Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 21, Issue 1, 2023

Published on: 15 November, 2022

Page: [119 - 132] Pages: 14

DOI: 10.2174/1570159X20666220811092906

Price: $65

Abstract

Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.

Keywords: Alcohol, G-protein, neurotransmitters, neuroproteomics, pharmacological targets, alcohol use disorder.

Graphical Abstract
[1]
Sudhinaraset, M.; Wigglesworth, C.; Takeuchi, D.T. Social and cultural contexts of alcohol use: Influences in a social-ecological framework. Alcohol Res., 2016, 38(1), 35-45.
[PMID: 27159810]
[2]
Young-Wolff, K.C.; Enoch, M.A.; Prescott, C.A. The influence of gene–environment interactions on alcohol consumption and alcohol use disorders: A comprehensive review. Clin. Psychol. Rev., 2011, 31(5), 800-816.
[http://dx.doi.org/10.1016/j.cpr.2011.03.005] [PMID: 21530476]
[3]
Kuria, M.W.; Ndetei, D.M.; Obot, I.S.; Khasakhala, L.I.; Bagaka, B.M.; Mbugua, M.N.; Kamau, J. The Association between Alcohol Dependence and Depression before and after Treatment for Alcohol Dependence. ISRN Psychiatry, 2012, 2012, 1-6.
[http://dx.doi.org/10.5402/2012/482802] [PMID: 23738204]
[4]
Bevilacqua, L.; Goldman, D. Genes and Addictions. Clin. Pharmacol. Ther., 2009, 85(4), 359-361.
[http://dx.doi.org/10.1038/clpt.2009.6] [PMID: 19295534]
[5]
Quertemont, E.; Didone, V. Role of acetaldehyde in mediating the pharmacological and behavioral effects of alcohol. Alcohol Res. Health, 2006, 29(4), 258-265.
[PMID: 17718404]
[6]
Ingólfsson, H.I.; Andersen, O.S. Alcohol’s effects on lipid bilayer properties. Biophys. J., 2011, 101(4), 847-855.
[http://dx.doi.org/10.1016/j.bpj.2011.07.013] [PMID: 21843475]
[7]
Machta, B.B.; Gray, E.; Nouri, M.; McCarthy, N.L.C.; Gray, E.M.; Miller, A.L.; Brooks, N.J.; Veatch, S.L. Conditions that stabilize membrane domains also antagonize n -alcohol anesthesia. Biophys. J., 2016, 111(3), 537-545.
[http://dx.doi.org/10.1016/j.bpj.2016.06.039] [PMID: 27508437]
[8]
Valenzuela, C.F. Alcohol and neurotransmitter interactions. Alcohol Health Res. World, 1997, 21(2), 144-148.
[PMID: 15704351]
[9]
Ward, R.J.; Lallemand, F.; de Witte, P. Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or ‘binge drinking’ alcohol abuse. Alcohol Alcohol., 2009, 44(2), 128-135.
[http://dx.doi.org/10.1093/alcalc/agn100] [PMID: 19155229]
[10]
Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform., 2018, 19(2), 286-302.
[http://dx.doi.org/10.1093/bib/bbw114] [PMID: 27881428]
[11]
Wang, B.; Kumar, V.; Olson, A.; Ware, D. Reviving the Transcriptome Studies: An Insight Into the Emergence of Single-Molecule Transcriptome Sequencing. Front. Genet., 2019, 10, 384.
[http://dx.doi.org/10.3389/fgene.2019.00384] [PMID: 31105749]
[12]
Lull, M.E.; Freeman, W.M.; VanGuilder, H.D.; Vrana, K.E. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend., 2010, 107(1), 11-22.
[http://dx.doi.org/10.1016/j.drugalcdep.2009.10.001] [PMID: 19926406]
[13]
Knox, J.; Schneider, J.; Greene, E.; Nicholson, J.; Hasin, D.; Sandfort, T. Using social network analysis to examine alcohol use among adults: A systematic review. PLoS One, 2019, 14(8), e0221360.
[http://dx.doi.org/10.1371/journal.pone.0221360] [PMID: 31437257]
[14]
Kwako, L.E.; Momenan, R.; Litten, R.Z.; Koob, G.F.; Goldman, D. Addictions neuroclinical assessment: A neuroscience-based framework for addictive disorders. Biol. Psychiatry, 2016, 80(3), 179-189.
[http://dx.doi.org/10.1016/j.biopsych.2015.10.024] [PMID: 26772405]
[15]
Ghitza, U.E. Commentary: Addictions neuroclinical assessment: A neuroscience-based framework for addictive disorders. Front. Psychiatry, 2017, 8, 2.
[http://dx.doi.org/10.3389/fpsyt.2017.00002] [PMID: 28133452]
[16]
Edenberg, H.J.; Foroud, T. Genetics and alcoholism. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(8), 487-494.
[http://dx.doi.org/10.1038/nrgastro.2013.86] [PMID: 23712313]
[17]
Tawa, E.A.; Hall, S.D.; Lohoff, F.W. Overview of the Genetics of Alcohol Use Disorder. Alcohol Alcohol., 2016, 51(5), 507-514.
[http://dx.doi.org/10.1093/alcalc/agw046] [PMID: 27445363]
[18]
Morozova, T.V.; Goldman, D.; Mackay, T.F.C.; Anholt, R.R.H. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biol., 2012, 13(2), 239.
[http://dx.doi.org/10.1186/gb-2012-13-2-239] [PMID: 22348705]
[19]
Bardo, M.T.; Neisewander, J.L.; Kelly, T.H. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol. Rev., 2013, 65(1), 255-290.
[http://dx.doi.org/10.1124/pr.111.005124] [PMID: 23343975]
[20]
Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Kupchik, Y.M.; Spencer, S.; Smith, A.C.W.; Roberts-Wolfe, D.; Kalivas, P.W. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol. Rev., 2016, 68(3), 816-871.
[http://dx.doi.org/10.1124/pr.116.012484] [PMID: 27363441]
[21]
Adinoff, B. Neurobiologic processes in drug reward and addiction. Harv. Rev. Psychiatry, 2004, 12(6), 305-320.
[http://dx.doi.org/10.1080/10673220490910844] [PMID: 15764467]
[22]
Eisenhardt, M.; Leixner, S.; Luján, R.; Spanagel, R.; Bilbao, A. Glutamate receptors within the mesolimbic dopamine system mediate alcohol relapse behavior. J. Neurosci., 2015, 35(47), 15523-15538.
[http://dx.doi.org/10.1523/JNEUROSCI.2970-15.2015] [PMID: 26609150]
[23]
You, C.; Vandegrift, B.; Brodie, M.S. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl.), 2018, 235(6), 1711-1726.
[http://dx.doi.org/10.1007/s00213-018-4875-y] [PMID: 29549390]
[24]
Luo, M.; Zhou, J.; Liu, Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn. Mem., 2015, 22(9), 452-460.
[http://dx.doi.org/10.1101/lm.037317.114] [PMID: 26286655]
[25]
Gervais, J.; Rouillard, C. Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse, 2000, 35(4), 281-291.
[http://dx.doi.org/10.1002/(SICI)1098-2396(20000315)35:4<281:AID-SYN6>3.0.CO;2-A] [PMID: 10657038]
[26]
Moriya, S.; Yamashita, A.; Masukawa, D.; Kambe, Y.; Sakaguchi, J.; Setoyama, H.; Yamanaka, A.; Kuwaki, T. Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Mol. Brain, 2020, 13(1), 14.
[http://dx.doi.org/10.1186/s13041-020-0553-1] [PMID: 32005128]
[27]
Becker, H.C. Alcohol dependence, withdrawal, and relapse. Alcohol Res. Health, 2008, 31(4), 348-361.
[PMID: 23584009]
[28]
Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis., 2012, 16(4), 667-685.
[http://dx.doi.org/10.1016/j.cld.2012.08.002] [PMID: 23101976]
[29]
Oscar-Berman, M.; Marinković, K. Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol. Rev., 2007, 17(3), 239-257.
[http://dx.doi.org/10.1007/s11065-007-9038-6] [PMID: 17874302]
[30]
Stephens, M.A.; Wand, G. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res., 2012, 34(4), 468-483.
[PMID: 23584113]
[31]
Haass-Koffler, C.L.; Bartlett, S.E. Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity. Front. Mol. Neurosci., 2012, 5, 91.
[http://dx.doi.org/10.3389/fnmol.2012.00091] [PMID: 22973190]
[32]
Quadros, I.M.H.; Macedo, G.C.; Domingues, L.P.; Favoretto, C.A. An Update on CRF Mechanisms Underlying Alcohol Use Disorders and Dependence. Front. Endocrinol. (Lausanne), 2016, 7, 134.
[http://dx.doi.org/10.3389/fendo.2016.00134] [PMID: 27818644]
[33]
Ciranna, L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr. Neuropharmacol., 2006, 4(2), 101-114.
[http://dx.doi.org/10.2174/157015906776359540] [PMID: 18615128]
[34]
Alex, K.D.; Pehek, E.A. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol. Ther., 2007, 113(2), 296-320.
[http://dx.doi.org/10.1016/j.pharmthera.2006.08.004] [PMID: 17049611]
[35]
Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain, 2017, 10(1), 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[36]
Fearon, I.M.; Zhang, M.; Vollmer, C.; Nurse, C.A. GABA mediates autoreceptor feedback inhibition in the rat carotid body via presynaptic GABAB receptors and TASK-1. J. Physiol., 2003, 553(1), 83-94.
[http://dx.doi.org/10.1113/jphysiol.2003.048298] [PMID: 12949228]
[37]
Nagy, J. Alcohol related changes in regulation of NMDA receptor functions. Curr. Neuropharmacol., 2008, 6(1), 39-54.
[http://dx.doi.org/10.2174/157015908783769662] [PMID: 19305787]
[38]
Barron, S.; Lewis, B.; Wellmann, K.; Carter, M.; Farook, J.; Ring, J.; Trent Rogers, D.; Holley, R.; Crooks, P.; Littleton, J. Polyamine modulation of NMDARs as a mechanism to reduce effects of alcohol dependence. Recent Patents CNS Drug Discov., 2012, 7(2), 129-144.
[http://dx.doi.org/10.2174/157488912800673128] [PMID: 22574674]
[39]
Rubio-Casillas, A.; Fernández-Guasti, A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev. Neurosci., 2016, 27(6), 599-622.
[http://dx.doi.org/10.1515/revneuro-2015-0066] [PMID: 27096778]
[40]
Voglis, G.; Tavernarakis, N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep., 2006, 7(11), 1104-1110.
[http://dx.doi.org/10.1038/sj.embor.7400830] [PMID: 17077866]
[41]
Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 2010, 68(5), 815-834.
[http://dx.doi.org/10.1016/j.neuron.2010.11.022] [PMID: 21144997]
[42]
Ma, H.; Zhu, G. The dopamine system and alcohol dependence. Shanghai Jingshen Yixue, 2014, 26(2), 61-68.
[PMID: 25092951]
[43]
Vena, A.A.; Gonzales, R.A. Temporal profiles dissociate regional extracellular ethanol versus dopamine concentrations. ACS Chem. Neurosci., 2015, 6(1), 37-47.
[http://dx.doi.org/10.1021/cn500278b] [PMID: 25537116]
[44]
Willuhn, I.; Wanat, M.J.; Clark, J.J.; Phillips, P.E.M. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr. Top. Behav. Neurosci., 2010, 3, 29-71.
[http://dx.doi.org/10.1007/7854_2009_27] [PMID: 21161749]
[45]
Perkins, D.I.; Trudell, J.R.; Crawford, D.K.; Alkana, R.L.; Davies, D.L. Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol. Ther., 2010, 127(1), 53-65.
[http://dx.doi.org/10.1016/j.pharmthera.2010.03.003] [PMID: 20399807]
[46]
Muñoz, B.; Gallegos, S.; Peters, C.; Murath, P.; Lovinger, D.M.; Homanics, G.E.; Aguayo, L.G. Influence of nonsynaptic α1 glycine receptors on ethanol consumption and place preference. Addict. Biol., 2020, 25(2), e12726.
[http://dx.doi.org/10.1111/adb.12726] [PMID: 30884072]
[47]
Reggio, P. Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr. Med. Chem., 2010, 17(14), 1468-1486.
[http://dx.doi.org/10.2174/092986710790980005] [PMID: 20166921]
[48]
Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci., 2018, 19(3), 833.
[http://dx.doi.org/10.3390/ijms19030833] [PMID: 29533978]
[49]
Undieh, A.S. Pharmacology of signaling induced by dopamine D1-like receptor activation. Pharmacol. Ther., 2010, 128(1), 37-60.
[http://dx.doi.org/10.1016/j.pharmthera.2010.05.003] [PMID: 20547182]
[50]
Argyrousi, E.K.; Heckman, P.R.A.; Prickaerts, J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci. Biobehav. Rev., 2020, 113, 12-38.
[http://dx.doi.org/10.1016/j.neubiorev.2020.02.004] [PMID: 32044374]
[51]
Moonat, S.; Starkman, B.G.; Sakharkar, A.; Pandey, S.C. Neuroscience of alcoholism: molecular and cellular mechanisms. Cell. Mol. Life Sci., 2010, 67(1), 73-88.
[http://dx.doi.org/10.1007/s00018-009-0135-y] [PMID: 19756388]
[52]
Santini, E.; Valjent, E.; Usiello, A.; Carta, M.; Borgkvist, A.; Girault, J.A.; Hervé, D.; Greengard, P.; Fisone, G. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J. Neurosci., 2007, 27(26), 6995-7005.
[http://dx.doi.org/10.1523/JNEUROSCI.0852-07.2007] [PMID: 17596448]
[53]
Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol. Rev., 2009, 89(2), 649-705.
[http://dx.doi.org/10.1152/physrev.00013.2008] [PMID: 19342616]
[54]
Chen, B.S.; Roche, K.W. Regulation of NMDA receptors by phosphorylation. Neuropharmacology, 2007, 53(3), 362-368.
[http://dx.doi.org/10.1016/j.neuropharm.2007.05.018] [PMID: 17644144]
[55]
Anguita, E.; Villalobo, A. Src-family tyrosine kinases and the Ca2+ signal. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(6), 915-932.
[http://dx.doi.org/10.1016/j.bbamcr.2016.10.022] [PMID: 27818271]
[56]
Ron, D. Signaling cascades regulating NMDA receptor sensitivity to ethanol. Neuroscientist, 2004, 10(4), 325-336.
[http://dx.doi.org/10.1177/1073858404263516] [PMID: 15271260]
[57]
Grosshans, D.R.; Clayton, D.A.; Coultrap, S.J.; Browning, M.D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat. Neurosci., 2002, 5(1), 27-33.
[http://dx.doi.org/10.1038/nn779] [PMID: 11740502]
[58]
Leslie, S.N.; Nairn, A.C. cAMP regulation of protein phosphatases PP1 and PP2A in brain. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(1), 64-73.
[http://dx.doi.org/10.1016/j.bbamcr.2018.09.006] [PMID: 30401536]
[59]
Walaas, S.; Hemmings, H.C., Jr; Greengard, P.; Nairn, A.C. Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front. Neuroanat., 2011, 5, 50.
[http://dx.doi.org/10.3389/fnana.2011.00050] [PMID: 21904525]
[60]
Nishi, A.; Kuroiwa, M.; Shuto, T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front. Neuroanat., 2011, 5, 43.
[http://dx.doi.org/10.3389/fnana.2011.00043] [PMID: 21811441]
[61]
Gorini, G.; Adron Harris, R.; Dayne Mayfield, R. Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacology, 2014, 39(1), 104-130.
[http://dx.doi.org/10.1038/npp.2013.182] [PMID: 23900301]
[62]
Gulcicek, E.E.; Colangelo, C.M.; McMurray, W.; Stone, K.; Williams, K.; Wu, T.; Zhao, H.; Spratt, H.; Kurosky, A.; Wu, B. Proteomics and the analysis of proteomic data: an overview of current protein-profiling technologies. Curr. Protoc. Bioinformatics, 2005, Chapter 13, Unit 13.1.
[http://dx.doi.org/10.1002/0471250953.bi1301s10] [PMID: 18428746]
[63]
Magdeldin, S.; Enany, S.; Yoshida, Y.; Xu, B.; Zhang, Y.; Zureena, Z.; Lokamani, I.; Yaoita, E.; Yamamoto, T. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteomics, 2014, 11(1), 16.
[http://dx.doi.org/10.1186/1559-0275-11-16] [PMID: 24735559]
[64]
Mayfield, J.; Arends, M.A.; Harris, R.A.; Blednov, Y.A. Genes and Alcohol Consumption. Int. Rev. Neurobiol., 2016, 126, 293-355.
[http://dx.doi.org/10.1016/bs.irn.2016.02.014] [PMID: 27055617]
[65]
Faccidomo, S.; Swaim, K.S.; Saunders, B.L.; Santanam, T.S.; Taylor, S.M.; Kim, M.; Reid, G.T.; Eastman, V.R.; Hodge, C.W. Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice. Psychopharmacology (Berl.), 2018, 235(6), 1681-1696.
[http://dx.doi.org/10.1007/s00213-018-4870-3] [PMID: 29502276]
[66]
Kashem, M.A.; Etages, H.D.; Kopitar-Jerala, N.; McGregor, I.S.; Matsumoto, I. Differential protein expression in the corpus callosum (body) of human alcoholic brain. J. Neurochem., 2009, 110(2), 486-495.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06141.x] [PMID: 19457110]
[67]
Miguel-Hidalgo, J.J. Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front. Mol. Neurosci., 2018, 11, 78.
[http://dx.doi.org/10.3389/fnmol.2018.00078] [PMID: 29615864]
[68]
Zakhari, S. Alcohol metabolism and epigenetics changes. Alcohol Res., 2013, 35(1), 6-16.
[PMID: 24313160]
[69]
Ponomarev, I. Epigenetic control of gene expression in the alcoholic brain. Alcohol Res., 2013, 35(1), 69-76.
[PMID: 24313166]
[70]
Jangra, A.; Sriram, C.S.; Pandey, S.; Choubey, P.; Rajput, P.; Saroha, B.; Bezbaruah, B.K.; Lahkar, M. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets. Ann. Neurosci., 2016, 23(4), 246-260.
[http://dx.doi.org/10.1159/000449486] [PMID: 27780992]
[71]
Jesse, S.; Bråthen, G.; Ferrara, M.; Keindl, M.; Ben-Menachem, E.; Tanasescu, R.; Brodtkorb, E.; Hillbom, M.; Leone, M.A.; Ludolph, A.C. Alcohol withdrawal syndrome: mechanisms, manifestations, and management. Acta Neurol. Scand., 2017, 135(1), 4-16.
[http://dx.doi.org/10.1111/ane.12671] [PMID: 27586815]
[72]
Heese, P.; Linnebank, M.; Semmler, A.; Muschler, M.A.N.; Heberlein, A.; Frieling, H.; Stoffel-Wagner, B.; Kornhuber, J.; Banger, M.; Bleich, S.; Hillemacher, T. Alterations of homocysteine serum levels during alcohol withdrawal are influenced by folate and riboflavin: results from the German Investigation on Neurobiology in Alcoholism (GINA). Alcohol Alcohol., 2012, 47(5), 497-500.
[http://dx.doi.org/10.1093/alcalc/ags058] [PMID: 22645037]
[73]
Frazier, T.H.; Stocker, A.M.; Kershner, N.A.; Marsano, L.S.; McClain, C.J. Treatment of alcoholic liver disease. Therap. Adv. Gastroenterol., 2011, 4(1), 63-81.
[http://dx.doi.org/10.1177/1756283X10378925] [PMID: 21317995]
[74]
Joo, J.Y.; Schaukowitch, K.; Farbiak, L.; Kilaru, G.; Kim, T.K. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat. Neurosci., 2016, 19(1), 75-83.
[http://dx.doi.org/10.1038/nn.4170] [PMID: 26595656]
[75]
Sugiura, S.; Kitagawa, K.; Omura-Matsuoka, E.; Sasaki, T.; Tanaka, S.; Yagita, Y.; Matsushita, K.; Storm, D.R.; Hori, M. CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice. J. Neurosci. Res., 2004, 75(3), 401-407.
[http://dx.doi.org/10.1002/jnr.10881] [PMID: 14743453]
[76]
Böer, U.; Alejel, T.; Beimesche, S.; Cierny, I.; Krause, D.; Knepel, W.; Flügge, G. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One, 2007, 2(5), e431.
[http://dx.doi.org/10.1371/journal.pone.0000431] [PMID: 17487276]
[77]
Rice, J.; Gu, C. Function and Mechanism of Myelin Regulation in Alcohol Abuse and Alcoholism. BioEssays, 2019, 41(7), 1800255.
[http://dx.doi.org/10.1002/bies.201800255] [PMID: 31094014]
[78]
Wolstenholme, J.T.; Mahmood, T.; Harris, G.M.; Abbas, S.; Miles, M.F. Intermittent Ethanol during Adolescence Leads to Lasting Behavioral Changes in Adulthood and Alters Gene Expression and Histone Methylation in the PFC. Front. Mol. Neurosci., 2017, 10, 307.
[http://dx.doi.org/10.3389/fnmol.2017.00307] [PMID: 29018328]
[79]
Crews, F.T.; Vetreno, R.P.; Broadwater, M.A.; Robinson, D.L. Adolescent alcohol exposure persistently impacts adult neurobiology and behavior. Pharmacol. Rev., 2016, 68(4), 1074-1109.
[http://dx.doi.org/10.1124/pr.115.012138] [PMID: 27677720]
[80]
Green, A.S.; Grahame, N.J. Ethanol drinking in rodents: is free-choice drinking related to the reinforcing effects of ethanol? Alcohol, 2008, 42(1), 1-11.
[http://dx.doi.org/10.1016/j.alcohol.2007.10.005] [PMID: 18164576]
[81]
Golden, S.A.; Russo, S.J. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb. Perspect. Med., 2012, 2(10), a011957.
[http://dx.doi.org/10.1101/cshperspect.a011957] [PMID: 22935995]
[82]
Sloley, S.S.; Main, B.S.; Winston, C.N.; Harvey, A.C.; Kaganovich, A.; Korthas, H.T.; Caccavano, A.P.; Zapple, D.N.; Wu, J.; Partridge, J.G.; Cookson, M.R.; Vicini, S.; Burns, M.P. High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nat. Commun., 2021, 12(1), 2613.
[http://dx.doi.org/10.1038/s41467-021-22744-6] [PMID: 33972519]
[83]
Lüscher, C.; Malenka, R.C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron, 2011, 69(4), 650-663.
[http://dx.doi.org/10.1016/j.neuron.2011.01.017] [PMID: 21338877]
[84]
Kalivas, P.W.; Volkow, N.D. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry, 2011, 16(10), 974-986.
[http://dx.doi.org/10.1038/mp.2011.46] [PMID: 21519339]
[85]
van Huijstee, A.N.; Mansvelder, H.D. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Front. Cell. Neurosci., 2015, 8, 466.
[http://dx.doi.org/10.3389/fncel.2014.00466] [PMID: 25653591]
[86]
Pignatelli, M.; Bonci, A. Role of Dopamine Neurons in Reward and Aversion: A Synaptic Plasticity Perspective. Neuron, 2015, 86(5), 1145-1157.
[http://dx.doi.org/10.1016/j.neuron.2015.04.015] [PMID: 26050034]
[87]
Guire, E.S.; Oh, M.C.; Soderling, T.R.; Derkach, V.A. Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J. Neurosci., 2008, 28(23), 6000-6009.
[http://dx.doi.org/10.1523/JNEUROSCI.0384-08.2008] [PMID: 18524905]
[88]
Good, C.H.; Lupica, C.R. Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs. J. Neurosci., 2010, 30(23), 7900-7909.
[http://dx.doi.org/10.1523/JNEUROSCI.1507-10.2010] [PMID: 20534838]
[89]
Chater, T.E.; Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci., 2014, 8, 401.
[http://dx.doi.org/10.3389/fncel.2014.00401] [PMID: 25505875]
[90]
Hopf, F.W. Do specific NMDA receptor subunits act as gateways for addictive behaviors? Genes Brain Behav., 2017, 16(1), 118-138.
[http://dx.doi.org/10.1111/gbb.12348] [PMID: 27706932]
[91]
Shiflett, M.W.; Balleine, B.W. Molecular substrates of action control in cortico-striatal circuits. Prog. Neurobiol., 2011, 95(1), 1-13.
[http://dx.doi.org/10.1016/j.pneurobio.2011.05.007] [PMID: 21704115]
[92]
Philibin, S.D.; Hernandez, A.; Self, D.W.; Bibb, J.A. Striatal signal transduction and drug addiction. Front. Neuroanat., 2011, 5, 60.
[http://dx.doi.org/10.3389/fnana.2011.00060] [PMID: 21960960]
[93]
Peak, J.; Hart, G.; Balleine, B.W. From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning. Eur. J. Neurosci., 2019, 49(5), 658-671.
[http://dx.doi.org/10.1111/ejn.13964] [PMID: 29791051]
[94]
Fowler, J.; Volkow, N.; Kassed, C.; Chang, L. Imaging the addicted human brain. Sci. Pract. Perspect., 2007, 3(2), 4-16.
[http://dx.doi.org/10.1151/spp07324] [PMID: 17514067]
[95]
Niciu, M.J.; Mason, G.F. Neuroimaging in Alcohol and Drug Dependence. Curr. Behav. Neurosci. Rep., 2014, 1(1), 45-54.
[http://dx.doi.org/10.1007/s40473-013-0005-7] [PMID: 24678450]
[96]
Horská, A.; Barker, P.B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin. N. Am., 2010, 20(3), 293-310.
[http://dx.doi.org/10.1016/j.nic.2010.04.003] [PMID: 20708548]
[97]
Mukherjee, S. Alcohol metabolism and generation of free radicals: a deep insight. OA Alcohol, 2014, 2(1), 10.
[98]
Meyerhoff, D.J.; Durazzo, T.C. Proton magnetic resonance spectroscopy in alcohol use disorders: a potential new endophenotype? Alcohol. Clin. Exp. Res., 2008, 32(7), 1146-1158.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00695.x] [PMID: 18540913]
[99]
Javitt, D.C.; Schoepp, D.; Kalivas, P.W.; Volkow, N.D.; Zarate, C.; Merchant, K.; Bear, M.F.; Umbricht, D.; Hajos, M.; Potter, W.Z.; Lee, C.M. Translating glutamate: from pathophysiology to treatment. Sci Transl Med., 2011, 3(102), 102mr2.
[http://dx.doi.org/10.1126/scitranslmed.3002804] [PMID: 21957170]
[100]
Terbeck, S.; Akkus, F.; Chesterman, L.P.; Hasler, G. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with human Positron Emission Tomography (PET) studies. Front. Neurosci., 2015, 9, 86.
[http://dx.doi.org/10.3389/fnins.2015.00086] [PMID: 25852460]
[101]
You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol., 2019, 70(2), 237-248.
[http://dx.doi.org/10.1016/j.jhep.2018.10.037] [PMID: 30658725]
[102]
Arias, H.R.; Targowska-Duda, K.M.; García-Colunga, J.; Ortells, M.O. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules, 2021, 26(8), 2149.
[http://dx.doi.org/10.3390/molecules26082149] [PMID: 33917953]
[103]
Uhrig, S.; Vandael, D.; Marcantoni, A.; Dedic, N.; Bilbao, A.; Vogt, M.A.; Hirth, N.; Broccoli, L.; Bernardi, R.E.; Schönig, K.; Gass, P.; Bartsch, D.; Spanagel, R.; Deussing, J.M.; Sommer, W.H.; Carbone, E.; Hansson, A.C. Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology, 2017, 42(5), 1058-1069.
[http://dx.doi.org/10.1038/npp.2016.266] [PMID: 27905406]
[104]
Vengeliene, V.; Bilbao, A.; Molander, A.; Spanagel, R. Neuropharmacology of alcohol addiction. Br. J. Pharmacol., 2008, 154(2), 299-315.
[http://dx.doi.org/10.1038/bjp.2008.30] [PMID: 18311194]
[105]
Lüscher, C.; Slesinger, P.A. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat. Rev. Neurosci., 2010, 11(5), 301-315.
[http://dx.doi.org/10.1038/nrn2834] [PMID: 20389305]
[106]
Jeremic, D.; Sanchez-Rodriguez, I.; Jimenez-Diaz, L.; Navarro-Lopez, J.D. Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol. Ther., 2021, 223, 107808.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107808] [PMID: 33476640]
[107]
Erickson, E.K.; Grantham, E.K.; Warden, A.S.; Harris, R.A. Neuroimmune signaling in alcohol use disorder. Pharmacol. Biochem. Behav., 2019, 177, 34-60.
[http://dx.doi.org/10.1016/j.pbb.2018.12.007] [PMID: 30590091]
[108]
Sandweiss, A.J.; Vanderah, T.W. The pharmacology of neurokinin receptors in addiction: prospects for therapy. Subst. Abuse Rehabil., 2015, 6, 93-102.
[PMID: 26379454]
[109]
Rammes, G. Neramexane: a moderate-affinity NMDA receptor channel blocker: new prospects and indications. Expert Rev. Clin. Pharmacol., 2009, 2(3), 231-238.
[http://dx.doi.org/10.1586/ecp.09.7] [PMID: 24410702]
[110]
Chen, Y.C.; Holmes, A. Effects of topiramate and other anti-glutamatergic drugs on the acute intoxicating actions of ethanol in mice: modulation by genetic strain and stress. Neuropsychopharmacology, 2009, 34(6), 1454-1466.
[http://dx.doi.org/10.1038/npp.2008.182] [PMID: 18843265]
[111]
Ye, J.H.; Ponnudurai, R.; Schaefer, R. Ondansetron: a selective 5-HT(3) receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev., 2001, 7(2), 199-213.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00195.x] [PMID: 11474424]
[112]
Kowal, N.M.; Ahring, P.K.; Liao, V.W.Y.; Indurti, D.C.; Harvey, B.S.; O’Connor, S.M.; Chebib, M.; Olafsdottir, E.S.; Balle, T. Galantamine is not a positive allosteric modulator of human α4β2 or α7 nicotinic acetylcholine receptors. Br. J. Pharmacol., 2018, 175(14), 2911-2925.
[http://dx.doi.org/10.1111/bph.14329] [PMID: 29669164]
[113]
Mukherjee, S.; Das, S.; Vaidyanathan, K.; Vasudevan, D. Consequences of alcohol consumption on neurotransmitters -an overview. Curr. Neurovasc. Res., 2008, 5(4), 266-272.
[http://dx.doi.org/10.2174/156720208786413415] [PMID: 19133404]
[114]
Funk, D.; Lo, S.; Coen, K.; Lê, A.D. Effects of varenicline on operant self-administration of alcohol and/or nicotine in a rat model of co-abuse. Behav. Brain Res., 2016, 296, 157-162.
[http://dx.doi.org/10.1016/j.bbr.2015.09.009] [PMID: 26365457]
[115]
Agabio, R.; Colombo, G. GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front. Neurosci., 2014, 8, 140.
[http://dx.doi.org/10.3389/fnins.2014.00140] [PMID: 24936171]
[116]
de Beaurepaire, R.; Sinclair, J.M.A.; Heydtmann, M.; Addolorato, G.; Aubin, H.J.; Beraha, E.M.; Caputo, F.; Chick, J.D.; de La Selle, P.; Franchitto, N.; Garbutt, J.C.; Haber, P.S.; Jaury, P.; Lingford-Hughes, A.R.; Morley, K.C.; Müller, C.A.; Owens, L.; Pastor, A.; Paterson, L.M.; Pélissier, F.; Rolland, B.; Stafford, A.; Thompson, A.; van den Brink, W.; Leggio, L.; Agabio, R. The Use of Baclofen as a Treatment for Alcohol Use Disorder: A Clinical Practice Perspective. Front. Psychiatry, 2019, 9, 708.
[http://dx.doi.org/10.3389/fpsyt.2018.00708] [PMID: 30662411]
[117]
Anni, H.; Israel, Y. Proteomics in alcohol research. Alcohol Res. Health, 2002, 26(3), 219-232.
[PMID: 12875051]
[118]
Naveed, M.; Tallat, A.; Butt, A.; Khalid, M.; Shehzadi, M.; Bashir, N.; Malik, K.K.U.; Tufail, S.; Nouroz, F. Neuroproteomics in paving the pathway for drug abuse research. Curr. Proteomics, 2019, 16(4), 256-266.
[http://dx.doi.org/10.2174/1570164616666181127144621]
[119]
Jastrzębska, I.; Zwolak, A.; Szczyrek, M.; Wawryniuk, A.; Skrzydło-Radomańska, B.; Daniluk, J. Biomarkers of alcohol misuse: recent advances and future prospects. Prz. Gastroenterol., 2016, 2(2), 78-89.
[http://dx.doi.org/10.5114/pg.2016.60252] [PMID: 27350834]
[120]
Gonzalo, P.; Radenne, S.; Gonzalo, S. Biomarkers of chronic alcohol misuse. Curr. Biomark. Find., 2014, 4, 9-22.
[http://dx.doi.org/10.2147/CBF.S37239]
[121]
Solomons, H.D. Carbohydrate deficient transferrin and alcoholism. Germs, 2012, 2(2), 75-78.
[http://dx.doi.org/10.11599/germs.2012.1015] [PMID: 24432265]
[122]
Addolorato, G.; Mirijello, A.; Barrio, P.; Gual, A. Treatment of alcohol use disorders in patients with alcoholic liver disease. J. Hepatol., 2016, 65(3), 618-630.
[http://dx.doi.org/10.1016/j.jhep.2016.04.029] [PMID: 27155530]
[123]
Leggio, L.; Lee, M.R. Treatment of alcohol use disorder in patients with alcoholic liver disease. Am. J. Med., 2017, 130(2), 124-134.
[http://dx.doi.org/10.1016/j.amjmed.2016.10.004] [PMID: 27984008]
[124]
Peng, J.L.; Patel, M.P.; McGee, B.; Liang, T.; Chandler, K.; Tayarachakul, S.; O’Connor, S.; Liangpunsakul, S. Management of alcohol misuse in patients with liver diseases. J. Investig. Med., 2017, 65(3), 673-680.
[http://dx.doi.org/10.1136/jim-2016-000254] [PMID: 27940551]
[125]
Nanau, R.; Neuman, M. Biomolecules and biomarkers used in diagnosis of alcohol drinking and in monitoring therapeutic interventions. Biomolecules, 2015, 5(3), 1339-1385.
[http://dx.doi.org/10.3390/biom5031339] [PMID: 26131978]
[126]
Kwako, L.E.; Bickel, W.K.; Goldman, D. Addiction biomarkers: Dimensional approaches to understanding addiction. Trends Mol. Med., 2018, 24(2), 121-128.
[http://dx.doi.org/10.1016/j.molmed.2017.12.007] [PMID: 29307501]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy