.; Wu, W.; Jin, Y. Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L). Int. J. Biol. Macromol., 2020, 163, 694-701.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.027] [PMID: 32645494]
[192]
Saba, E.; Lee, Y.Y.; Kim, M.; Kim, S-H.; Hong, S-B.; Rhee, M.H. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J. Ginseng Res., 2018, 42(4), 577-584.
[http://dx.doi.org/10.1016/j.jgr.2018.07.004] [PMID: 30344431]
[193]
Kedage, V.V.; Tilak, J.C.; Dixit, G.B.; Devasagayam, T.P.A.; Mhatre, M. A study of antioxidant properties of some varieties of grapes (Vitis vinifera L.). Crit. Rev. Food Sci. Nutr., 2007, 47(2), 175-185.
[http://dx.doi.org/10.1080/10408390600634598] [PMID: 17364701]
[194]
Wang, S.; Amigo-Benavent, M.; Mateos, R.; Bravo, L.; Sarriá, B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. Int. J. Food Sci. Nutr., 2017, 68(2), 188-200.
[http://dx.doi.org/10.1080/09637486.2016.1228099] [PMID: 27609024]
[195]
Sandoval, G.; Thenoux, G.; Molenaar, A.A.A.; Gonzalez, M. The antioxidant effect of grape pomace in asphalt binder. Int. J. Pavement Eng., 2019, 20(2), 163-171.
[http://dx.doi.org/10.1080/10298436.2017.1279483]
[196]
Rajakumari, R.; Volova, T.; Oluwafemi, O.S.; Rajesh Kumar, S.; Thomas, S.; Kalarikkal, N. Grape seed extract-soluplus dispersion and its antioxidant activity. Drug Dev. Ind. Pharm., 2020, 46(8), 1219-1229.
[http://dx.doi.org/10.1080/03639045.2020.1788059] [PMID: 32643446]
[197]
Arteaga-Crespo, Y.; Radice, M.; Bravo-Sanchez, L.R.; García-Quintana, Y.; Scalvenzi, L. Optimisation of ultrasound-assisted extraction of phenolic antioxidants from Ilex guayusa Loes. leaves using response surface methodology. Heliyon, 2019, 6(1), e03043.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03043] [PMID: 31909247]
[198]
Tirillini, B.; Menghini, L.; Leporini, L.; Scanu, N.; Marino, S.; Pintore, G. Antioxidant activity of methanol extract of Helichrysum foetidum Moench. Nat. Prod. Res., 2013, 27(16), 1484-1487.
[http://dx.doi.org/10.1080/14786419.2012.722085] [PMID: 22963343]
[199]
Gokbulut, A.; Orhan, N.; Deliorman Orhan, D. Phenolic compounds characterization, carbohydrate digestive enzyme inhibitory and antioxidant activities of Hieracium pannosum Boiss. S. Afr. J. Bot., 2017, 108, 387-392.
[http://dx.doi.org/10.1016/j.sajb.2016.08.021]
[200]
Vidya, R.; Masilla, B.R.P.; Saranya, J.; Eganathan, P.; Jithin, M.M.; Kumar, N.P.A. Antioxidant activities of wood and leaf extracts of Hopea erosa. J. Biol. Active Prod. Nat., 2013, 3(2), 14-160.
[201]
Du, L.; Li, D.; Zhang, J.; Du, J.; Luo, Q.; Xiong, J. Elicitation of Lonicerajaponica Thunb suspension cell for enhancement of secondary metabolites and antioxidant activity. Ind. Crops Prod., 2020, 156, 112877.
[http://dx.doi.org/10.1016/j.indcrop.2020.112877]
[202]
Takuli, P.; Khulbe, K.; Kumar, P.; Parki, A.; Syed, A.; Elgorban, A.M. Phytochemical profiling, antioxidant and antibacterial efficacy of a native Himalayan Fern: Woodwardia unigemmata (Makino). Nakai. Saudi J. Biol. Sci., 2020, 27(8), 1961-1967.
[http://dx.doi.org/10.1016/j.sjbs.2020.06.006] [PMID: 32714019]
[203]
Oboh, G.; Raddatz, H.; Henle, T. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf. Int. J. Food Sci. Nutr., 2009, 60(2)(Suppl. 2), 124-134.
[http://dx.doi.org/10.1080/09637480902824131] [PMID: 19391031]
[204]
Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H.; Sirat, H.M. Chemical compositions, antioxidant and antimicrobial activity of the essential oils of Piper officinarum (Piperaceae). Nat. Prod. Commun., 2012, 7(12), 1659-1662.
[http://dx.doi.org/10.1177/1934578X1200701229] [PMID: 23413576]
[205]
Bouayed, J.; Piri, K.; Rammal, H.; Dicko, A.; Desor, F.; Younos, C.; Soulimani, R. Comparative evaluation of the antioxidant potential of some Iranian medicinal plants. Food Chem., 2007, 104(1), 364-368.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.069]
[206]
Pande, J.; Chanda, S. Determination of phytochemical profile and antioxidant efficacy of Lavendula bipinnata leaves collected during Magha Nakshatra days and Normal days using LC-QTOF-MS technique. J. Pharm. Biomed. Anal., 2020, 186, 113347.
[http://dx.doi.org/10.1016/j.jpba.2020.113347] [PMID: 32388222]
[207]
Sakulnarmrat, K.; Konczak, I. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chem., 2012, 134(2), 1011-1019.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.217] [PMID: 23107721]
[208]
Sakulnarmrat, K.; Fenech, M.; Thomas, P.; Konczak, I. Cytoprotective and pro-apoptotic activities of native Australian herbs polyphenolic-rich extracts. Food Chem., 2013, 136(1), 9-17.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.089] [PMID: 23017386]
[209]
Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 2019, 5(12), e03044.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03044] [PMID: 31890968]
[210]
Zhou, W.; Lv, T.; Hu, Y.; Liu, W.; Bi, Q.; Jin, C.; Lu, L.; Lin, X. Effect of nitrogen limitation on antioxidant qualities is highly associated with genotypes of lettuce (Lactucasativa L.). Pedosphere, 2020, 30(3), 414-425.
[http://dx.doi.org/10.1016/S1002-0160(19)60833-7]
[211]
Wang, N.; Pei, D.; Yu, P.; Huang, X.; Zhao, L.; Wei, J.; Liu, J.; Di, D. Strategy for the separation of strongly polar antioxidant compounds from Lycium barbarum L. via high-speed counter-current chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1153, 122268.
[http://dx.doi.org/10.1016/j.jchromb.2020.122268] [PMID: 32739789]
[212]
Thomasson, M.J.; Diego-Taboada, A.; Barrier, S.; Martin-Guyout, J.; Amedjou, E.; Atkin, S.L.; Queneau, Y.; Boa, A.N.; Mackenzie, G. Sporopollening exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil. Ind. Crops Prod., 2020, 154, 112714.
[http://dx.doi.org/10.1016/j.indcrop.2020.112714]
[213]
Lobo, F.A.; Nascimento, M.A.; Domingues, J.R.; Falcão, D.Q.; Hernanz, D.; Heredia, F.J.; de Lima Araujo, K.G. Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chem., 2017, 221, 258-266.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.080] [PMID: 27979201]
[214]
Ling, J.K.U.; Ho, B.K.; Chan, Y.S.; Nandong, J.; Chin, S.F. Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant property. Lebensm. Wiss. Technol., 2020, 133, 110096.
[http://dx.doi.org/10.1016/j.lwt.2020.110096]
[215]
Nndwammbi, M.; Ligavha-Mbelengwa, M.H.; Anokwuru, C.P.; Ramaite, I.D.I. The effects of seasonal debarking on physical structure, polyphenolic content and antibacterial and antioxidant activities of Sclerocarya birrea in the Nylsvley nature reserve. S. Afr. J. Bot., 2018, 118, 138-142.
[http://dx.doi.org/10.1016/j.sajb.2018.06.018]
[216]
Mohammad, N.A.; Abang Zaidel, D.N.; Muhamad, I.I.; Abdul Hamid, M.; Yaakob, H.; Mohd Jusoh, Y.M. Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwaveassisted extraction. Heliyon, 2019, 5(10), e02571.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02571] [PMID: 31667409]
[217]
Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgar and subsp. hirtum) essential oils. Ind. Crops Prod., 2015, 70, 178-184.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.030]
[218]
Akinloye, D.I.; Sunmonu, T.O.; Omotainse, S.O.; Balogun, E.A. Evaluation of antioxidant potentials of Morinda morindoides leaf extract. Toxicol. Environ. Chem., 2015, 97(2), 155-169.
[http://dx.doi.org/10.1080/02772248.2015.1031667]
[219]
Aju, B.Y.; Rajalakshmi, R.; Mini, S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon, 2019, 5(12), e02935.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02935] [PMID: 31872118]
[220]
Harun, H.; Daud, A.; Hadju, V.; Arief, C.P.P.; Talebe, T. Rahma; Wahyuni, R.D.; Sumarni; Miranti; Amri, I.; Faris, A.; Mallongi, A. Antioxidant effect of Moringa oleifera leaves in hemoglobin oxidation compare with vitamin C. Enferm. Clin., 2020, 30(4), 18-21.
[http://dx.doi.org/10.1016/j.enfcli.2019.10.033]
[221]
Kekana, T.W.; Marume, U.; Muya, M.C.; Nherera-Chokuda, F.V. Periparturient antioxidant enzymes, haematological profile and milk production of dairy cows supplemented with Moringa oleifera leaf meal. Anim. Feed Sci. Technol., 2020, 268, 114606.
[http://dx.doi.org/10.1016/j.anifeedsci.2020.114606]
[222]
Sargowo, D.; Ovianti, N.; Susilowati, E.; Ubaidillah, N.; Widya Nugraha, A. Vitriyaturrida; Siwi Proboretno, K.; Failasufi, M.; Ramadhan, F.; Wulandari, H.; Waranugraha, Y.; Hayuning Putri, D. The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients. Indian Heart J., 2018, 70(5), 608-614.
[http://dx.doi.org/10.1016/j.ihj.2017.12.007] [PMID: 30392496]
[223]
Thummajitsakul, S.; Samaikam, S.; Tacha, S.; Silprasit, K. Study on FTIR spectroscopy, total phenolic content, antioxidant activity and anti-amylase activity of extracts and different tea forms of Garcinia schomburgkiana leaves. Lebensm. Wiss. Technol., 2020, 134, 110005.
[http://dx.doi.org/10.1016/j.lwt.2020.110005]
[224]
Li, M.; Chen, X.; Deng, J.; Ouyang, D.; Wang, D.; Liang, Y.; Chen, Y.; Sun, Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem., 2020, 332, 127429.
[http://dx.doi.org/10.1016/j.foodchem.2020.127429] [PMID: 32645678]
[225]
Ajiboye, T.O.; Salawu, N.A.; Yakubu, M.T.; Oladiji, A.T.; Akanji, M.A.; Okogun, J.I. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug Chem. Toxicol., 2011, 34(2), 109-115.
[http://dx.doi.org/10.3109/01480545.2010.536767] [PMID: 21314460]
[226]
Guthrie, F.; Wang, Y.; Neeve, N.; Quek, S.Y.; Mohammadi, K.; Baroutian, S. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod. Process., 2020, 122, 136-144.
[http://dx.doi.org/10.1016/j.fbp.2020.05.002]
[227]
Jiang, Y.; Ng, T.B.; Wang, C.R.; Li, N.; Wen, T.Y.; Qiao, W.T.; Zhang, D.; Cheng, Z.H.; Liu, F. First isolation of tryptophan from edible lotus (Nelumbo nucifera Gaertn) rhizomes and demonstration of its antioxidant effects. Int. J. Food Sci. Nutr., 2010, 61(4), 346-356.
[http://dx.doi.org/10.3109/09637480903427913] [PMID: 20465432]
[228]
Wathoni, N.; Yuan, Shan C.; Yi Shan, W.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon, 2019, 5(8), e02299.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02299] [PMID: 31453406]
[229]
Dutta, S.; Ray, S. Evaluation of in vitro free radical scavenging activity of leaf extract fractions of Manilkara hexandra (Roxb) Dubard in relation to total phenolic contents. Int. J. Pharm. Pharm. Sci., 2015, 7(10), 296-301.
[230]
Dutta, S.; Ray, S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. J. King Saud Univ. Sci., 2020, 32(1), 643-647.
[http://dx.doi.org/10.1016/j.jksus.2018.09.015]
[231]
Chick, C.N.; Misawa-Suzuki, T.; Suzuki, Y.; Usuki, T. Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorg. Med. Chem. Lett., 2020, 30(22), 127526.
[http://dx.doi.org/10.1016/j.bmcl.2020.127526] [PMID: 32882415]
[232]
Wang, F.; Long, S.; Zhang, J.; Yu, J.; Xiong, Y.; Zhou, W.; Qiu, J.; Jiang, H. Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. Food Biosci., 2020, 37, 100691.
[http://dx.doi.org/10.1016/j.fbio.2020.100691]
[233]
Sangsopha, J.; Moongngarm, A.; Johns, N.P.; Grigg, N.P. Optimization of pasteurized milk with soymilk powder and mulberry leaf tea based on melatonin, bioactive compounds and antioxidant activity using response surface methodology. Heliyon, 2019, 5(11), e02939.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02939] [PMID: 31844777]
[234]
Krishna, H.; Singh, D.; Singh, R.S.; Kumar, L.; Sharma, B.D.; Saroji, P.L. Morphological and antioxidant characteristics of mulberry (Morus spp.) genotypes. J. Saudi Soc. Agric. Sci., 2020, 19(2), 136-145.
[http://dx.doi.org/10.1016/j.jssas.2018.08.002]
[235]
Yao, X-H.; Shen, Y-S.; Hu, R-Z.; Xu, M.; Huang, J-X.; He, C-X.; Cao, F-L.; Fu, Y-J.; Zhang, D-Y.; Zhao, W-G.; Liu, L.; Chen, T. The antioxidant activity and composition of the seed oil of mulberry cultivars. Food Biosci., 2020, 37, 100709.
[http://dx.doi.org/10.1016/j.fbio.2020.100709]
[236]
Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med., 2020, 11(1), 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003] [PMID: 30120058]
[237]
Yakubu, O.F.; Adebayo, A.H.; Iweala, E.E.J.; Adelani, I.B.; Ishola, T.A.; Zhang, Y-J. Anti-inflammatory and antioxidant activities of fractions and compound from Ricinodendron heudelotii (Baill.) Heliyon, 2019, 5(11), e02779.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02779] [PMID: 31844713]
[238]
Gupta, M.; Mazumder, U.K.; Thamilselvan, V.; Manikandan, L.; Senthilkumar, G.P.; Suresh, R.; Kakoti, B.K. Potential hepatoprotective effect and antioxidant role of methanol extract of Oldenlandia umbellate in carbon tetrachloride induced hepatotoxicity in wistar rats. Iran J. Pharmacol. Ther., 2007, 6(1), 5-9.
[239]
Arami, S.; Ahmadi, A.; Haeri, S.A. The radioprotective effects of Origanum vulgare extract against genotoxicity induced by (131) I in human blood lymphocyte. Cancer Biother. Radiopharm., 2013, 28(3), 201-206.
[http://dx.doi.org/10.1089/cbr.2012.1284] [PMID: 23413802]
[240]
Habibi, E.; Shokrzadeh, M.; Ahmadi, A.; Chabra, A.; Naghshvar, F.; Keshavarz-Maleki, R. Genoprotective effects of Origanum vulgare ethanolic extract against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Pharm. Biol., 2015, 53(1), 92-97.
[http://dx.doi.org/10.3109/13880209.2014.910674] [PMID: 25519883]
[241]
Habibi, E.; Shokrzadeh, M.; Chabra, A.; Naghshvar, F.; Keshavarz-Maleki, R.; Ahmadi, A. Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice. Pharm. Biol., 2015, 53(1), 10-15.
[http://dx.doi.org/10.3109/13880209.2014.908399] [PMID: 25026348]
[242]
Zengin, G.; Ferrante, C.; Orlando, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L.; Aumeeruddy, M.Z.; Aktumsek, A.; Mahmoodally, M.F.; Angelini, P.; Covino, S.; Venanzoni, R.; Tirillini, B.; Menghini, L. Chemical profiling and pharmaco-toxicological activity of Origanum spiyleum extracts: Exploring for novel sources for potential therapeutic agents. J. Food Biochem., 2019.
[243]
de Torre, M.P.; Vizmanos, J.L.; Cavero, R.Y.; Calvo, M.I. Improvement of antioxidant activity of oregano (Origanum vulgare L.) with an oral pharmaceutical form. Biomed. Pharmacother., 2020, 129, 110424.
[http://dx.doi.org/10.1016/j.biopha.2020.110424] [PMID: 32563980]
[244]
Sokmen, A.; Abdel-Baki, A-A.S.; Al-Malki, E.S.; Al-Quraishy, S.; Abdel-Haleem, H.M. Constituents of essential oil of Origanum minutiflorum and its in vitro antioxidant, scolicidal and anticancer activities. J. King Saud Univ. Sci., 2020, 32(4), 2377-2382.
[http://dx.doi.org/10.1016/j.jksus.2020.03.018]
[245]
Liu, Y.; Li, Y.; Ke, Y.; Li, C.; Zhang, Z.; Liu, A.; Luo, Q.; Lin, B.; He, J.; Wu, W. Processing of four different cooking methods of Oudemansiella radicata: Effects on in vitro bioaccessibility of nutrients and antioxidant activity. Food Chem., 2021, 337, 128007.
[http://dx.doi.org/10.1016/j.foodchem.2020.128007] [PMID: 32919278]
[246]
Nipate, S.S.; Tiwari, A.H. Antioxidant and immunomodulatory properties of Spilanthes oleracea with potential effect in chronic fatigue syndrome infirmity. J. Ayurveda Integr. Med., 2020, 11(2), 124-130.
[http://dx.doi.org/10.1016/j.jaim.2017.08.008] [PMID: 30455072]
[247]
Zhang, X.; Li, X.; Su, M.; Du, J.; Zhou, H.; Li, X.; Ye, Z. A comparative UPLC-Q-TOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity. Food Res. Int., 2020, 137, 109531.
[http://dx.doi.org/10.1016/j.foodres.2020.109531] [PMID: 33233161]
[248]
Wee, J.H.; Park, K.H. Isolation of 4-Hydroxycinnamic acid, 3-methoxy-4-hydroxycinnamic acid, and 3, 4-dihydroxybenzoic acid with antioxidative and antimicrobial activity from peanut (Arachis hypogaea). Food Sci. Biotechnol., 2001, 10(5), 84-89.
[249]
Wee, J.H.; Moon, J.H.; Eun, J.B.; Chung, J.H.; Kim, Y.G.; Park, K.H. Isolation and identification of antioxidants from peanut shells and the relationship between structure and antioxidant activity. Food Sci. Biotechnol., 2007, 16(1), 116-122.
[250]
Adhikari, B.; Dhungana, S.K.; Ali, M.W.; Adhikari, A.; Kim, I-D.; Shin, D-H. Antioxidant activities, polyphenol, flavonoid, and amino acid contens in peanut shell. J. Saudi Soc. Agric. Sci., 2019, 18(4), 437-442.
[http://dx.doi.org/10.1016/j.jssas.2018.02.004]
[251]
Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Patrich, G.; Matieu, M.; Ammar, S.; Ali, S.M.; Laurent, G.; Zine, M.; Anouni, M. Antibacterial, antiviral and antioxidant activities of aerial part extracts of Peganum harmala L. grown in Tunisia. Toxicol. Environ. Chem., 2010, 92(7), 1283-1292.
[http://dx.doi.org/10.1080/02772240903450736]
[252]
Gallia, M.C.; Bachmeier, E.; Ferrari, A.; Queralt, I.; Mazzeo, M.A.; Bongiovanni, G.A. Pehuén (Araucaria araucana) seed residues are a valuable source of natural antioxidants with nutraceutical, chemoprotective and metal corrosion-inhibiting properties. Bioorg. Chem., 2020, 104, 104175.
[http://dx.doi.org/10.1016/j.bioorg.2020.104175] [PMID: 32920353]
[253]
Biswas, A.; Bhattacharya, A.; Chattopadhyay, A.; Chakravarty, A.; Pal, S. Antioxidants and antioxidant activity in green pungent peppers. Int. J. Veg. Sci., 2011, 17(3), 224-232.
[http://dx.doi.org/10.1080/19315260.2010.543451]
[254]
Barbouchi, M.; Elamrani, K.; El Idrissi, M.; Choukrad, M. A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. J. King Saud Uni., 2020, 32, 302-306.
[255]
Djebari, S.; Wrona, M.; Boudria, A.; Salafranca, J.; Nerin, C.; Bedjaoui, K.; Madani, K. Study of bioactive volatile compounds from different parts of Pistacia lentiscus L. extracts and their antioxidant and antibacterial activities for new active packaging application. Food Control, 2021, 120, 107514.
[http://dx.doi.org/10.1016/j.foodcont.2020.107514]
[256]
Fraga, L.N.; Oliveira, A.K.D.S.; Aragao, B.P.; de Souza, D.A.; dos Santos, E.W.P.; Melo, J.A.; de Oliveira, A.M.; Junior, A.W.; Correa, C.B.; de Andrade Wartha, E.R.S.; Bacci, L.; de Carvalho, M.M. Mass spectrometry characterization, antioxidant activity, and cytotoxicity of the peel and pulp extracts of Pitomba. Food Chem., 2020.
[http://dx.doi.org/10.1016/j.foodchem.2020.127929] [PMID: 32920302]
[257]
Barbosa, J.R.S; Freitas, M.M Oliveira, L.C.; S Martins, L.H.; Almada-Vilhena, A.O.; Oliveira, R.M.; Pieczarka, J.C.; B Brasil, D.D.S.; Carvalho Junior, R.N. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chem., 2020, 330, 127173.
[http://dx.doi.org/10.1016/j.foodchem.2020.127173] [PMID: 32569930]
[258]
Lee, Y.H.; Choo, C.; Waisundara, V.Y. Antioxidant and starch hydrolase inhibitory properties of extracts of the antidiabetic herb Pterocarpusmarsupium. Isr. J. Plant Sci., 2016, 63(2), 124-133.
[http://dx.doi.org/10.1080/07929978.2015.1105477]
[259]
Chen, Y.; Wang, Y.; Xu, L.; Jia, Y.; Xue, Z.; Zhang, M.; Phisalaphong, M.; Chen, H. Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. Lebensm. Wiss. Technol., 2020, 134, 110007.
[http://dx.doi.org/10.1016/j.lwt.2020.110007]
[260]
Boussahel, S.; Cacciola, F.; Dahamna, S.; Mondello, L.; Saija, A.; Cimino, F.; Speciale, A.; Cristani, M. Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Nat. Prod. Res., 2018, 32(16), 1911-1919.
[http://dx.doi.org/10.1080/14786419.2017.1356835] [PMID: 28738692]
[261]
Gözlekçi, S.; Saraçoğlu, O.; Onursal, E.; Ozgen, M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn. Mag., 2011, 7(26), 161-164.
[http://dx.doi.org/10.4103/0973-1296.80681] [PMID: 21716925]
[262]
Kam, A.; Li, K.M.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, G.Q. Variability of the polyphenolic content and antioxidant capacity of methanolic extracts of pomegranate peel. Nat. Prod. Commun., 2013, 8(6), 707-710.
[http://dx.doi.org/10.1177/1934578X1300800607]
[263]
Desta, M.; Molla, A.; Yusuf, Z. Characterization of physicochemical properties and antioxidant activity of oil from seed, leaf and stem of purslane (Portulaca oleracea L.). Biotechnol. Rep. (Amst.), 2020, 27, e00512.
[http://dx.doi.org/10.1016/j.btre.2020.e00512] [PMID: 32817842]
[264]
Gautam, V.; Sharma, A.; Arora, S.; Bhardwaj, R.; Ahmad, A.; Ahamad, B.; Ahmad, P. In-vitro antioxidant, antimutagenic and cancer cell growth inhibition activities of Rhododendron arboreum leaves and flowers. Saudi J. Biol. Sci., 2020, 27(7), 1788-1796.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.030] [PMID: 32565697]
[265]
Dolek, U.; Gunes, M.; Genc, N.; Elmastas, M. Total phenolic compound and antioxidant activity changes in rosehip (Rosa sp.) during ripening. J. Agric. Sci. Technol., 2018, 20, 817-828.
[266]
Belmokhtar, Z.; Harche, M.K. In vitro antioxidant activity of Retama monosperma (L.) Boiss. Nat. Prod. Res., 2014, 28(24), 2324-2329.
[http://dx.doi.org/10.1080/14786419.2014.934237] [PMID: 25033217]
[267]
Pintore, G.; Marchetti, M.; Chessa, M.; Sechi, B.; Scanu, N.; Mangano, G.; Tirillini, B. Rosmarinus officinalis L.: Chemical modifications of the essential oil and evaluation of antioxidant and antimicrobial activity. Nat. Prod. Commun., 2009, 4(12), 1685-1690.
[http://dx.doi.org/10.1177/1934578X0900401215] [PMID: 20120107]
[268]
Li, P.; Yang, X.; Lee, W.J.; Huang, F.; Wang, Y.; Li, Y. Comparison between synthetic and rosemary-based antioxidants for the deep frying of French fries in refined soybean oils evaluated by chemical and non-destructive rapid methods. Food Chem., 2021, 335, 127638.
[http://dx.doi.org/10.1016/j.foodchem.2020.127638] [PMID: 32736158]
[269]
Calderon-Chiu, C.; Calderon-Santoyo, M.; Herman-Lara, E.; Ragazzo-Sanchez, J.A. Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, technofunctional properties and antioxidant capacity. Food Hydrocoll., 2020.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106319]
[270]
Chai, T-T.; Xiao, J.; Mohana Dass, S.; Teoh, J-Y.; Ee, K-Y.; Ng, W-J.; Wong, F-C. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem., 2021, 340, 127876.
[http://dx.doi.org/10.1016/j.foodchem.2020.127876] [PMID: 32871354]
[271]
Dkhil, M.A.; Thagfan, F.A.; Hassan, A.S.; Al-Shaebi, E.M.; Abdel-Gaber, R.; Al-Quraishy, S. Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi J. Biol. Sci., 2019, 26(6), 1223-1226.
[http://dx.doi.org/10.1016/j.sjbs.2019.02.006] [PMID: 31516352]
[272]
Woźniak, D.; Dryś, A.; Matkowski, A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat. Prod. Res., 2015, 29(16), 1567-1570.
[http://dx.doi.org/10.1080/14786419.2014.983920] [PMID: 25427178]
[273]
Ruslan, K.; Happyniar, S.; Fidrianny, I. Antioxidant potential of two varieties of Sesamum indicum L. collected from Indonesia. J. Taibah Univ. Med. Sci., 2018, 13(3), 211-218.
[http://dx.doi.org/10.1016/j.jtumed.2018.02.004] [PMID: 31435326]
[274]
Rutkowska, M.; Balcerczak, E.; Swiechowski, R.; Dubicka, M.; Olszewska, M.A. Seasonal variation in phenylpropanoid biosynthesis and in vitro antioxidant activity of Sorbus domestica leaves: Harvesting time optimization for medical application. Ind. Crops Prod., 2020, 156, 112858.
[http://dx.doi.org/10.1016/j.indcrop.2020.112858]
[275]
Dykes, L.; Rooney, W.L.; Rooney, L.W. Evaluation of phenolic and antioxidant activity of black sorghum hybrids. J. Cereal Sci., 2013, 58(2), 278-283.
[http://dx.doi.org/10.1016/j.jcs.2013.06.006]
[276]
Irondi, E.A.; Adegoke, B.M.; Effion, E.S.; Oyewo, S.O.; Alamu, E.O.; Boligon, A.A. Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. Food Sci. Hum. Wellness, 2019, 8(2), 142-148.
[http://dx.doi.org/10.1016/j.fshw.2019.03.012]
[277]
Cui, J.; Xia, P.; Zhang, L.; Hu, Y.; Xie, Q.; Xiang, H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem., 2020, 333, 127527.
[http://dx.doi.org/10.1016/j.foodchem.2020.127527] [PMID: 32683263]
[278]
Bursal, E.; Taslimi, P.; Goren, A.C.; Gulcin, I. Assessment of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal. Agric. Biotechnol., 2020, 28, 101711.
[http://dx.doi.org/10.1016/j.bcab.2020.101711]
[279]
Leporini, L.; Menghini, L.; Foddai, M.; Petretto, G.L.; Chessa, M.; Tirillini, B.; Pintore, G. Antioxidant and antiproliferative activity of Stachys glutinosa L. ethanol extract. Nat. Prod. Res., 2015, 29(10), 899-907.
[http://dx.doi.org/10.1080/14786419.2014.955490] [PMID: 25205114]
[280]
Söhretoğlu, D.; Genç, Y.; Harput, Ü.S.; Sabuncuoğlu, S.; Soral, M.; Renda, G.; Liptaj, T. Phytochemical content, antioxidant and cytotoxic activities of Sedum spurium. Nat. Prod. Commun., 2016, 11(11), 1693-1696.
[http://dx.doi.org/10.1177/1934578X1601101117] [PMID: 30475509]
[281]
Ahouagi, V.B.; Mequelino, D.B.; Tavano, O.L.; Garcia, J.A.D.; Nachtigall, A.M.; Vilas Boas, B.M. Physicochemical characteristics, antioxidant activity, and acceptability of strawberry-enriched ketchup sauces. Food Chem., 2021, 340, 127925.
[http://dx.doi.org/10.1016/j.foodchem.2020.127925] [PMID: 32889213]
[282]
Ji, J.; Yang, X.; Flavel, M.; Shields, Z.P-I.; Kitchen, B. Antioxidant and anti-diabetic functions of a polyphenol-rich sugarcane extract. J. Am. Coll. Nutr., 2019, 38(8), 670-680.
[http://dx.doi.org/10.1080/07315724.2019.1587323] [PMID: 31008696]
[283]
Mehdi, W.A.; Yusof, F.; Farhan, L.O.; Mehde, A.A.; Raus, R.A. Levels of antioxidant enzymes and alkaline protease from pulp and peel of sunflower. Asian Pac. J. Trop. Biomed., 2017, 7(6), 533-537.
[http://dx.doi.org/10.1016/j.apjtb.2017.05.002]
[284]
Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind. Crops Prod., 2020, 154, 112640.
[http://dx.doi.org/10.1016/j.indcrop.2020.112640]
[285]
Vladic, J.; Zekovic, Z.; Cvejin, A.; Adamovic, D.; Vidovic, S.S. Optimizing of Satureja montana extraction process considering phenolic antioxidants and antioxidant activity. Sep. Sci. Technol., 2014, 49(13), 2066-2072.
[http://dx.doi.org/10.1080/01496395.2014.908218]
[286]
Almeida, I.F.; Maleckova, J.; Saffi, R.; Monteiro, H.; Góios, F.; Amaral, M.H.; Costa, P.C.; Garrido, J.; Silva, P.; Pestana, N.; Bahia, M.F. Characterization of an antioxidant surfactant-free topical formulation containing Castanea sativa leaf extract. Drug Dev. Ind. Pharm., 2015, 41(1), 148-155.
[http://dx.doi.org/10.3109/03639045.2013.850712] [PMID: 24188328]
[287]
Habinshuti, I.; Mu, T-H.; Zhang, M. Ultrasound microwaveassisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrason. Sonochem., 2020, 69, 105262.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105262] [PMID: 32707458]
[288]
Franco-Arnedo, G.; Buelvas-Puello, L.M.; Miranda-Lasprilla, D.; Martinez-Correa, H.A.; Parada-Alfonso, F. Obtaining antioxidant extracts from tangerine (C. reticulate var. Arrayana) peels by modified supercritical CO2 and their use as protective agent against the lipid oxidation of a mayonnaise. J. Supercrit. Fluids, 2020, 165, 104957.
[http://dx.doi.org/10.1016/j.supflu.2020.104957]
[289]
Juan-Badaturuge, M.; Habtemariam, S.; Jackson, C.; Thomas, M.J.K. Antioxidant principles of Tanacetum vulgare L. aerial parts. Nat. Prod. Commun., 2009, 4(11), 1561-1564.
[http://dx.doi.org/10.1177/1934578X0900401121] [PMID: 19967991]
[290]
Robinson, E.E.; Maxwell, S.R.J.; Thorpe, G.H.G. An investigation of the antioxidant activity of black tea using enhanced chemiluminescence. Free Radic. Res., 1997, 26(3), 291-302.
[http://dx.doi.org/10.3109/10715769709097807] [PMID: 9161850]
[291]
Enko, J. Gliszczyńska-Świgło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2015, 32(8), 1234-1242.
[http://dx.doi.org/10.1080/19440049.2015.1049218] [PMID: 26035225]
[292]
Nibir, Y.M.; Sumit, A.F.; Akhand, A.A.; Ahsan, N.; Hossain, M.S. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac. J. Trop. Biomed., 2017, 7(4), 352-357.
[http://dx.doi.org/10.1016/j.apjtb.2017.01.005]
[293]
Gulua, L.; Nikolaishvili, L.; Jgenti, M.; Turmanidze, T.; Dzneladze, G. Polyphenol content, anti-lipase and antioxidant activity of teas made in Georgia. Ann. Agrar. Sci., 2018, 16(3), 357-361.
[http://dx.doi.org/10.1016/j.aasci.2018.06.006]
[294]
Chen, N.; Han, B.; Fan, X.; Cai, F.; Ren, F.; Xu, M.; Zhong, J.; Zhang, Y.; Ren, D.; Yi, L. Uncovering the antioxidant characteristics of black tea by coupling in vitro free radical scavenging assay with UHPLC-HRMS analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1145, 122092.
[http://dx.doi.org/10.1016/j.jchromb.2020.122092] [PMID: 32305712]
[295]
Makanjuola, S.A.; Enujiugha, V.N.; Omoba, O.S.; Sanni, D.M. Modelling and predicting of antioxidant properties of tea (Camellia sinensis (L.) Kuntze) leaf. Sci Afr, 2020, 8, e00455.
[296]
Paiva, L.; Lima, E.; Motta, M.; Marcone, M.; Baptista, J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Curr. Res. Food Sci., 2020, 3, 227-234.
[http://dx.doi.org/10.1016/j.crfs.2020.07.004] [PMID: 33426532]
[297]
Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr., 2020, 6(2), 115-123.
[http://dx.doi.org/10.1016/j.aninu.2020.01.001] [PMID: 32542190]
[298]
Spencer, J.P.E.; Kuhnle, G.G.C.; Hajirezaei, M.; Mock, H-P.; Sonnewald, U.; Rice-Evans, C. The genotypic variation of the antioxidant potential of different tomato varieties. Free Radic. Res., 2005, 39(9), 1005-1016.
[http://dx.doi.org/10.1080/10715760400022293] [PMID: 16087482]
[299]
Kelkel, M.; Schumacher, M.; Dicato, M.; Diederich, M. Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res., 2011, 45(8), 925-940.
[http://dx.doi.org/10.3109/10715762.2011.564168] [PMID: 21615277]
[300]
Mahieddine, B.; Amina, B.; Faouzi, S.M.; Sana, B.; Wided, D. Effects of microwave heating on the antioxidant activities of tomato (Solanum lycopersicum). Ann. Agric. Sci., 2018, 63(2), 135-139.
[http://dx.doi.org/10.1016/j.aoas.2018.09.001]
[301]
Alenazi, M.M.; Shafiq, M.; Alsadon, A.A.; Alhelal, I.M.; Alhamdan, A.M.; Solieman, T.H.I.; Ibrahim, A.A.; Shady, M.R.; Saad, M.A.O. Non-destructive assessment of flesh firmness and dietary antioxidants of greenhouse-grown tomato (Solanum lycopersicum L.) at different fruit maturity stages. Saudi J. Biol. Sci., 2020, 27(10), 2839-2846.
[http://dx.doi.org/10.1016/j.sjbs.2020.07.004] [PMID: 32994744]
[302]
Azabou, S.; Sebii, H.; Taheur, F.B.; Abid, Y.; Jridi, M.; Nasri, M. Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Biosci., 2020, 36, 100664.
[http://dx.doi.org/10.1016/j.fbio.2020.100664]
[303]
Bhat, N.A.; Wani, I.A.; Hamdani, A.M. Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon, 2020, 6(1), e03042.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03042] [PMID: 31989047]
[304]
Karthika, K.; Gargi, G.; Jamuna, S.; Paulsamy, S.; Ajmal Ali, M.; Al-Hemaid, F.; Soliman Elshikh, M.; Lee, J. The potential of antioxidant activity of methanolic extract of Coscinium fenestratum (Goetgh.) Colebr (Menispermaceae). Saudi J. Biol. Sci., 2019, 26(5), 1037-1042.
[http://dx.doi.org/10.1016/j.sjbs.2018.08.010] [PMID: 31303838]
[305]
Rodrigues, J.S.; Valle, C.P.D.; Uchoa, A.F.J.; Ramos, D.M.; Ponte, F.A.F.D.; Rios, M.A.D.S.; Malveira, J.D.Q.; Ricard, N.M.P.S. Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renew. Energy, 2020, 156, 1100-1106.
[http://dx.doi.org/10.1016/j.renene.2020.04.153]
[306]
Mahboubi, M. Antimicrobial and antioxidant activity of Varthemia persica DC extracts. J. Biol. Act. Prod. Nat., 2016, 6(1), 78-83.
[307]
Dhanasekaran, S. Phytochemical characteristics of aerial part of Cissus quadrangularis (L) and its in-vitro inhibitory activity against leukemic cells and antioxidant properties. Saudi J. Biol. Sci., 2020, 27(5), 1302-1309.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.005] [PMID: 32346339]
[308]
Voravuthikunchai, S.P.; Kanchanapoom, T.; Sawangjaroen, N.; Hutadilok-Towatana, N. Antioxidant, antibacterial and antigiardial activities of Walsura robusta Roxb. Nat. Prod. Res., 2010, 24(9), 813-824.
[http://dx.doi.org/10.1080/14786410902819152] [PMID: 20461627]
[309]
Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol., 2011, 58(2), 203-209.
[http://dx.doi.org/10.18388/abp.2011_2266] [PMID: 21503279]
[310]
Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind. Crops Prod., 2020, 152, 112570.
[http://dx.doi.org/10.1016/j.indcrop.2020.112570]
[311]
Marmitt, D.J.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res., 2021, 35(9), 4703-4726.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[312]
Shahrajabian, M.H.; Sun, W.; Marmitt, D.J.; Cheng, Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. Clin. Phytoscience, 2021, 7(50), 1-7.
[http://dx.doi.org/10.1186/s40816-021-00288-y]
[313]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet. Resour. Crop Evol., 2021, 68(5), 1709-1730.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[314]
Barroso-González, J.; García-Expósito, L.; Puigdomènech, I.; de Armas-Rillo, L.; Machado, J-D.; Blanco, J.; Valenzuela-Fernández, A. Viral infection: Moving through complex and dynamic cellmembrane structures. Commun. Integr. Biol., 2011, 4(4), 398-408.
[http://dx.doi.org/10.4161/cib.16716] [PMID: 21966556]
[315]
Kalyani, P.; Kamaruz, Z. Antiviral activity of some Indian medicinal herbs. Int. J. Pharm. Pract., 2013, 6(2), 13-15.
[316]
Wee, L.E.; Ko, K.K.K.; Ho, W.Q.; Kwek, G.T.C.; Tan, T.T.; Wijaya, L. Community-acquired viral respiratory infections amongst hospitalized inpatients during a COVID-19 outbreak in Singapore: Co-infection and clinical outcomes. J. Clin. Virol., 2020, 128, 104436.
[http://dx.doi.org/10.1016/j.jcv.2020.104436] [PMID: 32447256]
[317]
Khan, M.T.H.; Ather, A.; Thompson, K.D.; Gambari, R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res., 2005, 67(2), 107-119.
[http://dx.doi.org/10.1016/j.antiviral.2005.05.002] [PMID: 16040137]
[318]
Mehrbod, P.; Abdalla, M.A.; Njoya, E.M.; Ahmed, A.S.; Fotouhi, F.; Farahmand, B.; Gado, D.A.; Tabatabaian, M.; Fasanmi, O.G.; Eloff, J.N.; McGaw, L.J.; Fasina, F.O. South African medicinal plant extracts active against influenza A virus. BMC Complement. Altern. Med., 2018, 18(1), 112.
[http://dx.doi.org/10.1186/s12906-018-2184-y] [PMID: 29587734]
[319]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[320]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronaviruses: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 1-22.
[321]
Figueredo, G.; Ozcan, M.M.; Chalchat, J.C.; Bagci, Y.; Chalard, P. Chemical composition of essential oil of Hyssopus officinalis L. and Origanum acutidens. J. Essent. Oil-Bear. Plants, 2012, 15(2), 300-306.
[http://dx.doi.org/10.1080/0972060X.2012.10644051]
[322]
Zawislak, G. Essential oil composition of Hyssopus officinalis L. grown in Poland. 2016. J. Essent. Oil-Bear. Plants, 2016, 19(3), 699-705.
[http://dx.doi.org/10.1080/0972060X.2014.935034]
[323]
Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolated of Candida species. Biotechnol. Biotechnol. Equip., 2015, 29(3), 592-601.
[http://dx.doi.org/10.1080/13102818.2015.1020341]
[324]
Pirbalouti, A.G.; Mohamadpoor, H.; Bajalan, I.; Malekpoor, F. Chemical compositions and antioxidant activity of essential oils from inflorescences of two landraces of Hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)] cultivated in Southwestern, Iran. J. Essent. Oil-Bear. Plants, 2019, 22(4), 1074-1081.
[http://dx.doi.org/10.1080/0972060X.2019.1641431]
[325]
Kreis, W.; Kaplan, M.H.; Freeman, J.; Sun, D.K.; Sarin, P.S. Inhibition of HIV replication by Hyssop officinalis extracts. Antiviral Res., 1990, 14(6), 323-337.
[http://dx.doi.org/10.1016/0166-3542(90)90051-8] [PMID: 1708226]
[326]
Gollapudi, S.; Sharma, H.A.; Aggarwal, S.; Byers, L.D.; Ensley, H.E.; Gupta, S. Isolation of a previously unidentified polysaccharide (MAR-10) from Hyssop officinalis that exhibits strong activity against human immunodeficiency virus type 1. Biochem. Biophys. Res. Commun., 1995, 210(1), 145-151.
[http://dx.doi.org/10.1006/bbrc.1995.1639] [PMID: 7741735]
[327]
Behbahani, M. Anti-viral activity of the methanolic leaf extract of an Iranian medicinal plant Hyssopus officinalis against herpes simplex virus. J. Med. Plants Res., 2009, 3(12), 1118-1125.
[328]
Orhan, I.E.; Ozcelik, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol., 2012, 36, 239-246.
[329]
Choi, H-J. Chemical constituents of essential oils processing anti-influenza A/WS/33 virus activity. Osong Public Health Res. Perspect., 2018, 9(6), 348-353.
[http://dx.doi.org/10.24171/j.phrp.2018.9.6.09] [PMID: 30584499]
[330]
Dorra, N.H.; Elbarrawy, M.; Sallam, S.M.; Mahmoud, R.S. Evaluation of antiviral and antioxidant acitivty of selected herbal extracts. J. High Inst. Public Health, 2019, 49(1), 36-40.
[http://dx.doi.org/10.21608/jhiph.2019.29464]
[331]
Koti, W.; Moradi, M.; Ali-Akbari, S.; Sharafi-Ahvazi, N. Theraeutic and pharmacological potential of F. vulgare. J Herbmed Pharmacol., 2015, 4(1), 1-9.
[332]
Tharanath, V.; Peddanna, K.; Kotaiah Sai Gopal, D.V. Flavonoids isolated from Foeniculum vulgare (Fennel) have virosatic efficiency against Bluetongue virus. Int. J. Pharm. Sci. Rev. Res., 2013, 45, 237-242.
[333]
Orabi, M.A.A.; Orabi, E.A. Antiviral and antioxidant activities of flavonoids of Ficus virens: Experiment and theoretical investigations. J. Pharmacogn. Phytochem., 2016, 5(3), 120-128.
[334]
Lazreg Aref, H.; Gaaliche, B.; Fekih, A.; Mars, M.; Aouni, M.; Pierre Chaumon, J.; Said, K. In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat. Prod. Res., 2011, 25(3), 310-319.
[http://dx.doi.org/10.1080/14786419.2010.528758] [PMID: 21294043]
[335]
Aref, H.L.; Mosbah, H.; Louati, H.; Said, K.; Selmi, B. Partial characterization of a novel amylase activity isolated from Tunisian Ficus carica latex. Pharm. Biol., 2011, 49(11), 1158-1166.
[http://dx.doi.org/10.3109/13880209.2011.575791] [PMID: 22014263]
[336]
Camero, M.; Marinaro, M.; Lovero, A.; Elia, G.; Losurdo, M.; Buonavoglia, C.; Tempesta, M. In vitro antiviral activity of Ficus carica latex against caprine herpesvirus-1. Nat. Prod. Res., 2014, 28(22), 2031-2035.
[http://dx.doi.org/10.1080/14786419.2014.918120] [PMID: 24853920]
[337]
Asl Najjari, A.H.; Rajabi, Z.; Vasfi Marandi, M.; Dehghan, G. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2. Vet. Res. Forum, 2015, 6(3), 227-231.
[PMID: 26893813]
[338]
Kurokawa, M.; Nagasaka, K.; Hirabayashi, T.; Uyama, S.; Sato, H.; Kageyama, T.; Kadota, S.; Ohyama, H.; Hozumi, T.; Namba, T.; Shiraki, K. Efficacy of traditional herbal medicines in combination with acyclovir against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res., 1995, 27(1-2), 19-37.
[http://dx.doi.org/10.1016/0166-3542(94)00076-K] [PMID: 7486956]
[339]
Kurokawa, M.; Hozumi, T.; Basnet, P.; Nakano, M.; Kadota, S.; Namba, T.; Kawana, T.; Shiraki, K. Purification and characterization of eugeniin as an anti-herpesvirus compound from Geum japonicum and Syzygium aromaticum. J. Pharmacol. Exp. Ther., 1998, 284(2), 728-735.
[PMID: 9454821]
[340]
Aboubakr, H.A.; Nauertz, A.; Luong, N.T.; Agrawal, S.; El-Sohaimy, S.A.A.; Youssef, M.M.; Goyal, S.M. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot., 2016, 79(6), 1001-1012.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-593] [PMID: 27296605]
[341]
Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res., 2007, 21(6), 501-506.
[http://dx.doi.org/10.1002/ptr.2124] [PMID: 17380552]
[342]
Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 2017, 6(4), e459.
[http://dx.doi.org/10.1002/mbo3.459] [PMID: 28296357]
[343]
Saleem, H.N.; Batool, F.; Mansoor, H.J.; Shahzad-ul-Hussan, S.; Saeed, M. Inhibition of dengue virus protease by eugeniin, isobiflorin, and biflorin isolated from the flower buds of Syzygium aromaticum (cloves). ACS Omega, 2019, 4(1), 1525-1533.
[http://dx.doi.org/10.1021/acsomega.8b02861]
[344]
Behbahani, M.; Mohabatkar, H.; Soltani, M. Anti-HIV-1 activities of aerial parts of Ocimum basilicum and its parasite Cuscuta campestris. J. Antivirals Antiretrovirals, 2013, 5(3), 057-061.
[345]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[346]
Yucharoen, R.; Anuchapreeda, S.; Tragoolpua, Y. Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L., and Ocimum americanum L. Clin. Exp. Pharmacol. Physiol., 2010, 32, 811-816.
[347]
Kubiça, T.F.; Alves, S.H.; Weiblen, R.; Lovato, L.T. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes. Braz. J. Microbiol., 2014, 45(1), 209-214.
[http://dx.doi.org/10.1590/S1517-83822014005000030] [PMID: 24948933]
[348]
Yucharoen, R.; Anuchapreeda, S.; Tragoolpua, Y. Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L. and Ocimum maericanum L. Afr. J. Biotechnol., 2011, 10(5), 860-866.
[349]
Soltan, M.M.; Zaki, A.K. Antiviral screening of forty-two Egyptian medicinal plants. J. Ethnopharmacol., 2009, 126(1), 102-107.
[http://dx.doi.org/10.1016/j.jep.2009.08.001] [PMID: 19666102]
[350]
Kumar, K.H.; Razack, S.; Nallamuthu, I.; Khanum, F. Phytochemical analysis and biological properties of Cyperus rotundus L. Ind. Crops Prod., 2014, 52, 815-826.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.040]
[351]
Dhar, P.; Dhar, D.G.; Rawat, A.K.S.; Srivastava, S. Medicinal chemistry and biological potential of Cyperus rotundus Linn.: An overview to discover elite chemotype(s) for industrial use. Ind. Crops Prod., 2017, 108, 232-247.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.053]
[352]
Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Polyphenolic composition and antioxidative properties of Lemon Balm (Melissa officinalis L.) extract affected by different brewing processes. Int. J. Food Prop., 2015, 18(9), 2009-2014.
[http://dx.doi.org/10.1080/10942912.2014.960932]
[353]
Mokhtarzadeh, S.; Demirci, B.; Goger, G.; Khawar, K.M.; Kirimer, N. Characterization of volatile components in Melissa officinalis L. under in vitro conditions. J. Essent. Oil Res., 2017, 29(4), 299-303.
[http://dx.doi.org/10.1080/10412905.2016.1216900]
[354]
Taherpour, A.A.; Maroofi, H.; Rafie, Z.; Larijani, K. Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Nat. Prod. Res., 2012, 26(2), 152-160.
[http://dx.doi.org/10.1080/14786419.2010.534733] [PMID: 21809949]
[355]
Afsharypuor, S.; Alijaniha, F.; Mosaddegh, M.; Naseri, M.; Noorbala, A.; Fallahi, F.; Montazeri, A. Essential oil constituents of leaf, flower and stem of Melissa officialis L. grown in Gonabad-Kavus (Iran). J. Essent. Oil-Bear. Plants, 2015, 18(2), 460-463.
[http://dx.doi.org/10.1080/0972060X.2014.935047]
[356]
Jalali, P.; Moattari, A.; Mohammadi, A.; Ghazanfari, N.; Pourghanbari, G. Melissa officinalis efficacy against human influenza (New H1N1) in comparison with oseltamivir. Asian Pac. J. Trop. Dis., 2016, 6(9), 714-717.
[http://dx.doi.org/10.1016/S2222-1808(16)61115-5]
[357]
Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2016, 188, 204-228.
[http://dx.doi.org/10.1016/j.jep.2016.05.010] [PMID: 27167460]
[358]
Allahverdiyev, A.; Duran, N.; Ozguven, M.; Koltas, S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 2004, 11(7-8), 657-661.
[http://dx.doi.org/10.1016/j.phymed.2003.07.014] [PMID: 15636181]
[359]
Mazzanti, G.; Battinelli, L.; Pompeo, C.; Serrilli, A.M.; Rossi, R.; Sauzullo, I.; Mengoni, F.; Vullo, V. Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Nat. Prod. Res., 2008, 22(16), 1433-1440.
[http://dx.doi.org/10.1080/14786410802075939] [PMID: 19023806]
[360]
Pourghanbari, G.; Nili, H.; Moattari, A.; Mohammadi, A.; Iraji, A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Virusdisease, 2016, 27(2), 170-178.
[http://dx.doi.org/10.1007/s13337-016-0321-0] [PMID: 27366768]
[361]
Zhang, G.; Chi, X. The complete chloroplast genome of Peganumharmala. Mitochondrial DNA B Resour., 2019, 4(1), 1784-1785.
[http://dx.doi.org/10.1080/23802359.2019.1612289]
[362]
Zha, X.; Zhao, P.; Gao, F.; Zhou, Y. Complete chloroplast genome sequence of Peganum harmala, an important medicinal plant. Mitochondrial DNA B Resour., 2020, 5(1), 652-653.
[http://dx.doi.org/10.1080/23802359.2019.1711230] [PMID: 33366688]
[363]
Azizi, M.; Sedaghat, S.; Tahvildari, K.; Derakhshi, P.; Ghaemi, A. Synthesis of silver nanoparticles using Peganum harmala extract as a green route. Green Chem. Lett. Rev., 2017, 10(4), 420-427.
[http://dx.doi.org/10.1080/17518253.2017.1395081]
[364]
Hamsa, T.P.; Kuttan, G. Harmine inhibits tumour specific neovessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory mediators both in vivo and in vitro. Eur. J. Pharmacol., 2010, 649(1-3), 64-73.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.010] [PMID: 20858484]
[365]
Hamsa, T.P.; Kuttan, G. Harmine activates intrinsic and extrinsic pathways of apoptosis in B16F-10 melanoma. Chin. Med., 2011, 6(1), 11.
[http://dx.doi.org/10.1186/1749-8546-6-11] [PMID: 21429205]
[366]
Moradi, M.T.; Karimi, A.; Rafieian-Kopaei, M.; Fotouhi, F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb. Pathog., 2017, 110, 42-49.
[http://dx.doi.org/10.1016/j.micpath.2017.06.014] [PMID: 28629724]
[367]
Moradi, M.T.; Karimi, A.; Fotouhi, F.; Kheiri, S.; Torabi, A. In vitro and in vivo effects of Peganum harmala L. seeds extract against influenza A virus. Avicenna J. Phytomed., 2017, 7(6), 519-530.
[PMID: 29299435]
[368]
Hayet, E.; Maha, M.; Mata, M.; Mighri, Z.; Laurent, G.; Mahjoub, A. Biological activities of Peganum harmala leaves. Afr. J. Biotechnol., 2017, 9(48), 8199-8205.
[369]
Benzekri, R.; Bouslama, L.; Papetti, A.; Hammami, M.; Smaoui, A.; Limam, F. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb. Pathog., 2018, 114, 291-298.
[http://dx.doi.org/10.1016/j.micpath.2017.12.017] [PMID: 29223449]
[370]
Benzekri, R.; Limam, F.; Bouslama, L. Combination effect of three anti-HSV-2 active plant extracts exhibiting different modes of action. Adv. Tradit. Med., 2020, 20(2), 223-231.
[http://dx.doi.org/10.1007/s13596-020-00430-0]
[371]
Kiani, S.J.; Shamsi Shahrabadi, M.; Ataei, A.; Sajjadi, N. Peganum harmala seed extract can prevent HSV-1 replication in vitro. Iran. J. Virol., 2008, 1(4), 11-16.
[372]
Wannes, W.A.; Marzouk, B. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. J. Food Drug Anal., 2016, 24(2), 316-323.
[http://dx.doi.org/10.1016/j.jfda.2015.11.001] [PMID: 28911585]
[373]
Zomorodian, K.; Moein, M.; Goeini Lori, Z.; Ghasemi, Y.; Rahimi, M.J.; Bandegani, A.; Pakshir, K.; Bazargani, A.; Mirzamohammadi, S.; Abbasi, N. Chemical composition and antimicrobial activities of the essential oil from Myrtus communis leaves. J. Essent. Oil-Bear. Plants, 2013, 16(1), 76-84.
[http://dx.doi.org/10.1080/0972060X.2013.764183]
[374]
Chidouh, A.; Aouadi, S.; Heyraud, A. Extraction, fraction and characterization of water-soluble polysaccharide fractions from myrtle (Myrtus communis L.) fruit. Food Hydrocoll., 2013, 35, 733-739.
[http://dx.doi.org/10.1016/j.foodhyd.2013.08.001]
[375]
Aleksic, V.; Knezevic, P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res., 2014, 169(4), 240-254.
[http://dx.doi.org/10.1016/j.micres.2013.10.003] [PMID: 24291016]
[376]
Alipour, G.; Dashti, S.; Hosseinzadeh, H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother. Res., 2014, 28(8), 1125-1136.
[http://dx.doi.org/10.1002/ptr.5122] [PMID: 24497171]
[377]
Oulia, P.; Saderi, H.; Aghaei, H.; Yaraee, R.; Zaeri, F. The effect of Myrtuscommunis L. essential oil on treatment of herpes simplex infection in animal model. Tahqiqat-i Giyahan-i Daruyi va Muattar-i Iran, 2007, 23(2), 157-165.
[378]
Moradi, M.T.; Karimi, A.; Rafieian, M.; Kheiri, S.; Saedi, M. The inhibitory effects of myrtle (Myrtus communis) extract on Herpes simplex virus-1 replication in baby hamster kidney cells. Shahrekord Univ. Med. Sci. J., 2011, 12, 54-61.
[379]
Lalaleo, L.; Alcazar, R.; Palazon, J.; Moyano, E.; Cusido, R.M.; Bonfill, M. Comparing aryltetralin lignan accumulation patterns in four biotechnological systems of Linum album. J. Plant Physiol., 2018, 228, 197-207.
[http://dx.doi.org/10.1016/j.jplph.2018.06.006] [PMID: 29960916]
[380]
Lalaleo, L.; Testillano, P.; Risueño, M-C.; Cusidó, R.M.; Palazon, J.; Alcazar, R.; Bonfill, M. Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linum album. J. Plant Physiol., 2018, 228, 47-58.
[http://dx.doi.org/10.1016/j.jplph.2018.05.007] [PMID: 29852334]
[381]
Cateni, F.; Zilic, J.; Altieri, T.; Zacchigna, M.; Procida, G.; Gaggeri, R.; Rossi, D.; Collina, S. Lipid metabolites with free-radical scavenging activity from Euphorbia helioscopia L. Chem. Phys. Lipids, 2014, 181, 90-98.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.03.001] [PMID: 24657341]
[382]
Lone, B.A.; Chishti, M.Z.; Bhat, F.A.; Tak, H.; Bandh, S.A. In vitro and in vivo anthelmintic activity of Euphorbia helioscopia L. Vet. Parasitol., 2012, 189(2-4), 317-321.
[http://dx.doi.org/10.1016/j.vetpar.2012.04.023] [PMID: 22633018]
[383]
Li, J.; Li, H-H.; Wang, W-Q.; Song, W-B.; Wang, Y-P.; Xuan, L-J. Jatrophane diterpenoids from Euphorbia helioscopia and their lipid-lowering activities. Fitoterapia, 2018, 128, 102-111.
[http://dx.doi.org/10.1016/j.fitote.2018.05.007] [PMID: 29772305]
[384]
Barolo, M.I.; Ruiz Mostacero, N.; López, S.N. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem., 2014, 164, 119-127.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.112] [PMID: 24996314]
[385]
Tada, M.; Okuno, K.; Chiba, K.; Ohnishi, E.; Yoshii, T. Antiviral diterpenes from Salvia officinalis. Phytochemistry, 1994, 35(2), 539-541.
[http://dx.doi.org/10.1016/S0031-9422(00)94798-8]
[386]
Raafat, K.; Wurglics, M. Phytochemical analysis of Ficus carica L. active compounds possessing anticonvulsant activity. J. Tradit. Complement. Med., 2018, 9(4), 263-270.
[http://dx.doi.org/10.1016/j.jtcme.2018.01.007] [PMID: 31453121]
[387]
Akhoondi, R.; Mirjalili, M.H.; Hadian, J. Quantitative and qualitative variations in the essential oil of Rosa foetida Herrm. (Rosaceae) flowers as affected by different drying methods. J. Essent. Oil Res., 2015, 27(5), 421-427.
[http://dx.doi.org/10.1080/10412905.2015.1025918]
[388]
Rezghi, M.; Hoseinidoust, S.R.; Asgarpanah, J. Rose foetida Herrm. Flowers as a future natural antibacterial agent against the main cause of skin burn wound infections, Pseudomonas aeroginosa. J. Herb. Drugs, 2015, 5(4), 209-213.
[389]
Asgarpanah, J.; Ziarati, P.; Safialdinardebily, M. The volatile oil composition of Rosa foetida Herrm. Flowers growing wild in Kurdistan province (Iran). J. Essent. Oil-Bear. Plants, 2014, 17(1), 169-172.
[http://dx.doi.org/10.1080/0972060X.2014.884765]
[390]
Shahamat, Z.; Abbasi-Maleki, S.; Mohammadi Motamed, S. Evaluation of antidepressant-like effects of aqueous and ethanolic extracts of Pimpinella anisum fruit in mice. Avicenna J. Phytomed., 2016, 6(3), 322-328.
[PMID: 27462555]
[391]
Yazdai, F.F.; Ghalamkari, G.; Toghiani, M.; Modaresi, M.; Landy, N. Anise seed (Pimpinella anisum L.) as an alternative to antibiotic growth promoters on performance, carcass traits and immune responses in broiler chicks. Asian Pac. J. Trop. Dis., 2014, 4(6), 447-451.
[http://dx.doi.org/10.1016/S2222-1808(14)60604-6]
[392]
Shojaii, A.; Abdollahi Fard, M. Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharm., 2012, 2012, 510795.
[http://dx.doi.org/10.5402/2012/510795] [PMID: 22848853]
[393]
Dorrigiv, M.; Zareiyan, A.; Hosseinzadeh, H. Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: A comprehensive update review. Phytother. Res., 2020, 34(8), 1770-1797.
[http://dx.doi.org/10.1002/ptr.6645] [PMID: 32068926]
[394]
Zhen, H.; Fang, F.; Ye, D.Y.; Shu, S.N.; Zhou, Y.F.; Dong, Y.S.; Nie, X.C.; Li, G. Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res., 2006, 72(1), 68-74.
[http://dx.doi.org/10.1016/j.antiviral.2006.03.017] [PMID: 16844239]
[395]
Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med., 1992, 58(5), 417-423.
[http://dx.doi.org/10.1055/s-2006-961504] [PMID: 1470664]
[396]
Mehrbod, P.; Amini, E.; Tavassoti-Kheiri, M. Antiviral activity of garlic extract on influenza virus. Iran. J. Virol., 2009, 3(1), 19-23.
[http://dx.doi.org/10.21859/isv.3.1.19]
[397]
Chavan, R.D.; Shinde, P.; Girkar, K.; Madage, R.; Chowdhary, A. Assessment of anti-influenza activity and hemagglutination inhibition of Plumbago indica and Alliumsativum extracts. Pharmacognosy Res., 2016, 8(2), 105-111.
[http://dx.doi.org/10.4103/0974-8490.172562] [PMID: 27034600]
[398]
Shoji, S.; Furuishi, K.; Yanase, R.; Miyazaka, T.; Kino, M. Allyl compounds selectively killed human immunodeficiency virus (type 1)-infected cells. Biochem. Biophys. Res. Commun., 1993, 194(2), 610-621.
[http://dx.doi.org/10.1006/bbrc.1993.1865] [PMID: 8343148]
[399]
Moshrefi Araghi, A.; Nemati, H.; Azizi, M.; Moshtaghi, N.; Shoor, M.; Hadian, J. Assessment of phytochemical and agromorphological variability among different wild accessions of Mentha longifolia L. cultivated in field condition. Ind. Crops Prod., 2019, 140, 111698.
[http://dx.doi.org/10.1016/j.indcrop.2019.111698]
[400]
Nori-Shargh, D.; Norouzi-Arasi, H.; Mohammadi, S.; Mirza, M.; Jaimand, K. Volatile components of Mentha longifolia (L.) huds. from Iran. J. Essent. Oil Res., 2000, 12(1), 111-112.
[http://dx.doi.org/10.1080/10412905.2000.9712056]
[401]
Ceker, S.; Agar, G.; Alpsoy, L.; Nardemir, G.; Kizil, H.E.; Mete, E. Protective role of Mentha longifolia L. ssp. longifolia against aflatoxin B. J. Essent. Oil-Bear. Plants, 2013, 16(5), 600-607.
[http://dx.doi.org/10.1080/0972060X.2013.854487]
[402]
Jaimand, K.; Rezaee, M.B. Chemical constituents of essential oils from Menthalongifolia (L.) Hudson var. asiatica (Boriss.) Rech. F. from Iran. J. Essent. Oil Res., 2002, 14(2), 107-108.
[http://dx.doi.org/10.1080/10412905.2002.9699786]
[403]
Rasooli, I.; Rezaei, M.B. Bioactivity and chemical properties of essential oils from Zararia multiflora Boiss and Mentha longifolia (L.) huds. J. Essent. Oil Res., 2000, 14(2), 141-146.
[http://dx.doi.org/10.1080/10412905.2002.9699800]
[404]
Rasooli, A.; Fatemi, F.; Hajihosseini, R.; Vaziri, A.; Akbarzadeh, K.; Mohammadi Malayeri, M.R.; Dini, S.; Foroutanrad, M. Synergistic effects of deuterium depleted water and Mentha longifolia L. essential oils on sepsis-induced liver injuries through regulation of cyclooxygenase-2. Pharm. Biol., 2019, 57(1), 125-132.
[http://dx.doi.org/10.1080/13880209.2018.1563622] [PMID: 30961427]
[405]
Mohammad Hosein, F.; Roodabeh, B.; Ali, G.; Fatemeh, F.; Fariba, N. Pharmacological activity of Mentha longifolia and its phytoconstituents. J. Tradit. Chin. Med., 2017, 37(5), 710-720.
[http://dx.doi.org/10.1016/S0254-6272(17)30327-8] [PMID: 32188234]
[406]
Ahmed, A.M.; Ozbak, H.A.; Hemeg, H.A. Effect of essential oil of traditional two Saudi mint types and its possible role in cardiovascular and throat health. Int. J. Clin. Exp. Med., 2015, 8(5), 8060-8068.
[PMID: 26221371]
[407]
Amzazi, S.; Ghoulami, S.; Bakri, Y.; Idrissi, A.I.; Fkih-Tetouani, S.; Benjouad, A. Human immunodeficiency virus type 1 inhibitory activity Mentha longifolia Activite anti-VIH des extraits de Mentha longifolia. Therapie, 2003, 58(6), 531-534.
[http://dx.doi.org/10.2515/therapie:2003086]
[408]
Shamsabad, M.M.; Moharrek, F.; Assadi, M.; Feliner, G.N. Biogeographic history and diversification patterns in the Irano-Turanian genus Acanthophyllum s.1. (Caryophyllaceae). Plant Biosyst., 2020.
[http://dx.doi.org/10.1080/11263504.2020.1756974]
[409]
Ziai, S.A.; Hamkar, R.; Monavari, H.R.; Norooz-Babaei, Z.; Adibi, L. Antiviral effect assay of twenty five species of various medicinal plants families in Iran. J. Med. Plants Res., 2007, 6, 1-7.
[410]
Matvieieva, N.A.; Kudryavets, Y.I.; Likhova, A.A.; Shakhovskij, A.M.; Bezdenezhnykh, N.A.; Kvasko, E.Y. Antiviral activity of extracts of transgenic chicory and lettuce plants with the human interferon α2b gene. Cytol. Genet., 2012, 46(5), 285-290.
[http://dx.doi.org/10.3103/S0095452712050076]
[411]
Nadi, F. Bioactive compound retention in Echium amoenum Fisch. & C. A. Mey. petalis: Effect of fluidized bed drying conditions. Int. J. Food Prop., 2017, 20(10), 2249-2260.
[http://dx.doi.org/10.1080/10942912.2016.1233436]
[412]
Saadatian, M.; Aghaei, M.; Farahpour, M.; Aghaei, M. Chemical composition of flowers extract of borage (Borago officinalis L.) in wild population from Urmia district, Iran. J. Essent. Oil-Bear. Plants, 2017, 20(1), 289-292.
[http://dx.doi.org/10.1080/0972060X.2015.1086283]
[413]
Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem., 2021, 25(23), 1-17.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[414]
Lu, Q.; Li, R.; Yang, Y.; Zhang, Y.; Zhao, Q.; Li, J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem., 2022, 368, 130610.
[http://dx.doi.org/10.1016/j.foodchem.2021.130610] [PMID: 34419798]
[415]
Sharafzadeh, S.; Alizadeh, O. Some medicinal plants cultivated in Iran. J. Appl. Pharm. Sci., 2021, 02(01), 134-137.
[416]
Hamedi, A.; Zarshenas, M.M.; Sohrabpour, M.; Zargaran, A. Herbal medicinal oils in traditional Persian medicine. Pharm. Biol., 2013, 51(9), 1208-1218.
[http://dx.doi.org/10.3109/13880209.2013.777462] [PMID: 23746335]
[417]
Guevara, M.; Tejera, E.; Iturralde, G.A.; Jaramillo-Vivanco, T.; Granda-Albuja, M.G.; Granja-Albuja, S.; Santos-Buelga, C.; González-Paramás, A.M.; Álvarez-Suarez, J.M. Anti-inflammatory effect of the medicinal herbal mixture infusion, Horchata, from southern Ecuador against LPS-induced cytotoxic damage in RAW 264.7 macrophages. Food Chem. Toxicol., 2019, 131, 110594.
[http://dx.doi.org/10.1016/j.fct.2019.110594] [PMID: 31226431]
[418]
Bouyahya, A.; Guaouguaou, F-E.; El Omari, N.; El Menyiy, N.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J. Pharm. Anal., 2021.
[http://dx.doi.org/10.1016/j.jpha.2021.07.004]
[419]
Jalali, A.; Vanani, A.R.; Shirani, M. Ethnobotanical approaches of traditional medicinal plants used in the management of asthma in Iran. Jundishapur J. Nat. Pharm. Prod., 2019, 15(1), e62269.
[http://dx.doi.org/10.5812/jjnpp.62269]
[420]
Edziri, H.; Marzouk, B.; Mabrouk, H.; Garreb, M.; Douki, W.; Mahjoub, A.; Verschaeve, L.; Najjar, F.; Mastouri, M. Phytochemical screening, butyrylcholinesterase inhibitory activity and antiinflammatory effect of some Tunisian medicinal plants. S. Afr. J. Bot., 2018, 114, 84-88.
[http://dx.doi.org/10.1016/j.sajb.2017.10.019]
[421]
Borah, A.; Paw, M.; Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Pandey, S.K.; Lal, M. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Ind. Crops Prod., 2019, 129, 448-454.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.035]
[422]
Pawłowska, K.A.; Hałasa, R.; Dudek, M.K.; Majdan, M.; Jankowska, K.; Granica, S. Antibacterial and anti-inflammatory activity of bistort (Bistorta officinalis) aqueous extract and its major components. Justification of the usage of the medicinal plant material as a traditional topical agent. J. Ethnopharmacol., 2020, 260, 113077.
[http://dx.doi.org/10.1016/j.jep.2020.113077] [PMID: 32531411]
[423]
Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res., 2019, 139, 126-140.
[http://dx.doi.org/10.1016/j.phrs.2018.11.001] [PMID: 30395947]
[424]
Khan, A.N.; Yasmin, H.; Ghazanfar, S.; Hassan, M.N.; Keyani, R.; Khan, I.; Gohar, M.; Shahzad, A.; Hashim, M.J.; Ahmad, A. Antagonistic, anti-oxidant, anti-inflammatory and anti-diabetic probiotic potential of Lactobacillus agilis isolated from the rhizospher of the medicinal plants. Saudi J. Biol. Sci., 2021, 28(11), 6069-6076.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.029] [PMID: 34764740]
[425]
Ghannadi, A.; Haj Hashemi, V.A. Review on some Lamiaceae plants of Iranian traditional and folk medicines with anti-inflammatory activity. Iran. J. Pharm. Res., 2004, 3(2), 63-64.
[426]
Momtaz, S.; Abdolghaffari, A.; Jasemi, E.; Yaghoobvand, B.; Esmaeilzadeh, S.; Abdollahi, A.; Abdollahi, M. Evaluation of wound healing and anti-inflammatory activities of a herbal ointment consisting of Althaea officinalis, Lavandula angustifolia, and Rosa ×damascene in animal excision wound model. J Med Plant, 2021, 20(77), 37-49.
[http://dx.doi.org/10.52547/jmp.20.77.37]
[427]
Sharififar, F.; Khazaeli, P.; Alli, N.; Talebian, E.; Zarehshahi, R.; Amiri, S. Study of antinociceptive and anti-inflammatory activities of certain Iranian medicinal plants. J. Intercult. Ethnopharmacol., 2012, 1(1), 19-24.
[http://dx.doi.org/10.5455/jice.20120227104636]
[428]
Esmaeili, S.; Omid-Malayeri, S.; Hajimehdipoor, H.; Rasekh, H.R.; Moghimi, H.R.; Omid-Malayeri, S.; Yaraee, R.; Jalali Nadoushan, M.R. The role of lecithin on topical anti-inflammatory activity of turmeric (Curcuma longa L.) ointment. Faslnamah-i Giyahan-i Daruyi, 2020, 19(76), 89-98.
[http://dx.doi.org/10.29252/jmp.19.76.89]
[429]
Mosleh, G.; Azadi, A.; Khademian, S.; Heidari, R.; Mohagheghzadeh, A. Anti-inflammatory activity and quality control of Erysimum cheiri (L.) Crantz. BioMed Res. Int., 2021, 2021, 5526644.
[http://dx.doi.org/10.1155/2021/5526644] [PMID: 34212031]
[430]
Ghasemian, M.; Owlia, S.; Owlia, M.B. Review of anti-inflammatory herbal medicines. Adv. Pharmacol. Pharm. Sci., 2016.
[http://dx.doi.org/10.1155/2016/9130979]
[431]
Bakhtiarian, A.; Aarabi Moghaddam, F.; Zamani, M.M.; Ghamami, S.G.; Farahanikia, B.; Khanavi, M. Anti-inflammatory effect of Thymus kotschyanus Boiss. & Hohen extract on rat,s hind paw edema induced by carrageenan. J. Med. Plant, 2011, 10(37), 25-32.
[432]
Amirghofran, Z.; Azadbakht, M.; Keshavarzi, F. Echium amoneum stimulate of lymphocyte proliferation and inhibit of humoral antibody synthesis. Iran. J. Med. Sci., 2000, 25, 119-124.
[433]
Naseri, N.; Kalantar, K.; Amirghofran, Z. Anti-inflammatory activity of Echium amoenum extract on macrophages mediated by inhibition of inflammatory mediators and cytokines expression. Res. Pharm. Sci., 2018, 13(1), 73-81.
[http://dx.doi.org/10.4103/1735-5362.220970] [PMID: 29387114]
[434]
Ebadi, N.; Farjadmand, F.; Mehri, M.; Mohajerani, F.; Raies-Dana, A.; Shahpiri, Z.; Rahimi, R. Adiantum Capillus Veneris L.: From Iranian traditional medicine to modern phytotherapy. Tradit. Integr. Med., 2016, 1(3), 129-131.
[435]
Shaikh, R.U.; Meshram, R.J.; Gacche, R.N. An investigation on in vitro anti-inflammatory and antiproliferative potential of isolated Labdane diterpenoids from Andrographis paniculata (Burm. f.) wall. Ex nees: An important medicinal plant prescribed in Ayurveda. Eur. J. Integr. Med., 2019, 32, 100983.
[http://dx.doi.org/10.1016/j.eujim.2019.100983]
[436]
Rahimi, R.; Shams-Ardekani, M.R.; Abdollahi, M. A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J. Gastroenterol., 2010, 16(36), 4504-4514.
[http://dx.doi.org/10.3748/wjg.v16.i36.4504] [PMID: 20857519]
[437]
Süleyman, H.; Demircan, B.; Karagöz, Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep., 2007, 59(3), 247-258.
[PMID: 17652824]
[438]
Nunes, C.D.R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules, 2020, 25(16), 3726.
[http://dx.doi.org/10.3390/molecules25163726] [PMID: 32824133]
[439]
Shahri, M.M.; Soleymani, A.; Shahrajabian, M.H.; Yazdpour, H. Effect of plant densities and sulpur fertilizer on seed and oil yiels of canola. Res. Crops, 2011, 12(2), 383-387.
[440]
Shayanfar, M.; Soleymani, A.; Shahrajabian, M.H. Effect of plant densities on solar radiation absorption and depreciation, leaf area index and crop growth rate of different cultivas of sunflower. Res. Crops, 2011, 12(3), 728-730.
[441]
Soleymani, A.; Shahrajabian, M.H.; Naranjani, L. The effect of plant density and nitrogen fertilization on yield, yield components and grain protein of grain sorghum. J. Food Agric. Environ., 2011, 9(3), 244-246.
[442]
Soleymani, A.; Shahrajabian, M.H.; Naranjani, L. Evaluation the benefits of different berseem clover cultivars and forage corn intercropping in different levels of nitrogen fertilizer. J. Food Agric. Environ., 2012, 10(1), 599-601.
[443]
Yazdpour, H.; Shahri, M.M.; Soleymani, A.; Shahrajabian, M.H. Effects of harvesting time and harvesting height on grain yield and agronomical characters in rice ratoon (Oryza sativa L.) J. Food Agric. Environ., 2012, 10(1), 438-440.
[444]
Rajput, M.; Kumar, N. Medicinal plants: A potential source of novel bioactive compounds showing antimicrobial efficacy against pathogens infecting hair and scalp. Gene Rep., 2020, 21, 100879.
[http://dx.doi.org/10.1016/j.genrep.2020.100879]
[445]
Naikoo, G.A.; Mustaqeem, M.; Hassan, I.U.; Awan, T.; Arshad, F.; Salim, H.; Qurashi, A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J. Saudi Chem. Soc., 2021, 25(9), 101304.
[http://dx.doi.org/10.1016/j.jscs.2021.101304]
[446]
Moradi, F.; Hadi, N.; Bazargani, A. Evaluation of quorum-sensing inhibitory effects of extracts of three traditional medicine plants with known antibacterial properties. New Microbes New Infect., 2020, 38, 100769.
[http://dx.doi.org/10.1016/j.nmni.2020.100769] [PMID: 33194208]
[447]
Majeed, F.A.; Munir, H.; Rashid, R.; Zubair, M.T. Antimicrobial, cytotoxicity, mutagenicity and anti-epileptic potential of ethanol extracts of a multipurpose medicinal plant Dalbergia sissoo. Biocatal. Agric. Biotechnol., 2019, 19, 101155.
[http://dx.doi.org/10.1016/j.bcab.2019.101155]
[448]
Esmael, A.; Hassan, M.G.; Amer, M.M.; Abdelrahman, S.; Hamed, A.M.; Abd-Raboh, H.A.; Foda, M.F. Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria. Saudi J. Biol. Sci., 2020, 27(1), 448-455.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.006] [PMID: 31889869]
[449]
Shwaiki, L.N.; Lynch, K.M.; Arendt, E.K. Future of antimicrobial peptides derived from plants in food application- A focus on synthetic peptides. Trends Food Sci. Technol., 2021, 112, 312-324.
[http://dx.doi.org/10.1016/j.tifs.2021.04.010]
[450]
Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod., 2019, 132, 413-429.
[http://dx.doi.org/10.1016/j.indcrop.2019.02.051] [PMID: 32288268]
[451]
Kianfe, B.Y.; Kuhlborn, J.; Tchuenguem, R.T.; Tchegnitegni, B.T.; Ponou, B.K.; Gro, B.J.; Teponno, R.B.; Dzoyem, J.P.; Opatz, T.; Tapondjou, L.A. Antimicrobial secondary metabolites from the medicinal plant Crinum glaucum A. Chev. (Amaryllidaceae). S. Afr. J. Bot., 2020, 133, 161-166.
[http://dx.doi.org/10.1016/j.sajb.2020.07.026]
[452]
Nasrollahi, S.; Ghoreishi, S.M.; Ebrahimabadi, A.H.; Khoobi, A. Gas chromatography-mass spectrometry analysis and antimicrobial, antioxidant and anti-cancer activities of essential oils and extracts of Stachys schtschegleevii plant as biological macromolecules. Int. J. Biol. Macromol., 2019, 128, 718-723.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.165] [PMID: 30708000]
[453]
Yahia, Y.; Bagues, M.; Zaghdoud, C.; Al-Amri, S.M.; Nagaz, K.; Guerfel, M. Phenolic profile, antioxidant capacity and antimicrobial activity of Calligonum arich L., desert endemic plant in Tunisia. S. Afr. J. Bot., 2019, 124, 414-419.
[http://dx.doi.org/10.1016/j.sajb.2019.06.005]
[454]
Al-Tohamy, R.; Ali, S.S.; Saad-Allah, K.; Fareed, M.; Ali, A.; El-Badry, A.; El-Zawawy, N.A.; Wu, J.; Sun, J.; Mao, G-H.; Rupani, P.F. Phytochemical analysis and assessment of antioxidant and antimicrobial activities of some medicinal plant species from Egyptian flora. J. Appl. Biomed., 2018, 16(4), 289-300.
[http://dx.doi.org/10.1016/j.jab.2018.08.001]
[455]
Hamza, G.; Emna, B-H.; Yeddes, W.; Dhouafli, Z.; Moufida, T.S.; El Akrem, H. Chemical composition, antimicrobial and antioxidant activities data of three plants from Tunisia region: Erodium glaucophyllum, Erodium hirtum and Erodium guttatum. Data Brief, 2018, 19, 2352-2355.
[http://dx.doi.org/10.1016/j.dib.2018.07.005] [PMID: 30246100]
[456]
Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Kumar, U.S.U.; Khalil, H.P.S.A. Biodegradable green pachaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol., 2020, 100, 262-277.
[http://dx.doi.org/10.1016/j.tifs.2020.04.017]
[457]
Abedini, A.; Roumy, V.; Mahieux, S.; Gohari, A.; Farimani, M.M.; Rivière, C.; Samaillie, J.; Sahpaz, S.; Bailleul, F.; Neut, C.; Hennebelle, T. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms. Lett. Appl. Microbiol., 2014, 59(4), 412-421.
[http://dx.doi.org/10.1111/lam.12294] [PMID: 24888993]
[458]
Pirbalouti, A.G.; Jahanbazi, P.; Enteshari, S.; Malekpoor, F.; Hamedi, B. Antimicrobial activity of some Iranian medicinal plants. Arch. Biol. Sci., 2010, 62(3), 633-642.
[http://dx.doi.org/10.2298/ABS1003633G]
[459]
Masomi, F.; Hassanshahian, M. Antimicrobial activity of five medicinal plants on Candida albicans. Iran J. Toxicol., 2016, 10(6), 39-43.
[http://dx.doi.org/10.29252/arakmu.10.6.39]
[460]
Roointan, A.; Kamali-Kakhki, R.; Fathalipour, M.; Hashemi, Z.; Zarshenas, M.M.; Soleimani, M.; Mirjani, R. Antibacterial activity of Prunus scoparia root methanol extract against most common burn wound pathogens. Iran. J. Med. Sci., 2020, 45(6), 444-450.
[PMID: 33281261]
[461]
Verdian-rizi, M.R.; Sadat-Ebrahimi, E.; Hadjiakhoondi, A.; Fazeli, M.R.; Pirali Hamedani, M. Chemical composition and antimicrobial activity of Artemisia annua L. essential oil from Iran. J. Med. Plant, 2008, 7(4), 58-62.
[462]
Baradaran, M.; Jalali, A. A review on antibacterial effects of Iranian herbal medicine on methicillin-resistant Staphylococcus aureus. Jundishapur J. Chron. Dis. Care, 2019, 8(4), e96058.
[http://dx.doi.org/10.5812/jjcdc.96058]
[463]
Hadadi, Z.; Nematzadeh, G.A.; Ghahari, S. A study on the antioxidant and antimicrobial activities in the chloroformic and methanolic extracts of 6 important medicinal plants collected from North of Iran. BMC Chem., 2020, 14(1), 33.
[http://dx.doi.org/10.1186/s13065-020-00683-5] [PMID: 32355911]
[464]
Lotfipour, F.; Nazemiyeh, H.; Fathi-Azad, F.; Garaei, N.; Arami, S.; Talat, S.; Sadeghpour, F.; Hasanpour, R. Evaluation of antibacterial activities of some medicinal plants from North-West Iran. Iran. J. Basic Med. Sci., 2008, 11(2), 80-85.
[465]
Bonjar, S. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol., 2004, 94(2-3), 301-305.
[http://dx.doi.org/10.1016/j.jep.2004.06.007] [PMID: 15325735]
[466]
Koochak, H.; Seyyednejad, S.M.; Motamedi, H. Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pac. J. Trop. Med., 2010, 3(3), 180-184.
[http://dx.doi.org/10.1016/S1995-7645(10)60004-1]
[467]
Selseleh, M.; Ebrahimi, S.N.; Aliahmadi, A.; Sonboli, A.; Mirjalili, M.H. Metabolic profiling, antioxidant, and antibacterial activity of some Iranian Verbascum L. species. Ind. Crops Prod., 2020, 153, 112609.
[http://dx.doi.org/10.1016/j.indcrop.2020.112609]
[468]
Sheidai, M.; Tabaripour, R.; Talebi, S.M.; Noormohammadi, Z.; Koohdar, F. Adulteration in medicinally important plant species of Ziziphora in Iran market: DNA barcoding approach. Ind. Crops Prod., 2019, 130, 627-633.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.025]
[469]
Golkar, P.; Mosavat, N.; Jalali, S.A. Essential oils, chemical constituents, antioxidant, antibacterial and in vitro cytotoxic activity of different Thymus species and Zataria multiflora collected from Iran. S. Afr. J. Bot., 2020, 130, 250-258.
[http://dx.doi.org/10.1016/j.sajb.2019.12.005]
[470]
Nezhadali, A.; Nabavi, M.; Rajabian, M.; Akbarpour, M.; Pourali, P.; Amini, F. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni. Suef Univ. J. Basic Appl. Sci., 2014, 3(2), 87-92.
[http://dx.doi.org/10.1016/j.bjbas.2014.05.001]
[471]
Bajalan, I.; Rouzbahani, R.; Ghasemi Pirbalouti, A.; Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod., 2017, 107, 305-311.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.063]
[472]
Shojaei Moghadam, M.; Maleki, S.; Darabpour, E.; Motamedi, H.; Seyyed Nejad, S.M. Antibacterial activity of eight Iranian plant extracts against methicillin and cefixime restistant Staphylococcus aureus strains. Asian Pac. J. Trop. Med., 2010, 3(4), 262-265.
[http://dx.doi.org/10.1016/S1995-7645(10)60063-6]
[473]
Vahdani, M.; Faridi, P.; Zarshenas, M.M.; Javadpour, S.; Abolhassanzadeh, Z.; Moradi, N.; Bakzadeh, Z.; Karmostaji, A.; Mohagheghzadeh, A.; Ghasemi, Y. Major compounds and antimicrobial activity of essential oils from five Iranian endemic medicinal plants. Pharmacogn. J., 2011, 3(22), 48-53.
[http://dx.doi.org/10.5530/pj.2011.22.10]
[474]
Tabaraki, R.; Nateghi, A.; Ahmady-Asbchin, S. In vitro assessment of antioxidant and antibacterial activities of six edible plants from Iran. J. Acupunct. Meridian Stud., 2013, 6(3), 159-162.
[http://dx.doi.org/10.1016/j.jams.2013.01.016] [PMID: 23787285]
[475]
Al-Zuhairi, J.J.M.; Jookar Kashi, F.; Rahimi-Moghaddam, A.; Yazdani, M. Antioxidant, cytotoxic and antibacterial activity of Rosmarinus officinalis L. essential oil against bacteria isolated from urinary tract infection. Eur. J. Integr. Med., 2020, 38, 101192.
[http://dx.doi.org/10.1016/j.eujim.2020.101192]
[476]
Jam, N.; Hajimohammadi, R.; Ghrabani, P.; Mehrizad, A. Antibacterial activity of Punica granatum L. and Areca nut (P.A) combined extracts against some food born pathogenic bacteria. Saudi J. Biol. Sci., 2021.
[http://dx.doi.org/10.1016/j,sjbs.2021.10.057] [PMID: 35280537]
[477]
Hazrati, S.; Govahi, M.; Sedaghat, M.; Kashkooli, A.B. A comparative study of essential oil profile, antibacterial and antioxidant activities of two cultivated Ziziphora species (Z. clinopodioides and Z. tenuior). Ind. Crops Prod., 2020, 157, 112942.
[http://dx.doi.org/10.1016/j.indcrop.2020.112942]
[478]
Al-Saeghi, S.; Amzad Hossain, M.; Al-Touby, S.S. Characterization of antioxidant and antibacterial compounds from aerial parts of Haplophyllum tuberculatum. J Bioresour Bioprod, 2021.
[479]
Akhlaghi, M.; Abbasi, M.; Safari, Y.; Amiri, R.; Yoosefpour, N. Data set on the antibacterial effects of the hydro-alcoholic extract of Ferula assafoetida plant on Listeria monocytogenes. Data Brief, 2018, 20, 667-671.
[http://dx.doi.org/10.1016/j.dib.2018.08.057] [PMID: 30211257]
[480]
Hashemi, Z.; Mizwari, Z.M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem., 2022, 15(1), 103525.
[http://dx.doi.org/10.1016/j.arabjc.2021.103525]
[481]
Soliman, S.; Abouleish, M.Y.; Khoder, G.; Khalid, B.; Husam, H.; Ameen, K.; Hussein, R.; Abou-Hashem, M.M.M. The scientific basis of the antibacterial traditional use of Calligonum comosum in UAE. J. Herb. Med., 2021, 27, 100361.
[http://dx.doi.org/10.1016/j.hermed.2020.100361]
[482]
Rashki, S.; Alshamsi, H.A.; Amiri, O.; Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Nazari-Alam, A.; Khaledi, A. Eco-friendly green synthesis of ZnO/GQD nanocomposites using Protoparmeliopsis muralis extract for their antibacterial and antibiofilm activity. J. Mol. Liq., 2021, 335, 116195.
[http://dx.doi.org/10.1016/j.molliq.2021.116195]
[483]
Ehsani, P.; Farahpour, M.R.; Mohammadi, M.; Mahmazi, S.; Jafarirad, S. Green frabrication of ZnO/magnetite-based nanocomposite- using Salvia officinalis extract with antibacterial properties enhanced infected full-thickness wound. Colloids Surf. A Physicochem. Eng. Asp., 2021, 628, 127362.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127362]
[484]
Alavi, M.; Karimi, N. Hemoglobin self-assembly and antibacterial activities of biomodified Ag-MgO nano-composites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. Int. J. Biol. Macromol., 2020, 152, 1174-1185.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.207] [PMID: 31760003]
[485]
Asgharpour, F.; Moghadamnia, A.A.; Alizadeh, Y.; Kazemi, S. Chemical composition and antibacterial activity of hexane extract of Lycoperdon Pyriforme. S. Afr. J. Bot., 2020, 131, 195-199.
[http://dx.doi.org/10.1016/j.sajb.2020.01.044]
[486]
Bhattacharjee, I.; Chatterjee, S.K.; Ghosh, A.; Chandra, G. Antibacterial activities of some plant extracts used in Indian traditional folk medicine. Asian Pac. J. Trop. Biomed., 2011, 1(2), S165-S169.
[http://dx.doi.org/10.1016/S2221-1691(11)60148-2]
[487]
Jahantighi, A.; Kiani, G.; Tohidi Moghaddam, T.; Ghahari, S. In vitro antibacterial activity of selected medicinal plants traditionally used in Iran against plant and human pathogenic bacteria. Jordan J. Biol. Sci., 2016, 9(3), 221-226.
[488]
Pirbalouti, A.G.; Malekpoor, F.; Enteshari, S.; Yousefi, M.; Momtaz, H.; Hamedi, B. Antibacterial activity of some folklore medicinal plants used by Bakhtiari tribal in Southwest Iran. Int. J. Biol., 2010, 2(2), 55-63.
[http://dx.doi.org/10.5539/ijb.v2n2p55]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy