Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

A Systematic Review and Meta-Analysis on the Effect of Flavonoids on Insulin-like Growth Factor and Insulin-like Growth Factor Binding Protein and Incidence of Breast Cancer

Author(s): Shiva Nasr, Athar Nakisa, Setareh Jandaghian, Monireh Kouhi, Erfan Sadeghi and Jaleh Varshosaz*

Volume 30, Issue 14, 2023

Published on: 21 September, 2022

Page: [1657 - 1666] Pages: 10

DOI: 10.2174/0929867329666220801164740

Price: $65

Abstract

Background: Insulin-like growth factor (IGF-1) is associated with breast cancer in menopausal women. Naturally occurring biomolecules found in common dietary protocols, such as flavonoids, play a key role in the inhibition and treatment of cancer. In-vitro/in-vivo studies showed that treatment involving flavonoids led to a reduced risk of breast cancer due to the decrease of IGF-1 level in addition to an increased insulin-like growth factor binding protein (IGFBP)-3. However, clinical studies did not show conclusive results in this regard because they are contradictory.

Objective: The aim of the present study was to find the effect of flavonoids on IGF-1 and IGFBP-3 and the incidence of breast cancer.

Methods: This systematic review was performed using PubMed, Scopus, ISI Web of Science, and EMBASE databases to collect results about the clinical use of flavonoids and their effects on breast cancer. After eliminating duplicate articles, the title and abstract of the remaining articles were examined in thematic communication, and related clinical articles were selected and studied based on inclusion criteria. The data were extracted from each article, and then statistical analysis was subsequently carried out by Comprehensive Meta-Analysis.

Results: The results showed that the effect of flavonoids on changes in IGF1 and IGFBP-3 was not statistically significant. No significant heterogeneity was detected across the studies. Pooled effect size also indicated that the mean change was not statistically significant. No significant heterogeneity was detected across the studies. There was no evidence of publication bias for IGF1 and IGFBP-3.

Conclusion: This meta-analysis study suggests that flavonoid supplementations have no significant effect on IGF-1 and IGFBP-3, and a high soy diet has beneficial effects on IGF system components, which might be useful in breast cancer.

Keywords: Flavonoids, insulin-like growth factor, insulin-like growth factor binding protein, breast cancer, IGF1, IGFBP-3.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Panjehpour, M.; Taher, M.A.; Bayesteh, M. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. J. Res. Med. Sci., 2010, 15(5), 279-286.
[PMID: 21526096]
[3]
Zhou, H.; Zou, P.; Chen, Z.C.; You, Y. A novel vicious cycle cascade in tumor chemotherapy. Med. Hypotheses, 2007, 69(6), 1230-1233.
[http://dx.doi.org/10.1016/j.mehy.2007.03.038] [PMID: 17555885]
[4]
Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.; Petruzzelli, L.; Engelman, J.A.; Dranoff, G. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer, 2017, 17(5), 286-301.
[http://dx.doi.org/10.1038/nrc.2017.17] [PMID: 28338065]
[5]
Birt, D.F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Ther., 2001, 90(2-3), 157-177.
[http://dx.doi.org/10.1016/S0163-7258(01)00137-1] [PMID: 11578656]
[6]
Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem., 2007, 18(7), 427-442.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.004] [PMID: 17321735]
[7]
Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res., 2008, 52(5), 507-526.
[http://dx.doi.org/10.1002/mnfr.200700326] [PMID: 18435439]
[8]
Mourouti, N.; Panagiotakos, D.B. Soy food consumption and breast cancer. Maturitas, 2013, 76(2), 118-122.
[http://dx.doi.org/10.1016/j.maturitas.2013.07.006] [PMID: 23916376]
[9]
Gullett, N.P.; Ruhul Amin, A.R.; Bayraktar, S.; Pezzuto, J.M.; Shin, D.M.; Khuri, F.R.; Aggarwal, B.B.; Surh, Y.J.; Kucuk, O. Cancer prevention with natural compounds. Semin. Oncol., 2010, 37(3), 258-281.
[http://dx.doi.org/10.1053/j.seminoncol.2010.06.014] [PMID: 20709209]
[10]
Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst., 2000, 92(18), 1472-1489.
[http://dx.doi.org/10.1093/jnci/92.18.1472] [PMID: 10995803]
[11]
Baglietto, L.; English, D.R.; Hopper, J.L.; Morris, H.A.; Tilley, W.D.; Giles, G.G. Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol. Biomarkers Prev., 2007, 16(4), 763-768.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0960] [PMID: 17416768]
[12]
Maki, R.G. Small is beautiful: Insulin-like growth factors and their role in growth, development, and cancer. J. Clin. Oncol., 2010, 28(33), 4985-4995.
[http://dx.doi.org/10.1200/JCO.2009.27.5040] [PMID: 20975071]
[13]
Fletcher, O.; Gibson, L.; Johnson, N.; Altmann, D.R.; Holly, J.M.; Ashworth, A.; Peto, J.; Silva, Idos.S. Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: A systematic review. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 2-19.
[PMID: 15668470]
[14]
Pfeilschifter, J.; Scheidt-Nave, C.; Leidig-Bruckner, G.; Woitge, H.W.; Blum, W.F.; Wüster, C.; Haack, D.; Ziegler, R. Relationship between circulating insulin-like growth factor components and sex hormones in a population-based sample of 50- to 80-year-old men and women. J. Clin. Endocrinol. Metab., 1996, 81(7), 2534-2540.
[PMID: 8675573]
[15]
Dar, A.A.; Majid, S.; Nosrati, M.; de Semir, D.; Federman, S.; Kashani-Sabet, M. Functional modulation of IGF-binding protein-3 expression in melanoma. J. Invest. Dermatol., 2010, 130(8), 2071-2079.
[http://dx.doi.org/10.1038/jid.2010.70] [PMID: 20357812]
[16]
Koyama, S.; Cobb, L.J.; Mehta, H.H.; Seeram, N.P.; Heber, D.; Pantuck, A.J.; Cohen, P. Pomegranate extract induces apoptosis in human prostate cancer cells by modulation of the IGF-IGFBP axis. Growth Horm. IGF Res., 2010, 20(1), 55-62.
[http://dx.doi.org/10.1016/j.ghir.2009.09.003] [PMID: 19853487]
[17]
Vijayababu, M.R.; Arunkumar, A.; Kanagaraj, P.; Arunakaran, J. Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells. J. Carcinog., 2006, 5, 10.
[http://dx.doi.org/10.1186/1477-3163-5-10] [PMID: 16600019]
[18]
Akhtar, S.; Meeran, S.M.; Katiyar, N.; Katiyar, S.K. Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin. Cancer Res., 2009, 15(3), 821-831.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1901] [PMID: 19188152]
[19]
Harper, C.E.; Cook, L.M.; Patel, B.B.; Wang, J.; Eltoum, I.A.; Arabshahi, A.; Shirai, T.; Lamartiniere, C.A. Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats. Prostate, 2009, 69(15), 1668-1682.
[http://dx.doi.org/10.1002/pros.21017] [PMID: 19670229]
[20]
Krajcik, R.A.; Borofsky, N.D.; Massardo, S.; Orentreich, N. Insulin-like growth factor I (IGF-I), IGF-binding proteins, and breast cancer. Cancer Epidemiol. Biomarkers Prev., 2002, 11(12), 1566-1573.
[PMID: 12496045]
[21]
Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol., 2010, 11(6), 530-542.
[http://dx.doi.org/10.1016/S1470-2045(10)70095-4] [PMID: 20472501]
[22]
McLaughlin, J.M.; Olivo-Marston, S.; Vitolins, M.Z.; Bittoni, M.; Reeves, K.W.; Degraffinreid, C.R.; Schwartz, S.J.; Clinton, S.K.; Paskett, E.D. Effects of tomato- and soy-rich diets on the IGF-I hormonal network: A crossover study of postmenopausal women at high risk for breast cancer. Cancer Prev. Res. (Phila.), 2011, 4(5), 702-710.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0329] [PMID: 21430071]
[23]
Teas, J.; Irhimeh, M.R.; Druker, S.; Hurley, T.G.; Hébert, J.R.; Savarese, T.M.; Kurzer, M.S. Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutr. Cancer, 2011, 63(5), 743-748.
[http://dx.doi.org/10.1080/01635581.2011.579383] [PMID: 21711174]
[24]
Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to meta-analysis, 1st; John Wiley & Sons: Ltd., 2009.
[http://dx.doi.org/10.1002/9780470743386]
[25]
Campbell, M.J.; Woodside, J.V.; Honour, J.W.; Morton, M.S.; Leathem, A.J. Effect of red clover-derived isoflavone supplementation on insulin-like growth factor, lipid and antioxidant status in healthy female volunteers: A pilot study. Eur. J. Clin. Nutr., 2004, 58(1), 173-179.
[http://dx.doi.org/10.1038/sj.ejcn.1601764] [PMID: 14679383]
[26]
Maskarinec, G.; Ju, D.; Morimoto, Y.; Franke, A.A.; Stanczyk, F.Z. Soy food intake and biomarkers of breast cancer risk: Possible difference in Asian women? Nutr. Cancer, 2017, 69(1), 146-153.
[http://dx.doi.org/10.1080/01635581.2017.1250924] [PMID: 27918846]
[27]
Samavat, H.; Wu, A.H.; Ursin, G.; Torkelson, C.J.; Wang, R.; Yu, M.C.; Yee, D.; Kurzer, M.S.; Yuan, J.M. Green tea catechin extract supplementation does not influence circulating sex hormones and insulin-like growth factor axis proteins in a randomized controlled trial of postmenopausal women at high risk of breast cancer. J. Nutr., 2019, 149(4), 619-627.
[http://dx.doi.org/10.1093/jn/nxy316] [PMID: 30926986]
[28]
Wu, A.H.; Yu, M.C.; Tseng, C.C.; Pike, M.C. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer, 2008, 98(1), 9-14.
[http://dx.doi.org/10.1038/sj.bjc.6604145] [PMID: 18182974]
[29]
Liu, H.S.; Chen, Y.H.; Hung, P.F.; Kao, Y.H. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am. J. Physiol. Endocrinol. Metab., 2006, 290(2), E273-E281.
[http://dx.doi.org/10.1152/ajpendo.00325.2005] [PMID: 16159906]
[30]
Li, M.; He, Z.; Ermakova, S.; Zheng, D.; Tang, F.; Cho, Y.Y.; Zhu, F.; Ma, W.Y.; Sham, Y.; Rogozin, E.A.; Bode, A.M.; Cao, Y.; Dong, Z. Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol. Biomarkers Prev., 2007, 16(3), 598-605.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0892] [PMID: 17372258]
[31]
Vrieling, A.; Rookus, M.A.; Kampman, E.; Bonfrer, J.M.; Bosma, A.; Cats, A.; van Doorn, J.; Korse, C.M.; Witteman, B.J.; van Leeuwen, F.E.; van’t Veer, L.J.; Voskuil, D.W. No effect of red clover-derived isoflavone intervention on the insulin-like growth factor system in women at increased risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2008, 17(10), 2585-2593.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0329] [PMID: 18842999]
[32]
Goodman, M.T.; Shvetsov, Y.B.; Wilkens, L.R.; Franke, A.A.; Le Marchand, L.; Kakazu, K.K.; Nomura, A.M.; Henderson, B.E.; Kolonel, L.N. Urinary phytoestrogen excretion and postmenopausal breast cancer risk: The multiethnic cohort study. Cancer Prev. Res. (Phila.), 2009, 2(10), 887-894.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0039] [PMID: 19789300]
[33]
Takata, Y.; Maskarinec, G.; Rinaldi, S.; Kaaks, R.; Nagata, C. Serum insulin-like growth factor-I levels among women in Hawaii and Japan with different levels of tofu intake. Nutr. Cancer, 2006, 56(2), 136-142.
[http://dx.doi.org/10.1207/s15327914nc5602_3] [PMID: 17474858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy