Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Hydroalcoholic Extract of Psoralea drupacea Inhibits Proliferation and Migration of Hepatocellular Carcinoma Cells and Decreases Angiogenesis in Chick Chorioallantoic Membrane

Author(s): Roghayeh Rashidi, Farideh Boroomand Jahed Avval, Shirin Ghasemian, Hamid Reza Sadeghnia, Seyed Hadi Mousavi, Sara Hooshmand, Mohammad Jalili-Nik, Mohammad Sadegh Amiri and Ahmad Ghorbani*

Volume 20, Issue 9, 2023

Published on: 23 September, 2022

Page: [1284 - 1294] Pages: 11

DOI: 10.2174/1570180819666220806150744

Price: $65

conference banner
Abstract

Objective: Hepatocellular carcinoma is one of the leading causes of cancer-related death worldwide. Experimental studies reported that some plants in the genus of Psoralea (Fabaceae family) show anticancer potential. The present study aimed to evaluate the effects of Psoralea drupacea extract (PDE) on HepG2 liver cancer cells.

Methods: The proliferation, cell cycle, and migration of HepG2 cells were determined by thiazolyl blue tetrazolium bromide test, propidium iodide staining, and scratch assay, respectively. The effects of PDE on the activity of matrix metalloproteinases (MMPs) and angiogenesis were evaluated by the gelatin zymography method and chicken chorioallantoic membrane model, respectively.

Results: The culture of HepG2 cells in the presence of PDE (24 hr and 48 hr) significantly reduced their viability (at a concentration of ≥ 50 μg/mL) and increased the percentage of cells in the sub-G1 stage. PDE also increased the antiproliferative and proapoptotic activities of doxorubicin (3 and 6 μg/mL). The extract significantly decreased the generation of reactive oxygen species and lipid peroxidation in the cells. Moreover, PDE (25 and 50 μg/mL) significantly suppressed the migration ability of HepG2 cells, which was associated with inhibition in the activity of MMP2 and MMP9 (50 μg/mL). Furthermore, treatment with PDE significantly reduced the number and diameter of vessels in the chick chorioallantoic membrane.

Conclusion: PDE decreased the survival and cell cycle progression of liver cancer cells through a mechanism other than oxidative stress. This extract also showed an anti-angiogenesis effect and diminished the migration ability of HepG2 cells by inhibiting MMP activity.

Keywords: Hepatocellular carcinoma, HepG2 cells, matrix metalloproteinases, Psoralea drupacea, angiogenesis, chorioallantoic membrane.

Graphical Abstract
[1]
Bertuccio, P.; Turati, F.; Carioli, G.; Rodriguez, T.; La Vecchia, C.; Malvezzi, M.; Negri, E. Global trends and predictions in hepatocellular carcinoma mortality. J. Hepatol., 2017, 67(2), 302-309.
[http://dx.doi.org/10.1016/j.jhep.2017.03.011] [PMID: 28336466]
[2]
Tang, A.; Hallouch, O.; Chernyak, V.; Kamaya, A.; Sirlin, C.B. Epidemiology of hepatocellular carcinoma: Target population for surveillance and diagnosis. Abdom. Radiol. (N.Y.), 2018, 43(1), 13-25.
[http://dx.doi.org/10.1007/s00261-017-1209-1] [PMID: 28647765]
[3]
Trends in the mortality of hepatocellular carcinoma in the United States. World J. Gastrointest. Surg., 2017, 21, 2033-2038.
[4]
Nili-Ahmadabadi, A.; Sedaghat, M.; Ranjbar, A.; Poorolajal, J.; Nasiripour, H.; Ahmadabadi, M.N. Quantitative analysis and health risk assessment of methanol in medicinal herbal drinks marketed in Hamadan, Iran. J. Appl. Pharm. Sci., 2016, 6, 49-52.
[http://dx.doi.org/10.7324/JAPS.2016.60707]
[5]
Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J. Phytomed., 2015, 5(2), 84-97.
[PMID: 25949949]
[6]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[7]
Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 2018, 32(8), 1425-1449.
[http://dx.doi.org/10.1002/ptr.6087] [PMID: 29672977]
[8]
Sarwar, M.S.; Zhang, H.J.; Tsang, S.W. Perspectives of plant natural products in inhibition of cancer invasion and metastasis by regulating multiple signaling pathways. Curr. Med. Chem., 2018, 25(38), 5057-5087.
[http://dx.doi.org/10.2174/0929867324666170918123413] [PMID: 28925869]
[9]
Seo, U.K.; Lee, Y.J.; Kim, J.K.; Cha, B.Y.; Kim, D-W.; Nam, K.S.; Kim, C.H. Large-scale and effective screening of Korean medicinal plants for inhibitory activity on matrix metalloproteinase-9. J. Ethnopharmacol., 2005, 97(1), 101-106.
[http://dx.doi.org/10.1016/j.jep.2004.10.022] [PMID: 15652283]
[10]
Madrid, A.; Cardile, V.; González, C.; Montenegro, I.; Villena, J.; Caggia, S.; Graziano, A.; Russo, A. Psoralea glandulosa as a potential source of anticancer agents for melanoma treatment. Int. J. Mol. Sci., 2015, 16(4), 7944-7959.
[http://dx.doi.org/10.3390/ijms16047944] [PMID: 25860949]
[11]
Park, G.H.; Sung, J.H.; Song, H.M.; Jeong, J.B. Anti-cancer activity of Psoralea fructus through the downregulation of cyclin D1 and CDK4 in human colorectal cancer cells. BMC Complement. Altern. Med., 2016, 16(1), 373.
[http://dx.doi.org/10.1186/s12906-016-1364-x] [PMID: 27670681]
[12]
Yin, Z.; Zhang, W.; Zhang, J.; Liu, H.; Guo, Q.; Chen, L.; Wang, J.; Kang, W. Two novel polysaccharides in Psoralea corylifolia l and anti-A549 lung cancer cells activity in vitro. Molecules, 2019, 24(20), 3733.
[http://dx.doi.org/10.3390/molecules24203733] [PMID: 31623207]
[13]
Bondarenko, A.S.; Aĭzenman, B.E.; Prikhod’ko, V.A.; Meshcheriakov, A.A.; Skorobogat’ko, T.I. Antibiotic properties of the essential oil of Psoralea drupacea BGE. Mikrobiol. Zh., 1972, 34(5), 612-616.
[PMID: 4670685]
[14]
Ramezani, M.; Hosseinzadeh, H.; Moradi, M.; Taghiabadi, E. Phototoxicity activity of Psoralea drupacea L. using Atremia salina bioassay system. Avicenna J. Phytomed., 2011, 1, 24-28.
[15]
Mahdinezhad, M.R.; Hooshmand, S.; Soukhtanloo, M.; Jamshidi, S.T.; Ehtiati, S.; Ghorbani, A. Protective effects of a standardized extract of Iris germanica on pancreas and liver in streptozotocin-induced diabetic rats. Res. Pharm. Sci., 2020, 16(1), 71-78.
[PMID: 33953776]
[16]
Mullen, W.; Marks, S.C.; Crozier, A. Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J. Agric. Food Chem., 2007, 55(8), 3148-3157.
[http://dx.doi.org/10.1021/jf062970x] [PMID: 17362029]
[17]
Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. InCell viability assays; Humana Press: New York, NY, 2017, pp. 1-17.
[18]
Krishan, A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol., 1975, 66(1), 188-193.
[http://dx.doi.org/10.1083/jcb.66.1.188] [PMID: 49354]
[19]
Wu, D.; Yotnda, P. Production and detection of reactive oxygen species (ROS) in cancers. J. Vis. Exp., 2011, 57(57), 3357.
[http://dx.doi.org/10.3791/3357] [PMID: 22127014]
[20]
Hosseini, A.; Shafiee-Nick, R.; Mousavi, S.H. Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells. Iran. J. Basic Med. Sci., 2014, 17(12), 993-1000.
[PMID: 25859303]
[21]
Shahcheraghi, S.H.; Lotfi, M.; Soukhtanloo, M.; Ghayour Mobarhan, M.; Jaliani, H.Z.; Sadeghnia, H.R.; Ghorbani, A. Effects of galbanic acid on proliferation, migration, and apoptosis of glioblastoma cells through the PI3K/Akt/MTOR signaling pathway. Curr. Mol. Pharmacol., 2021, 14(1), 79-87.
[http://dx.doi.org/10.2174/1874467213666200512075507] [PMID: 32394847]
[22]
Toth, M.; Sohail, A.; Fridman, R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography, Metastasis research protocols; Springer, 2012, pp. 121-135.
[23]
Gomolin, I.H.; Smith, C.; Jeitner, T.M. Cholinesterase inhibitors: Applying pharmacokinetics to clinical decision making. Am. J. Geriatr. Pharmacother., 2011, 9(4), 259-263.
[http://dx.doi.org/10.1016/j.amjopharm.2011.06.001] [PMID: 21763214]
[24]
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[25]
Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther., 2020, 5(1), 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[26]
Mannello, F. Natural bio-drugs as matrix metalloproteinase inhibitors: New perspectives on the horizon? Recent Patents Anticancer Drug Discov., 2006, 1(1), 91-103.
[http://dx.doi.org/10.2174/157489206775246421] [PMID: 18221029]
[27]
Wu, C.; Sun, Z.; Ye, Y.; Han, X.; Song, X.; Liu, S. Psoralen inhibits bone metastasis of breast cancer in mice. Fitoterapia, 2013, 91, 205-210.
[http://dx.doi.org/10.1016/j.fitote.2013.09.005] [PMID: 24060909]
[28]
Su, J.; Liu, D.; Wang, Q.; Lin, J.; Song, S.; Huang, K. Long-time instead of short-time exposure in vitro and administration in vivo of ochratoxin A is consistent in immunosuppression. J. Agric. Food Chem., 2019, 67(26), 7485-7495.
[http://dx.doi.org/10.1021/acs.jafc.9b02595] [PMID: 31180669]
[29]
Hao, W.; Zhang, X.; Zhao, W.; Chen, X. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells. PeerJ, 2014, 2, e555.
[http://dx.doi.org/10.7717/peerj.555] [PMID: 25250213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy