Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Biological Importance and Therapeutic Benefit of Swertisin: An Overview of Medicinal Importance and Pharmacological Activities

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 19, Issue 4, 2023

Published on: 27 October, 2022

Article ID: e010822207164 Pages: 10

DOI: 10.2174/1573407218666220801113334

Price: $65

Abstract

Background: Herbal medicines have been derived from different parts of the plants including roots, bark, seeds, flowers, and leaf. Human beings have been using herbal medicine and their derived phytochemicals for the treatment of human health complications since ancient times. Presence of different classes of phytochemicals is responsible for different pharmacological activities of herbal drugs and their derived products.

Methods: Numerous scientific literature data have been searched to collect all the needed scientific information of the present article. Scientific literature databases such as Google, Google Scholar, Science Direct, and PubMed have been searched in the present work to collect all the scientific information of swertisin. Medicinal importance and pharmacological activities of swertisin have been investigated in the present work through literature data analysis of different scientific research works. Therapeutic benefits of swertisin against cognitive impairment, diabetes, hepatitis B, pain and chromosomal damage have been investigated through literature data analysis of different scientific research works.

Results: Literature data analysis of numerous scientific research works revealed the biological potential of swertisin in medicine as it is present in different medicinal plants i.e. Wilbrandia ebracteata, Swertia franchetiana, Swertia mussotii, Enicostemma hyssopifolium, and Iris tectorum. Scientific data analysis revealed the therapeutic effectiveness of swertisin against cognitive impairment, diabetes, hepatitis B, pain and chromosomal damage. Scientific data analysis signified the importance of different analytical techniques for qualitative and quantitative analysis of swertisin in different samples.

Conclusion: Present study signified the biological importance and therapeutic benefit of swertisin in medicine.

Keywords: Swertisin, cognitive impairment, diabetes, hepatitis B, pain, chromosomal damage, analytical, pharmacological activity.

Graphical Abstract
[1]
Fernandes, D.C.; Martins, B.P.; Silva, G.P.D.; Fonseca, E.N.D.; Santos, S.V.M.; Velozo, L.S.M.; Gayer, C.R.M.; Sabino, K.C.C.; Coelho, M.G.P. Echinodorus macrophyllus fraction with a high level of flavonoid inhibits peripheral and central mechanisms of nociception. J. Tradit. Complement. Med., 2021, 12(2), 123-130.
[http://dx.doi.org/10.1016/j.jtcme.2021.07.001] [PMID: 35528477]
[2]
Pereira, S.V.; Reis, R.A.S.P.; Garbuio, D.C.; de Freitas, L.A.P. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity. Rev. Bras. Farmacogn., 2018, 28, 111-117.
[http://dx.doi.org/10.1016/j.bjp.2017.11.006]
[3]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910] [PMID: 34313205]
[4]
Sarwar, M.W.; Riaz, A.; Nahid, N.; Al Qahtani, A.; Ahmed, N.; Nawaz-Ul-Rehman, M.S.; Younus, A.; Mubin, M. Homology modeling and docking analysis of ßC1 protein encoded by Cotton leaf curl Multan betasatellite with different plant flavonoids. Heliyon, 2019, 5(3), e01303.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01303] [PMID: 30899831]
[5]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[6]
Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioact. Food as Diet. Interv. Arthritis Relat. Inflamm. Dis., 2019, 457-479.
[7]
Rodriguez, A.; Strucko, T.; Stahlhut, S.G.; Kristensen, M.; Svenssen, D.K.; Forster, J.; Nielsen, J.; Borodina, I. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour. Technol., 2017, 245(Pt B), 1645-1654.
[http://dx.doi.org/10.1016/j.biortech.2017.06.043] [PMID: 28634125]
[8]
Molina, G.A.; González-Fuentes, F.; Loske, A.M.; Fernández, F.; Estevez, M. Shock wave-assisted extraction of phenolic acids and flavonoids from Eysenhardtia polystachya heartwood: A novel method and its comparison with conventional methodologies. Ultrason. Sonochem., 2020, 61, 104809.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104809] [PMID: 31670252]
[9]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian. J. Pharm. Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[10]
Yadavalli, R.; Peasari, J.R.; Mamindla, P. Phytochemical screening and in silico studies of flavonoids from Chlorella pyrenoidosa. Informatics Med. Unlocked, 2018, 10, 89-99.
[http://dx.doi.org/10.1016/j.imu.2017.12.009]
[11]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[12]
Folador, P.; Cazarolli, L.H.; Gazola, A.C.; Reginatto, F.H.; Schenkel, E.P.; Silva, F.R.M.B. Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia, 2010, 81(8), 1180-1187.
[http://dx.doi.org/10.1016/j.fitote.2010.07.022] [PMID: 20678557]
[13]
Yang, H.; Duan, Y.; Hu, F.; Liu, J. Lack of altitudinal trends in phytochemical constituents of Swertia franchetiana (Gentianaceae). Biochem. Syst. Ecol., 2004, 32, 861-866.
[http://dx.doi.org/10.1016/j.bse.2004.02.008]
[14]
Yang, H.; Ding, C.; Duan, Y.; Liu, J. Variation of active constituents of an important Tibet folk medicine Swertia mussotii Franch. (Gentianaceae) between artificially cultivated and naturally distributed. J. Ethnopharmacol., 2005, 98(1-2), 31-35.
[http://dx.doi.org/10.1016/j.jep.2004.12.015] [PMID: 15763361]
[15]
Xu, H-Y.; Ren, J-H.; Su, Y.; Ren, F.; Zhou, Y-J.; Jiang, H.; Cheng, S.T.; Zhang, C.R.; Chen, J. Anti-hepatitis B virus activity of Swertisin isolated from Iris tectorum Maxim. J. Ethnopharmacol., 2020, 257, 112787.
[http://dx.doi.org/10.1016/j.jep.2020.112787] [PMID: 32224198]
[16]
Lee, H.E.; Jeon, S.J.; Ryu, B.; Park, S.J.; Ko, S.Y.; Lee, Y.; Kim, E.; Lee, S.; Kim, H.; Jang, D.S.; Ryu, J.H. Swertisin, a Cglucosylflavone, ameliorates scopolamine-induced memory impairment in mice with its adenosine A1 receptor antagonistic property. Behav. Brain Res., 2016, 306, 137-145.
[http://dx.doi.org/10.1016/j.bbr.2016.03.030] [PMID: 26996316]
[17]
Ghosal, S.; Jaiswal, D.K. Chemical constituents of gentianaceae XXVIII: Flavonoids of Enicostemma hyssopifolium (Willd.). Verd. J. Pharm. Sci., 1980, 69(1), 53-56.
[http://dx.doi.org/10.1002/jps.2600690115] [PMID: 7354443]
[18]
Mac Donald, R.; Camargo, S.S.; Meyre-Silva, C.; Quintão, N.L.M.; Cechinel Filho, V.; Bresolin, T.M.B. Development of an oral suspension containing dry extract of Aleurites moluccanus with anti-inflammatory activity. Rev. Bras. Farmacogn., 2016, 26, 68-76.
[http://dx.doi.org/10.1016/j.bjp.2015.06.011]
[19]
Li, Y.; Zhao, X.; Zhang, Y.; Xie, J.; Zhang, K.; Zhou, A. Pharmacokinetic study of swertisin by HPLC-MS/MS after intravenous administration in rats. J. Chromatogr. Sci., 2017, 55(1), 40-46.
[http://dx.doi.org/10.1093/chromsci/bmw147] [PMID: 27993862]
[20]
Pan, G.; Liu, J. Small molecules and extrinsic factors promoting differentiation of stem cells into insulin-producing cells. Ann. Endocrinol., 2019, 80(2), 128-133.
[http://dx.doi.org/10.1016/j.ando.2018.11.002] [PMID: 30833018]
[21]
Wu, B.; Qu, C.; Wang, Y.; Zhao, J.; Du, H. Comparison of the quenching effects of two main components of Ziziphi spinosae semen on serum albumin fluorescence. J. Fluoresc., 2019, 29(5), 1113-1123.
[http://dx.doi.org/10.1007/s10895-019-02422-z] [PMID: 31396829]
[22]
Srivastava, A.; Dadheech, N.; Vakani, M.; Gupta, S. Swertisin ameliorates diabetes by triggering pancreatic progenitors for islet neogenesis in Streptozotocin treated BALB/c mice. Biomed. Pharmacother., 2018, 100, 221-225.
[http://dx.doi.org/10.1016/j.biopha.2018.01.096] [PMID: 29428671]
[23]
Bhardwaj, G.; Vakani, M.; Srivastava, A.; Patel, D.; Pappachan, A.; Murumkar, P.; Shah, H.; Shah, R.; Gupta, S. Swertisin, a novel SGLT2 inhibitor, with improved glucose homeostasis for effective diabetes therapy. Arch. Biochem. Biophys., 2021, 710, 108995.
[http://dx.doi.org/10.1016/j.abb.2021.108995] [PMID: 34289381]
[24]
Dadheech, N.; Srivastava, A.; Paranjape, N.; Gupta, S.; Dave, A.; Shah, G.M.; Bhonde, R.R.; Gupta, S. Swertisin an anti-diabetic compound facilitate islet neogenesis from pancreatic stem/progenitor cells via p-38 MAP kinase-SMAD pathway: An in-vitro and in-vivo study. PLoS One, 2015, 10(6), e0128244.
[http://dx.doi.org/10.1371/journal.pone.0128244] [PMID: 26047129]
[25]
Mokashi, P.; Bhatt, L.K.; Khanna, A.; Pandita, N. Swertisin rich fraction from Enicostema littorale ameliorates hyperglycemia and hyperlipidemia in high-fat fed diet and low dose streptozotacin induced type 2 diabetes mellitus in rats. Biomed. Pharmacother., 2017, 96, 1427-1437.
[http://dx.doi.org/10.1016/j.biopha.2017.09.153] [PMID: 29031588]
[26]
Dadheech, N.; Soni, S.; Srivastava, A.; Dadheech, S.; Gupta, S.; Gopurappilly, R.; Bhonde, R.R.; Gupta, S. A small molecule swertisin from enicostemma littorale differentiates NIH3T3 cells into islet-like clusters and restores normoglycemia upon transplantation in diabetic balb/c mice. Evid. Based Complement. Alternat. Med., 2013, 2013, 280392.
[http://dx.doi.org/10.1155/2013/280392] [PMID: 23662125]
[27]
Oh, H.K.; Jeon, S.J.; Lee, S.; Lee, H.E.; Kim, E.; Park, S.J.; Kim, H.N.; Jung, W.Y.; Cheong, J.H.; Jang, D.S.; Ryu, J.H. Swertisin ameliorates pre-pulse inhibition deficits and cognitive impairment induced by MK-801 in mice. J. Psychopharmacol., 2017, 31(2), 250-259.
[http://dx.doi.org/10.1177/0269881116672098] [PMID: 27729563]
[28]
Ajayi, O.S.; Aderogba, M.A.; Obuotor, E.M.; Majinda, R.R.T. Acetylcholinesterase inhibitor from Anthocleista vogelii leaf extracts. J. Ethnopharmacol., 2019, 231, 503-506.
[http://dx.doi.org/10.1016/j.jep.2018.11.009] [PMID: 30415061]
[29]
Ohba, S.; Yoshida, K.; Kondo, T. Swertisin dihydrate. Acta Crystallogr. C, 2004, 60(Pt 12), o893-o896.
[http://dx.doi.org/10.1107/S0108270104028355] [PMID: 15579976]
[30]
Patel, M.B.; Mishra, S.H. Hypoglycemic activity of C-glycosyl flavonoid from Enicostemma hyssopifolium. Pharm. Biol., 2011, 49(4), 383-391.
[http://dx.doi.org/10.3109/13880209.2010.517759] [PMID: 21391839]
[31]
Shibano, M.; Kakutani, K.; Taniguchi, M.; Yasuda, M.; Baba, K. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J. Nat. Med., 2008, 62(3), 349-353.
[http://dx.doi.org/10.1007/s11418-008-0244-1] [PMID: 18409066]
[32]
Quintão, N.L.M.; Meyre-Silva, C.; Silva, G.F.; Antonialli, C.S.; Rocha, L.W.; Lucinda-Silva, R.M.; Malheiros, A.; Souza, M.M.; Cechinel Filho, V.; Bresolin, T.M. Aleurites moluccana (L.) Willd. Leaves: Mechanical antinociceptive properties of a standardized dried extract and its chemical markers. Evid. Based Complement. Alternat. Med., 2011, 2011, 179890.
[http://dx.doi.org/10.1155/2011/179890] [PMID: 21660087]
[33]
Janković T.; Šavikin, K.; Menković N.; Aljancić I.; Leskovac, A.; Petrović S.; Joksić G. Radioprotective effects of Gentianella austriaca fractions and polyphenolic constituents in human lymphocytes. Planta Med., 2008, 74(7), 736-740.
[http://dx.doi.org/10.1055/s-2008-1074524] [PMID: 18446672]
[34]
Ghazanfar, K.; Mubashir, K.; Dar, S.A.; Nazir, T.; Hameed, I.; Ganai, B.A.; Akbar, S.; Masood, A. Gentiana kurroo Royle attenuates the metabolic aberrations in diabetic rats; Swertiamarin, swertisin and lupeol being the possible bioactive principles. J. Complement. Integr. Med., 2017, 14(3), 14.
[http://dx.doi.org/10.1515/jcim-2017-0002] [PMID: 28731312]
[35]
Lv, Y.; Zhang, H.T.; Wang, Y.F.; Zhu, H.; Long, P.; Wang, Z.W.; Zhang, N.; Zhang, C.H. Preliminary comparative study of swertiamarin and swertisin on three kinds of Digeda-species Mongolian medicinal materials. Zhongguo Zhongyao Zazhi, 2015, 40(5), 804-806.
[PMID: 26087537]
[36]
Komatsu, M.; Tomimori, T.; Ito, M. Studies on the constituents of Swertia japonica. I. On the structures of swertisin and isoswertisin. Chem. Pharm. Bull., 1967, 15(3), 263-269.
[http://dx.doi.org/10.1248/cpb.15.263] [PMID: 6075478]
[37]
Jiao, L.; Li, Y.; Zhang, Y.; Liu, J.; Xie, J.; Zhang, K.; Zhou, A. Degradation kinetics of 6‴-p-coumaroylspinosin and identification of its metabolites by rat intestinal flora. J. Agric. Food Chem., 2017, 65(22), 4449-4455.
[http://dx.doi.org/10.1021/acs.jafc.7b01486] [PMID: 28513155]
[38]
Tchoumtchoua, J.; Mathiron, D.; Pontarin, N.; Gagneul, D.; van Bohemen, A-I.; Otogo N’nang, E.; Mesnard, F.; Petit, E.; Fontaine, J.X.; Molinié, R.; Quéro, A. Phenolic profiling of flax highlights contrasting patterns in winter and spring varieties. Molecules, 2019, 24(23), 4303.
[http://dx.doi.org/10.3390/molecules24234303] [PMID: 31779076]
[39]
Chen, H-Y.; Tu, L-F.; Xiao, C-R.; Luo, Y-M. Chemical constituents from fruits of Vitex trifolia var. simplicifolia. Zhongguo Zhongyao Zazhi, 2018, 43(18), 3694-3700.
[PMID: 30384535]
[40]
Chen, K.X.; Zhao, L.M.; Ji, C.J.; Tan, N.H. Flavone C-glycosides from seeds of Ziziphus jujuba var. spinosa. Zhongguo Zhongyao Zazhi, 2015, 40(8), 1503-1507.
[PMID: 26281588]
[41]
Nakayama, M.; Koshioka, M.; Kondo, T.; Imizu, K.; Flavone, C. Flavone C-glucosides responsible for yellow pigmentation induced by low temperature in bracts of Zantedeschia aethiopica. Nat. Prod. Commun., 2015, 10(3), 425-427.
[http://dx.doi.org/10.1177/1934578X1501000312] [PMID: 25924520]
[42]
Ignoato, M.C.; Fabrão, R.M.; Schuquel, I.T.A.; Botelho, M.F.P.; Bannwart, G.; Pomini, A.M.; Arruda, L.L.; Bersani-Amado, C.A.; Santin, S.M. Chemical constituents of Machaerium hirtum Vell. (Fabaceae) leaves and branches and its anti-inflammatory activity evaluation. Nat. Prod. Res., 2013, 27(17), 1556-1561.
[http://dx.doi.org/10.1080/14786419.2012.738204] [PMID: 23126578]
[43]
Zhu, D.; Wang, D.; Wang, G-H.; Guo, Z-J.; Zou, X-H.; Lin, T.; Chen, H.F. Chemical constituents in higher polar substances from Desmodium caudatum. Zhongguo Zhongyao Zazhi, 2014, 39(16), 3112-3116.
[PMID: 25509297]
[44]
Mizuno, T.; Yabuy, T.; Sasaki, N.; Iwashina, T. Phenolic compounds, including novel C-glycosylflavone, from the flowers of the tall bearded iris cultivar ‘Victoria Falls’. Nat. Prod. Commun., 2012, 7(12), 1591-1594.
[http://dx.doi.org/10.1177/1934578X1200701213] [PMID: 23413560]
[45]
Girardi, L.G.J.; Morsch, M.; Cechinel-Filho, V.; Meyre-Silva, C.; Rodrigues, C.A. Isolation of flavonoids from Aleurites moluccana using chitosan modified with benzaldehyde (CH-Bz) as chromatographic support. Pharmazie, 2003, 58(9), 629-630.
[PMID: 14531457]
[46]
Morsch, M.; Girardi, L.G.J.; Cechinel-Filho, V.; Meyre-Silva, C.; Rodrigues, C.A. The use of chitosan modified with glutaraldehyde and glyoxal as chromatographic support for the separation of flavonoids from Aleurites moluccana leaves. Pharmazie, 2006, 61(8), 670-672.
[PMID: 16964707]
[47]
Tian, W.; Chen, Z.H.; Zhai, J.; Chen, L.R.; Li, Y.M. HPLC fingerprinting of total glycosides of Swertia franchetiana. Yao Xue Xue Bao, 2005, 40(5), 447-452.
[PMID: 16220791]
[48]
Frank, J.H.; Powder-George, Y.L.; Ramsewak, R.S.; Reynolds, W.F. Variable-temperature 1H-NMR studies on two C-glycosylflavones. Molecules, 2012, 17(7), 7914-7926.
[http://dx.doi.org/10.3390/molecules17077914] [PMID: 22751258]
[49]
Mizuno, T.; Kamo, T.; Sasaki, N.; Yada, H.; Murai, Y.; Iwashina, T.; Novel, C. Novel C-xylosylflavones from the leaves and flowers of Iris gracilipes. Nat. Prod. Commun., 2015, 10(3), 441-444.
[http://dx.doi.org/10.1177/1934578X1501000316] [PMID: 25924524]
[50]
Chen, Y.; Wu, C-M.; Dai, R-J.; Li, L.; Yu, Y-H.; Li, Y.; Meng, W.W.; Zhang, L.; Zhang, Y.; Deng, Y.L. Combination of HPLC chromatogram and hypoglycemic effect identifies isoflavones as the principal active fraction of Belamcanda chinensis leaf extract in diabetes treatment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(5-6), 371-378.
[http://dx.doi.org/10.1016/j.jchromb.2010.12.022] [PMID: 21239237]
[51]
Tang, Q.; Shao, M.; Wang, Y.; Zhao, H.; Fan, C.; Huang, X.; Li, Y.; Ye, W. Simultaneous determination of 10 bioactive components of lophatherum gracile Brongn by HPLC-DAD. J. Chromatogr. Sci., 2015, 53(6), 963-967.
[http://dx.doi.org/10.1093/chromsci/bmu160] [PMID: 25527702]
[52]
Yan, Y.; Li, Q.; Du, C.H.; Jia, J.P.; Feng, H.X.; Qin, X.M. Investigation of the potentially effective components of Semen Ziziphi Spinosae based on “in vitro to in vivo” translation approach. Yao Xue Xue Bao, 2017, 52(2), 283-290.
[PMID: 29979520]
[53]
Wohlmuth, H.; Penman, K.G.; Pearson, T.; Lehmann, R.P. Pharmacognosy and chemotypes of passionflower (Passiflora incarnata L.). Biol. Pharm. Bull., 2010, 33(6), 1015-1018.
[http://dx.doi.org/10.1248/bpb.33.1015] [PMID: 20522969]
[54]
Zhang, L.; Xu, Z-L.; Wu, C-F.; Yang, J-Y.; Kano, Y.; Yuan, D. Two new flavonoid glycosides from Semen Ziziphi Spinosae. J. Asian Nat. Prod. Res., 2012, 14(2), 121-128.
[http://dx.doi.org/10.1080/10286020.2011.637491] [PMID: 22296152]
[55]
Qiao, Y.; Cui, B.; Tang, L.; Liu, J.; Li, S. Chemical constituents of n-BuOH extract of Comastoma pedunculatum. Zhongguo Zhongyao Zazhi, 2012, 37(16), 2360-2365.
[PMID: 23234130]
[56]
Mokashi, P.; Khanna, A.; Pandita, N. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed. Pharmacother., 2017, 90, 268-277.
[http://dx.doi.org/10.1016/j.biopha.2017.03.047] [PMID: 28364599]
[57]
Aquila, S.; Giner, R.M.; Recio, M.C.; Spegazzini, E.D.; Ríos, J.L. Anti-inflammatory activity of flavonoids from Cayaponia tayuya roots. J. Ethnopharmacol., 2009, 121(2), 333-337.
[http://dx.doi.org/10.1016/j.jep.2008.11.002] [PMID: 19041703]
[58]
Mizuno, T.; Yabuya, T.; Kitajima, J.; Iwashina, T. Identification of novel C-glycosylflavones and their contribution to flower colour of the Dutch iris cultivars. Plant Physiol. Biochem., 2013, 72, 116-124.
[http://dx.doi.org/10.1016/j.plaphy.2013.06.028] [PMID: 23891439]
[59]
Sun, Y.; Zhang, X.; Xue, X.; Zhang, Y.; Xiao, H.; Liang, X. Rapid identification of polyphenol C-glycosides from Swertia franchetiana by HPLC-ESI-MS-MS. J. Chromatogr. Sci., 2009, 47(3), 190-196.
[http://dx.doi.org/10.1093/chromsci/47.3.190] [PMID: 19298704]
[60]
Mizokami, H.; Tomita-Yokotani, K.; Yoshitama, K. Flavonoids in the leaves of Oxalis corniculata and sequestration of the flavonoids in the wing scales of the pale grass blue butterfly, Pseudozizeeria maha. J. Plant Res., 2008, 121(1), 133-136.
[http://dx.doi.org/10.1007/s10265-007-0132-x] [PMID: 18066491]
[61]
Wani, B.A.; Ramamoorthy, D.; Rather, M.A.; Arumugam, N.; Qazi, A.K.; Majeed, R.; Hamid, A.; Ganie, S.A.; Ganai, B.A.; Anand, R.; Gupta, A.P. Induction of apoptosis in human pancreatic MiaPaCa-2 cells through the loss of mitochondrial membrane potential (ΔΨm) by Gentiana kurroo root extract and LC-ESI-MS analysis of its principal constituents. Phytomedicine, 2013, 20(8-9), 723-733.
[http://dx.doi.org/10.1016/j.phymed.2013.01.011] [PMID: 23453831]
[62]
Morsch, M.; Girardi, L.G.J.; Cechinel-Filho, V.; Meyre-Silva, C.; Rodrigues, C.A. Separation of flavonoids from Aleurites moluccana leaves using chitosan modified with heptaldehyde. Z. Naturforsch. C J. Biosci., 2004, 59(9-10), 649-652.
[http://dx.doi.org/10.1515/znc-2004-9-1007] [PMID: 15540596]
[63]
Deseo, M.A.; Elkins, A.; Rochfort, S.; Kitchen, B. Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chem., 2020, 314, 126180.
[http://dx.doi.org/10.1016/j.foodchem.2020.126180] [PMID: 31954937]
[64]
Luzzatto, T.; Golan, A.; Yishay, M.; Bilkis, I.; Ben-Ari, J.; Yedidia, I. Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. J. Agric. Food Chem., 2007, 55(25), 10315-10322.
[http://dx.doi.org/10.1021/jf072037+] [PMID: 17994692]
[65]
Chen, S.; Wang, L.; Gao, G.; Liao, M.; Xiao, P. Studies on flavonoids from Aquilegia oxysepala Trautv. et Mey. Zhongguo Zhongyao Zazhi, 1999, 24(3), 158-160, 191.
[PMID: 12242797]
[66]
Pandey, P.B.; Pradhan, P.S.; Adhikari, K. LC-ESI-QTOF-MS for the profiling of the metabolites and in vitro enzymes inhibition activity of Bryophyllum pinnatum and Oxalis corniculata collected from ramechhap district of Nepal. Chem. Biodivers., 2020, 17(6), e2000155.
[http://dx.doi.org/10.1002/cbdv.202000155] [PMID: 32304171]
[67]
Morsch, M.; Girardi, L.G.J.; Cechinel-Filho, V.; Meyre-Silva, C.; Rodrigues, C.A. Separation of C-glycoside flavonoids from Aleurites moluccana using chitin and full N-acetylated chitin. Z. Naturforsch. C J. Biosci., 2002, 57(9-10), 957-959.
[http://dx.doi.org/10.1515/znc-2002-9-1035] [PMID: 12440742]
[68]
Wu, Y.; Sun, L.; Zeng, F.; Wu, S. A conjugated-polymer-based ratiometric nanoprobe for evaluating in-vivo hepatotoxicity induced by herbal medicine via MSOT imaging. Photoacoustics, 2018, 13, 6-17.
[http://dx.doi.org/10.1016/j.pacs.2018.11.002] [PMID: 30519528]
[69]
Lee, H.W.; Jun, J.H.; Choi, J.; Choi, T-Y.; Lee, J.A.; Ang, L.; Go, H.Y.; Lee, M.S. Herbal prescription for managing menopausal disorders: A practice survey in Korean medicine doctors. Complement. Ther. Clin. Pract., 2020, 38, 101073.
[http://dx.doi.org/10.1016/j.ctcp.2019.101073] [PMID: 31765985]
[70]
Chen, L.; Mulder, P.P.J.; Peijnenburg, A.; Rietjens, I.M.C.M. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem. Toxicol., 2019, 130, 142-153.
[http://dx.doi.org/10.1016/j.fct.2019.05.024] [PMID: 31112705]
[71]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4, 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[72]
Patel, K. Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance.”. Curr. Tradit. Med., 2017, 3, 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[73]
Patel, K.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of ricinine: A concise report. J. Coast. Life Med., 2016, 4, 663-667.
[http://dx.doi.org/10.12980/jclm.4.2016J6-96]
[74]
Patel, K.; Patel, D.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr. Bioact. Compd., 2020, 16, 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[75]
Yu, M.; Wang, B.; Qi, Z.; Xin, G.; Li, W. Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi J. Biol. Sci., 2019, 26(8), 2079-2084.
[http://dx.doi.org/10.1016/j.sjbs.2019.09.018] [PMID: 31889798]
[76]
De Souza, L.A.; Tavares, W.M.G.; Lopes, A.P.M.; Soeiro, M.M.; De Almeida, W.B. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chem. Phys. Lett., 2017, 676, 46-52.
[http://dx.doi.org/10.1016/j.cplett.2017.03.038]
[77]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[78]
Marques, G.S.; Leão, W.F.; Lyra, M.A.M.; Peixoto, M.S.; Monteiro, R.P.M.; Rolim, L.A. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev. Bras. Farmacogn., 2013, 23, 51-57.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[79]
Morita, M.; Takahashi, I.; Kanai, M.; Okafuji, F.; Iwashima, M.; Hayashi, T.; Watanabe, S.; Hamazaki, T.; Shimozawa, N.; Suzuki, Y.; Furuya, H.; Yamada, T.; Imanaka, T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett., 2005, 579(2), 409-414.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102] [PMID: 15642351]
[80]
Govindarasu, M.; Palani, M.; Vaiyapuri, M. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int. J. Pharm. Pharm. Sci., 2017, 9, 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20500]
[81]
Bestwick, C.S.; Milne, L.; Pirie, L.; Duthie, S.J. The effect of short-term kaempferol exposure on reactive oxygen levels and integrity of human (HL-60) leukaemic cells. Biochim. Biophys. Acta, 2005, 1740(3), 340-349.
[http://dx.doi.org/10.1016/j.bbadis.2004.10.005] [PMID: 15949701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy