Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Mini-Review Article

A Brief Review of Pharmacokinetic Assessments of Vancomycin in Special Groups of Patients with Altered Pharmacokinetic Parameters

Author(s): Parisa Ghasemiyeh, Afsaneh Vazin and Soliman Mohammadi-Samani*

Volume 18, Issue 4, 2023

Published on: 19 September, 2022

Page: [425 - 439] Pages: 15

DOI: 10.2174/1574886317666220801124718

Price: $65

conference banner
Abstract

Vancomycin is considered the drug of choice against many Gram-positive bacterial infections. Therapeutic drug monitoring (TDM) is essential to achieve an optimum clinical response and avoid vancomycin-induced adverse reactions including nephrotoxicity. Although different studies are available on vancomycin TDM, still there are controversies regarding the selection among different pharmacokinetic parameters including trough concentration, the area under the curve to minimum inhibitory concentration ratio (AUC24h/MIC), AUC of intervals, elimination constant, and vancomycin clearance. In this review, different pharmacokinetic parameters for vancomycin TDM have been discussed along with corresponding advantages and disadvantages. Also, vancomycin pharmacokinetic assessments are discussed in patients with altered pharmacokinetic parameters including those with renal and/or hepatic failure, critically ill patients, patients with burn injuries, intravenous drug users, obese and morbidly obese patients, those with cancer, patients undergoing organ transplantation, and vancomycin administration during pregnancy and lactation. An individualized dosing regimen is required to guarantee the optimum therapeutic responses and minimize adverse reactions including acute kidney injury in these special groups of patients. According to the pharmacoeconomic data on vancomycin TDM, pharmacokinetic assessments would be cost-effective in patients with altered pharmacokinetics and are associated with shorter hospitalization period, faster clinical stability status, and shorter courses of inpatient vancomycin administration.

Keywords: Vancomycin, therapeutic drug monitoring (TDM), altered pharmacokinetics, acute kidney injury (AKI), individualized pharmacotherapy, antibiotic.

Next »
Graphical Abstract
[1]
Vazin A, Japoni A, Shahbazi S, Davarpanah MA. Vancomycin utilization evaluation at hematology-oncology ward of a teaching hospital in Iran. Iran J Pharm Res 2012; 11(1): 163-70.
[PMID: 24250438]
[2]
Zhang Y, Wang T, Zhang D, et al. Therapeutic drug monitoring coupled with bayesian forecasting could prevent vancomycin-associated nephrotoxicity in renal insufficiency patients: A prospective study and pharmacoeconomic analysis. Ther Drug Monit 2020; 42(4): 600-9.
[http://dx.doi.org/10.1097/FTD.0000000000000750] [PMID: 32097248]
[3]
Elbarbry F. Vancomycin dosing and monitoring: Critical evaluation of the current practice. Eur J Drug Metab Pharmacokinet 2018; 43(3): 259-68.
[http://dx.doi.org/10.1007/s13318-017-0456-4] [PMID: 29260505]
[4]
Tobin CM, Darville JM, Thomson AH, et al. Vancomycin therapeutic drug monitoring: Is there a consensus view? The results of a UK National External Quality Assessment Scheme (UK NEQAS) for antibiotic assays questionnaire. J Antimicrob Chemother 2002; 50(5): 713-8.
[http://dx.doi.org/10.1093/jac/dkf212] [PMID: 12407128]
[5]
Vandecasteele SJ, De Vriese AS. Recent changes in vancomycin use in renal failure. Kidney Int 2010; 77(9): 760-4.
[http://dx.doi.org/10.1038/ki.2010.35] [PMID: 20182415]
[6]
Ghasemiyeh P, Vazin A, Zand F, Azadi A, Karimzadeh I, Mohammadi-Samani S. A simple and validated HPLC method for vancomycin assay in plasma samples: The necessity of TDM center development in Southern Iran. Res Pharm Sci 2020; 15(6): 529-40.
[http://dx.doi.org/10.4103/1735-5362.301337] [PMID: 33828596]
[7]
Murphy JE, Gillespie DE, Bateman CV. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. Am J Health Syst Pharm 2006; 63(23): 2365-70.
[http://dx.doi.org/10.2146/ajhp060047] [PMID: 17106010]
[8]
Estes KS, Derendorf H. Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin, and daptomycin. Eur J Med Res 2010; 15(12): 533-43.
[http://dx.doi.org/10.1186/2047-783X-15-12-533] [PMID: 21163728]
[9]
Drug information: Vancomycin. 2021. Available from: https://druginfo.nlm.nih.gov/drugportal/name/vancomycin
[10]
Olson J, Hersh AL, Sorensen J, Zobell J, Anderson C, Thorell EA. Intravenous vancomycin therapeutic drug monitoring in children: Evaluation of a pharmacy-driven protocol and collaborative practice agreement. J Pediatric Infect Dis Soc 2020; 9(3): 334-41.
[http://dx.doi.org/10.1093/jpids/piz036] [PMID: 31344233]
[11]
Kim SH, Kang CI, Lee SH, Choi JS, Huh K, Cho SY. Weight-based vancomycin loading strategy may not improve achievement of optimal vancomycin concentration in patients with preserved renal function. J Chemother 2020; 33(1): 56-61.
[PMID: 32321363]
[12]
Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: Myths and facts. Neth J Med 2011; 69(9): 379-83.
[PMID: 21978980]
[13]
Mergenhagen KA, Borton AR. Vancomycin nephrotoxicity: A review. J Pharm Pract 2014; 27(6): 545-53.
[http://dx.doi.org/10.1177/0897190014546114] [PMID: 25266809]
[14]
McKamy S, Hernandez E, Jahng M, Moriwaki T, Deveikis A, Le J. Incidence and risk factors influencing the development of vancomycin nephrotoxicity in children. J Pediatr 2011; 158(3): 422-6.
[http://dx.doi.org/10.1016/j.jpeds.2010.08.019] [PMID: 20888013]
[15]
Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of America, the pediatric infectious diseases society, and the society of infectious diseases pharmacists. Am J Health Syst Pharm 2020; 77(11): 835-64.
[http://dx.doi.org/10.1093/ajhp/zxaa036] [PMID: 32191793]
[16]
Abdul-Aziz MH, Alffenaar JC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A position paper. Intensive Care Med 2020; 46(6): 1127-53.
[http://dx.doi.org/10.1007/s00134-020-06050-1] [PMID: 32383061]
[17]
Neely MN, Youn G, Jones B, et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother 2014; 58(1): 309-16.
[http://dx.doi.org/10.1128/AAC.01653-13] [PMID: 24165176]
[18]
Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: We can’t get there from here. Clin Infect Dis 2011; 52(8): 969-74.
[http://dx.doi.org/10.1093/cid/cir078] [PMID: 21460308]
[19]
Hao JJ, Chen H, Zhou JX. Continuous versus intermittent infusion of vancomycin in adult patients: A systematic review and meta-analysis. Int J Antimicrob Agents 2016; 47(1): 28-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.10.019] [PMID: 26655032]
[20]
Ampe E, Delaere B, Hecq JD, Tulkens PM, Glupczynski Y. Implementation of a protocol for administration of vancomycin by continuous infusion: Pharmacokinetic, pharmacodynamic and toxicological aspects. Int J Antimicrob Agents 2013; 41(5): 439-46.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.01.009] [PMID: 23523733]
[21]
Han HK, An H, Shin KH, et al. Trough concentration over 12.1 mg/L is a major risk factor of vancomycin-related nephrotoxicity in patients with therapeutic drug monitoring. Ther Drug Monit 2014; 36(5): 606-11.
[http://dx.doi.org/10.1097/FTD.0000000000000061] [PMID: 24577126]
[22]
Burns AN, Goldman JL. A moving target-vancomycin therapeutic monitoring. J Pediatric Infect Dis Soc 2020; 9(4): 474-8.
[http://dx.doi.org/10.1093/jpids/piaa078] [PMID: 32716487]
[23]
Aljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve and acute kidney injury: A meta-analysis. Clin Infect Dis 2019; 69(11): 1881-7.
[http://dx.doi.org/10.1093/cid/ciz051] [PMID: 30715208]
[24]
Neely MN, Kato L, Youn G, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother 2018; 62(2): e02042-17.
[http://dx.doi.org/10.1128/AAC.02042-17] [PMID: 29203493]
[25]
Lines J, Burchette J, Kullab SM, Lewis P. Evaluation of a troughonly extrapolated area under the curve vancomycin dosing method on clinical outcomes. Int J Clin Pharm 2020; 1-7.
[PMID: 32964405]
[26]
Al-Sulaiti FK, Nader AM, Saad MO, et al. Clinical and pharmacokinetic outcomes of peak-trough-based versus trough-based vancomycin therapeutic drug monitoring approaches: A pragmatic randomized controlled trial. Eur J Drug Metab Pharmacokinet 2019; 44(5): 639-52.
[http://dx.doi.org/10.1007/s13318-019-00551-1] [PMID: 30919233]
[27]
Drennan PG, Begg EJ, Gardiner SJ, Kirkpatrick CMJ, Chambers ST. The dosing and monitoring of vancomycin: What is the best way forward? Int J Antimicrob Agents 2019; 53(4): 401-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.12.014] [PMID: 30599240]
[28]
Suzuki Y, Kawasaki K, Sato Y, et al. Is peak concentration needed in therapeutic drug monitoring of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillin-resistant Staphylococcus aureus pneumonia. Chemotherapy 2012; 58(4): 308-12.
[http://dx.doi.org/10.1159/000343162] [PMID: 23147106]
[29]
Pai MP, Hong J, Krop L. Peak measurement for vancomycin AUC estimation in obese adults improves precision and lowers bias. Antimicrob Agents Chemother 2017; 61(4): e02490-16.
[http://dx.doi.org/10.1128/AAC.02490-16] [PMID: 28096158]
[30]
Holmes NE. Using AUC/MIC to guide vancomycin dosing: Ready for prime time? Clin Microbiol Infect 2020; 26(4): 406-8.
[http://dx.doi.org/10.1016/j.cmi.2019.12.023] [PMID: 31927116]
[31]
Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: A review of available computer tools. Clin Pharmacokinet 2013; 52(1): 9-22.
[http://dx.doi.org/10.1007/s40262-012-0020-y] [PMID: 23196713]
[32]
Turner RB, Kojiro K, Shephard EA, et al. Review and validation of bayesian dose‐optimizing software and equations for calculation of the vancomycin area under the curve in critically ill patients. Pharmacotherapy. Pharmacotherapy 2018; 38(12): 1174-83.
[http://dx.doi.org/10.1002/phar.2191] [PMID: 30362592]
[33]
Guo T, Van Hest RM, Fleuren LM, Roggeveen LF, Bosman RJ, Van der Voort PH. Why we should sample sparsely and aim for a higher target: Lessons from model‐based therapeutic drug monitoring of vancomycin in intensive care patients. Br J Clin Pharmacol 2020.
[PMID: 32715505]
[34]
Mogle BT, Steele JM, Seabury RW, Dang UJ, Kufel WD. Implementation of a two-point pharmacokinetic AUC-based vancomycin therapeutic drug monitoring approach in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents 2018; 52(6): 805-10.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.08.024] [PMID: 30176357]
[35]
Oda K, Jono H, Nosaka K, Saito H. Reduced nephrotoxicity with vancomycin therapeutic drug monitoring guided by area under the concentration-time curve against a trough 15-20 μg/mL concentration. Int J Antimicrob Agents 2020; 56(4): 106109.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106109] [PMID: 32721597]
[36]
Heil EL, Claeys KC, Mynatt RP, et al. Making the change to area under the curve-based vancomycin dosing. Am J Health Syst Pharm 2018; 75(24): 1986-95.
[http://dx.doi.org/10.2146/ajhp180034] [PMID: 30333114]
[37]
Biagi MJ, Butler DA, Wenzler E. AUC-based monitoring of vancomycin: Closing the therapeutic window. J Appl Lab Med 2019; 3(4): 743-6.
[http://dx.doi.org/10.1373/jalm.2018.027391] [PMID: 31639746]
[38]
Haeseker M, Croes S, Neef C, Bruggeman C, Stolk L, Verbon A. Evaluation of vancomycin prediction methods based on estimated creatinine clearance or trough levels. Ther Drug Monit 2016; 38(1): 120-6.
[http://dx.doi.org/10.1097/FTD.0000000000000250] [PMID: 26418699]
[39]
Tan CC, Lee HS, Ti TY, Lee EJ. Pharmacokinetics of intravenous vancomycin in patients with end-stage renal failure. Ther Drug Monit 1990; 12(1): 29-34.
[http://dx.doi.org/10.1097/00007691-199001000-00006] [PMID: 2305418]
[40]
Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother 1984; 25(4): 433-7.
[http://dx.doi.org/10.1128/AAC.25.4.433] [PMID: 6732213]
[41]
Macias WL, Mueller BA, Scarim SK. Vancomycin pharmacokinetics in acute renal failure: Preservation of nonrenal clearance. Clin Pharmacol Ther 1991; 50(6): 688-94.
[http://dx.doi.org/10.1038/clpt.1991.208] [PMID: 1752113]
[42]
Goti V, Chaturvedula A, Fossler M. Hospitalized patients with and without hemodialysis have markedly different vancomycin pharmacokinetics: A population pharmacokinetic model-based analysis. Ther Drug Monit 2019; 41(4): 549.
[http://dx.doi.org/10.1097/FTD.0000000000000666] [PMID: 31306395]
[43]
Charoensareerat T, Chaijamorn W, Boonpeng A, Srisawat N, Pummangura C, Pattharachayakul S. Optimal vancomycin dosing regimens for critically ill patients with acute kidney injury during continuous renal replacement therapy: A Monte Carlo simulation study. J Crit Care 2019; 54: 77-82.
[http://dx.doi.org/10.1016/j.jcrc.2019.07.008] [PMID: 31394493]
[44]
Khoei A, Soltani R, Emami J, Badri S, Taheri S. Therapeutic drug monitoring of vancomycin by AUCτ-MIC ratio in patients with chronic kidney disease. Res Pharm Sci 2019; 14(1): 84-92.
[http://dx.doi.org/10.4103/1735-5362.251856] [PMID: 30936936]
[45]
Martí R, Rosell M, Pou L, García L, Pascual C. Influence of biochemical parameters of liver function on vancomycin pharmacokinetics. Pharmacol Toxicol 1996; 79(2): 55-9.
[http://dx.doi.org/10.1111/j.1600-0773.1996.tb00242.x] [PMID: 8878246]
[46]
Westphal JF, Brogard JM. Clinical pharmacokinetics of newer antibacterial agents in liver disease. Clin Pharmacokinet 1993; 24(1): 46-58.
[http://dx.doi.org/10.2165/00003088-199324010-00004] [PMID: 8448972]
[47]
Brunetti L, Song JH, Suh D, et al. The risk of vancomycin toxicity in patients with liver impairment. Ann Clin Microbiol Antimicrob 2020; 19(1): 13.
[http://dx.doi.org/10.1186/s12941-020-00354-2] [PMID: 32234065]
[48]
Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Vazin A, Zand F. A brief ICU residents’ guide: Pharmacotherapy, pharmacokinetic aspects and dose adjustments in critically ill adult patients admitted to ICU. Trend in Anaest Crit Care 2021; 41: 11-31.
[49]
Turner RB, Kojiro K, Won R, Chang E, Chan D, Elbarbry F. Prospective evaluation of vancomycin pharmacokinetics in a heterogeneous critically ill population. Diagn Microbiol Infect Dis 2018; 92(4): 346-51.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.06.022] [PMID: 30025969]
[50]
Radke C, Horn D, Lanckohr C, et al. Development of a physiologically based pharmacokinetic modelling approach to predict the pharmacokinetics of vancomycin in critically ill septic patients. Clin Pharmacokinet 2017; 56(7): 759-79.
[http://dx.doi.org/10.1007/s40262-016-0475-3] [PMID: 28039606]
[51]
Roberts JA, Lipman J. Antibacterial dosing in intensive care: Pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 2006; 45(8): 755-73.
[http://dx.doi.org/10.2165/00003088-200645080-00001] [PMID: 16884316]
[52]
Garaud JJ, Regnier B, Inglebert F, Faurisson F, Bauchet J, Vachon F. Vancomycin pharmacokinetics in critically ill patients. J Antimicrob Chemother 1984; 14 (Suppl. D): 53-7.
[http://dx.doi.org/10.1093/jac/14.suppl_D.53] [PMID: 6520066]
[53]
Honore PM, De Bels D, Kugener L, et al. Vancomycin pharmacokinetics in critically ill obese patients: Can the clinician sit back and relax? Crit Care 2019; 23(1): 15.
[http://dx.doi.org/10.1186/s13054-019-2311-2] [PMID: 30654848]
[54]
Dolton M, Xu H, Cheong E, et al. Vancomycin pharmacokinetics in patients with severe burn injuries. Burns 2010; 36(4): 469-76.
[http://dx.doi.org/10.1016/j.burns.2009.08.010] [PMID: 19875238]
[55]
Rybak MJ, Albrecht LM, Berman JR, Warbasse LH, Svensson CK. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrob Agents Chemother 1990; 34(5): 792-5.
[http://dx.doi.org/10.1128/AAC.34.5.792] [PMID: 2360818]
[56]
Hill DM, Velamuri SR, Lanfranco J, Romero Legro I, Sinclair SE, Hickerson WL. Optimization of an empiric vancomycin dosing algorithm for improved target concentration attainment in patients with thermal injury. Burns 2019; 45(2): 423-32.
[http://dx.doi.org/10.1016/j.burns.2018.09.025] [PMID: 30340863]
[57]
Small PM, Chambers HF. Vancomycin for Staphylococcus aureus endocarditis in intravenous drug users. Antimicrob Agents Chemother 1990; 34(6): 1227-31.
[http://dx.doi.org/10.1128/AAC.34.6.1227] [PMID: 2393284]
[58]
Laiprasert J, Klein K, Mueller BA, Pearlman MD. Transplacental passage of vancomycin in noninfected term pregnant women. Obstet Gynecol 2007; 109(5): 1105-10.
[http://dx.doi.org/10.1097/01.AOG.0000260388.78339.b6] [PMID: 17470590]
[59]
Reyes MP, Ostrea EM Jr, Cabinian AE, Schmitt C, Rintelmann W. Vancomycin during pregnancy: does it cause hearing loss or nephrotoxicity in the infant? Am J Obstet Gynecol 1989; 161(4): 977-81.
[http://dx.doi.org/10.1016/0002-9378(89)90766-7] [PMID: 2801848]
[60]
Heble DE Jr, McPherson C, Nelson MP, Hunstad DA. Vancomycin trough concentrations in overweight or obese pediatric patients. Pharmacotherapy 2013; 33(12): 1273-7.
[http://dx.doi.org/10.1002/phar.1321] [PMID: 23798327]
[61]
Chin KG, Mactal-Haaf C, McPherson CE III. Use of anti-infective agents during lactation: Part 1-Beta-lactam antibiotics, vancomycin, quinupristin-dalfopristin, and linezolid. J Hum Lact 2000; 16(4): 351-8.
[http://dx.doi.org/10.1177/089033440001600413] [PMID: 11155614]
[62]
White S, Sakon C, Fitzgerald L, Kam C, McDade E, Wong A. Comparison of vancomycin pharmacokinetics in cystic fibrosis patients pre and post-lung transplant. Clin Med Insights Circ Respir Pulm Med 2020; 14: 1179548420930925.
[http://dx.doi.org/10.1177/1179548420930925] [PMID: 32595284]
[63]
Tsang M. A practice of aesthesia for infants and children. Can J Anest 2018; 65(12): 1392-3.
[64]
Pan Y, He X, Yao X, et al. The effect of body mass index and creatinine clearance on serum trough concentration of vancomycin in adult patients. BMC Infect Dis 2020; 20(1): 341.
[http://dx.doi.org/10.1186/s12879-020-05067-7] [PMID: 32404057]
[65]
Vance-Bryan K, Guay DR, Gilliland SS, Rodvold KA, Rotschafer JC. Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 1993; 37(3): 436-40.
[http://dx.doi.org/10.1128/AAC.37.3.436] [PMID: 8460912]
[66]
Hall RG II, Payne KD, Bain AM, et al. Multicenter evaluation of vancomycin dosing: emphasis on obesity. Am J Med 2008; 121(6): 515-8.
[http://dx.doi.org/10.1016/j.amjmed.2008.01.046] [PMID: 18501233]
[67]
Smit C, Wasmann RE, Goulooze SC, et al. Population pharmacokinetics of vancomycin in obesity: Finding the optimal dose for (morbidly) obese individuals. Br J Clin Pharmacol 2020; 86(2): 303-17.
[http://dx.doi.org/10.1111/bcp.14144] [PMID: 31661553]
[68]
Grace E. Altered vancomycin pharmacokinetics in obese and morbidly obese patients: what we have learned over the past 30 years. J Antimicrob Chemother 2012; 67(6): 1305-10.
[http://dx.doi.org/10.1093/jac/dks066] [PMID: 22382471]
[69]
Masich AM, Kalaria SN, Gonzales JP, et al. Vancomycin pharmacokinetics in obese patients with sepsis or septic shock. Pharmacotherapy 2020; 40(3): 211-20.
[http://dx.doi.org/10.1002/phar.2367] [PMID: 31957057]
[70]
Omote S, Yano Y, Hashida T, et al. A retrospective analysis of vancomycin pharmacokinetics in Japanese cancer and non-cancer patients based on routine trough monitoring data. Biol Pharm Bull 2009; 32(1): 99-104.
[http://dx.doi.org/10.1248/bpb.32.99] [PMID: 19122288]
[71]
Al-Kofide H, Zaghloul I, Al-Naim L. Pharmacokinetics of vancomycin in adult cancer patients. J Oncol Pharm Pract 2010; 16(4): 245-50.
[http://dx.doi.org/10.1177/1078155209355847] [PMID: 20015925]
[72]
Zhang X, Wang D. The characteristics and impact indicator of vancomycin pharmacokinetics in cancer patients complicated with severe pneumonia. J Infect Chemother 2020; 26(5): 492-7.
[http://dx.doi.org/10.1016/j.jiac.2019.12.019] [PMID: 31983615]
[73]
Izumisawa T, Wakui N, Kaneko T, et al. Increased vancomycin clearance in patients with solid malignancies. Biol Pharm Bull 2020; 43(7): 1081-7.
[http://dx.doi.org/10.1248/bpb.b20-00083] [PMID: 32295975]
[74]
Nakayama H, Suzuki M, Kato T, Echizen H. Vancomycin pharmacokinetics in patients with advanced cancer near end of life. Eur J Drug Metab Pharmacokinet 2019; 44(6): 837-43.
[http://dx.doi.org/10.1007/s13318-019-00564-w] [PMID: 31154618]
[75]
Sales GTM, Foresto RD. Drug-induced nephrotoxicity. Rev Assoc Med Bras 2020; 66(66) (Suppl. 1): s82-90.
[http://dx.doi.org/10.1590/1806-9282.66.s1.82] [PMID: 31939540]
[76]
Kwak S, Kim JY, Cho H. Vancomycin-induced nephrotoxicity in non-intensive care unit pediatric patients. Sci Rep 2021; 11(1): 20681.
[http://dx.doi.org/10.1038/s41598-021-00214-9] [PMID: 34667202]
[77]
Barceló-Vidal J, Rodríguez-García E, Grau S. Extremely high levels of vancomycin can cause severe renal toxicity. Infect Drug Resist 2018; 11: 1027-30.
[http://dx.doi.org/10.2147/IDR.S171669] [PMID: 30104890]
[78]
Cardile AP, Tan C, Lustik MB, et al. Optimization of time to initial vancomycin target trough improves clinical outcomes. Springerplus 2015; 4(1): 364.
[http://dx.doi.org/10.1186/s40064-015-1146-9] [PMID: 26203410]
[79]
Ghasemiyeh P, Borhani-Haghighi A, Karimzadeh I, et al. Major neurologic adverse drug reactions, potential drug-drug interactions and pharmacokinetic aspects of drugs used in COVID-19 patients with stroke: A narrative review. Ther Clin Risk Manag 2020; 16: 595-605.
[http://dx.doi.org/10.2147/TCRM.S259152] [PMID: 32669846]
[80]
Ghasemiyeh P, Mohammadi-Samani S. Iron chelating agents: Promising supportive therapies in severe cases of COVID-19? Trends Pharmacol Sci 2020; 6(2): 65-6.
[81]
Ghasemiyeh P, Mohammadi-Samani S. COVID-19 outbreak: Challenges in pharmacotherapy based on pharmacokinetic and pharmacodynamic aspects of drug therapy in patients with moderate to severe infection. Heart Lung 2020; 49(6): 763-73.
[http://dx.doi.org/10.1016/j.hrtlng.2020.08.025] [PMID: 32980626]
[82]
Ghasemiyeh P, Mohammadi-Samani S, Vazin A. Micronutrients supplementation in pregnant women during COVID-19 pan-demy: Pros and cons. Trends Pharmacol Sci 2021; 7(3): 153-60.
[83]
Ghasemiyeh P, Mohammadi-Samani S. The necessity of early anti-inflammatory therapy initiation in cases with mild-to-moderate COVID-19: A personal experience from an attending pharmacist and his resident. Acta Bio-med. Atenei Parmensis 2021; 92(3): e2021250.
[84]
Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol 2021; 100: 108162.
[http://dx.doi.org/10.1016/j.intimp.2021.108162] [PMID: 34562844]
[85]
Ghasemiyeh P, Mortazavi N, Karimzadeh I, et al. Psychiatric adverse drug reactions and potential anti-COVID-19 drug interactions with psychotropic medications. Iran J Pharm Res 2021; 20(3): 66-77.
[PMID: 34903970]
[86]
Zarkesh K, Entezar-Almahdi E, Ghasemiyeh P, et al. Drug-based therapeutic strategies for COVID-19-infected patients and their challenges. Future Microbiol 2021; 16(18): 1415-51.
[87]
Fernández de Gatta MD, Calvo MV, Hernández JM, Caballero D, San Miguel JF, Domínguez-Gil A. Cost-effectiveness analysis of serum vancomycin concentration monitoring in patients with hematologic malignancies. Clin Pharmacol Ther 1996; 60(3): 332-40.
[http://dx.doi.org/10.1016/S0009-9236(96)90060-0] [PMID: 8841156]
[88]
Kim Y, Kim S, Park J, Lee H. Clinical response and hospital costs of therapeutic drug monitoring for vancomycin in elderly patients. J Pers Med 2022; 12(2): 163.
[http://dx.doi.org/10.3390/jpm12020163] [PMID: 35207653]
[89]
Bond CA, Raehl CL. Clinical and economic outcomes of pharmacist-managed aminoglycoside or vancomycin therapy. Am J Health Syst Pharm 2005; 62(15): 1596-605.
[http://dx.doi.org/10.2146/ajhp040555] [PMID: 16030370]
[90]
Rybak MJ, Le J, Lodise T, et al. Executive summary: Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. J Pediatric Infect Dis Soc 2020; 9(3): 281-4.
[http://dx.doi.org/10.1093/jpids/piaa057] [PMID: 32659787]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy