Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Sulfonamide Moiety as “Molecular Chimera” in the Design of New Drugs

Author(s): Giulia Culletta, Marco Tutone*, Maria Zappalà and Anna Maria Almerico

Volume 30, Issue 2, 2023

Published on: 27 August, 2022

Page: [128 - 163] Pages: 36

DOI: 10.2174/0929867329666220729151500

Price: $65

Abstract

Background: The -SO2NH- group is of great significance in modern pharmaceutical use since, in sulfa-drugs, it is possible to introduce easily chemical modifications, and even small changes may lead to an improved version of an already existing drug.

Objective: This paper aims to describe updated information in the sulfonamide field with a particular focus on new mechanisms of action, especially if discovered by employing computational approaches.

Methods: Research articles that focused on the use of the sulfonamide moiety for the design, synthesis, and in vitro/in vivo tests of various diseases were collected from various search engines like PubMed, Science Direct, Google Scholar, and Scopus, using keywords like sulfonamide moiety, aryl/heteroary lsulfonamides, alkyl sulfonamides, in silico drug design, etc.

Conclusion: The more relevant reports highlighting the prominent role of sulfonamide moiety in drug discovery have been critically analyzed. Sulfonamides can be considered as “molecular chimera”, which are found to form hydrogen bonds as well as interact with unipolar environments within proteins. Therefore, based on the analysis reported herein, it is strongly foresight that new entities can be developed easily to improve the available machinery helpful in the fight against new and emerging diseases.

Keywords: Sulfonamide moiety, molecular chimera, aryl/heteroaryl sulfonamides, alkyl sulfonamides, in silico drug design, docking, pharmacophore modeling, molecular dynamics.

[1]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[2]
Supuran, C.T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev., 2003, 23(5), 535-558.
[http://dx.doi.org/10.1002/med.10047] [PMID: 12789686]
[3]
Al-Turki, D.A.; Abou-Zeid, L.A.; Shehata, I.A.; Al-Omar, M.A. Therapeutic and toxic effects of new NSAIDs and related compounds: A review and prospective study. Int. J. Pharmacol., 2010, 6, 813-825.
[http://dx.doi.org/10.3923/ijp.2010.813.825]
[4]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[5]
Gulçin, İ.; Taslimi, P. Sulfonamide inhibitors: A patent review 2013-present. Expert Opin. Ther. Pat., 2018, 28(7), 541-549.
[http://dx.doi.org/10.1080/13543776.2018.1487400] [PMID: 29886770]
[6]
Nirogi, R.; Shinde, A.; Kambhampati, R.S.; Mohammed, A.R.; Saraf, S.K.; Badange, R.K.; Bandyala, T.R.; Bhatta, V.; Bojja, K.; Reballi, V.; Subramanian, R.; Benade, V.; Palacharla, R.C.; Bhyrapuneni, G.; Jayarajan, P.; Goyal, V.; Jasti, V. Discovery and development of 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole dimesylate monohydrate (SUVN-502): A novel, potent, selective and orally active serotonin 6 (5-HT6) receptor antagonist for potential treatment of Alzheimer’s Disease. J. Med. Chem., 2017, 60(5), 1843-1859.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01662] [PMID: 28212021]
[7]
Nirogi, R.V.S.; Deshpande, A.D.; Chindhe, A.K.; Kambhampati, R.; Shinde, A.K.; Dubey, A.K. Synthesis and biological screening of 3-chloro-2-piperazinylmethyl-N-aryl sulfonamide indole derivatives as 5-HT6 receptor ligands: Part III. Pharma Chem., 2012, 4, 909-914.
[8]
Kumar, Y.C.; Malviya, M.; Chandra, J.N.; Sadashiva, C.T.; Kumar, C.S.; Prasad, S.B.; Prasanna, D.S.; Subhash, M.N.; Rangappa, K.S. Effect of novel N-aryl sulfonamide substituted 3-morpholino arecoline derivatives as muscarinic receptor 1 agonists in Alzheimer’s dementia models. Bioorg. Med. Chem., 2008, 16(9), 5157-5163.
[http://dx.doi.org/10.1016/j.bmc.2008.03.019] [PMID: 18359231]
[9]
Masand, N.; Gupta, S.P.; Khosa, R.L. Synthesis of substituted sulphonamide derivatives and evaluation of their effect on spatial memory in Alzheimer’s models. World J. Pharm. Res., 2017, 6(15), 1140-1154.
[10]
Wang, J-T.; Zheng, Y.M.; Chen, Y-T.; Gu, M.; Gao, Z-B.; Nan, F.J. Discovery of aryl sulfonamide-selective Nav1.7 inhibitors with a highly hydrophobic ethanoanthracene core. Acta Pharmacol. Sin., 2020, 41(3), 293-302.
[http://dx.doi.org/10.1038/s41401-019-0267-z] [PMID: 31316182]
[11]
Zheng, X.; Oda, H.; Takamatsu, K.; Sugimoto, Y.; Tai, A.; Akaho, E.; Ali, H.I.; Oshiki, T.; Kakuta, H.; Sasaki, K. Analgesic agents without gastric damage: Design and synthesis of structurally simple benzenesulfonanilide-type cyclooxygenase-1-selective inhibitors. Bioorg. Med. Chem., 2007, 15(2), 1014-1021.
[http://dx.doi.org/10.1016/j.bmc.2006.10.029] [PMID: 17079150]
[12]
Bai, D-L.; Chen, W-Z.; Bo, Y-X.; Dong, Y-L.; Kang, A-L.; Sun, W-K.; Wang, W.; Hu, Z-L.; Wang, Y-P. Discovery of N-(3,5-bis(1-pyrrolidylmethyl)-4-hydroxybenzyl)-4-methoxybenzenesulfamide (sulcardine) as a novel anti-arrhythmic agent. Acta Pharmacol. Sin., 2012, 33(9), 1176-1186.
[http://dx.doi.org/10.1038/aps.2012.119] [PMID: 22922342]
[13]
El-Kardocy, A.; Muhamad, M.; Esam, A.R.; Mohamady, S.; Mostafa, Y.A. Aryl azide-sulfonamide hybrids induce cellular apoptosis: Synthesis and preliminary screening of their cytotoxicity in human HCT116 and A549 cancer cell lines. Med. Chem. Res., 2019, 28, 2088-2098.
[http://dx.doi.org/10.1007/s00044-019-02438-x]
[14]
Guo, Z.; Xu, Y.; Peng, Y.; Quan, W.; Xie, P.; Wu, L.; Jiang, J.; Wang, L.; Liu, X.; Liu, X. Design, synthesis and evaluation of novel (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit as anticancer agents. Bioorg. Med. Chem. Lett., 2019, 29(9), 1133-1137.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.023] [PMID: 30842032]
[15]
Han, T.; Goralski, M.; Gaskill, N.; Capota, E.; Kim, J.; Ting, T.C.; Xie, Y.; Williams, N.S.; Nijhawan, D. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science, 2017, 356(6336), eaal3755.
[http://dx.doi.org/10.1126/science.aal3755] [PMID: 28302793]
[16]
Lawrence, H.R.; Kazi, A.; Luo, Y.; Kendig, R.; Ge, Y.; Jain, S.; Daniel, K.; Santiago, D.; Guida, W.C.; Sebti, S.M. Synthesis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors. Bioorg. Med. Chem., 2010, 18(15), 5576-5592.
[http://dx.doi.org/10.1016/j.bmc.2010.06.038] [PMID: 20621484]
[17]
Du, X.; Volkov, O.A.; Czerwinski, R.M.; Tan, H.; Huerta, C.; Morton, E.R.; Rizzi, J.P.; Wehn, P.M.; Xu, R.; Nijhawan, D.; Wallace, E.M. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure, 2019, 27(11), 1625-1633.e3.
[http://dx.doi.org/10.1016/j.str.2019.10.005] [PMID: 31693911]
[18]
Jia, X.; Pan, L.; Zhu, M.; Hu, H.; Zhai, L.; Liu, J.; Hu, M.; Liu, B.; Tan, M. pSILAC method coupled with two complementary digestion approaches reveals PRPF39 as a new E7070-dependent DCAF15 substrate. J. Proteomics, 2020, 210, 103545.
[http://dx.doi.org/10.1016/j.jprot.2019.103545] [PMID: 31626998]
[19]
Lopez, M.; Bornaghi, L.F.; Innocenti, A.; Vullo, D.; Charman, S.A.; Supuran, C.T.; Poulsen, S.A. Sulfonamide linked neoglycoconjugates-a new class of inhibitors for cancer-associated carbonic anhydrases. J. Med. Chem., 2010, 53(7), 2913-2926.
[http://dx.doi.org/10.1021/jm901888x] [PMID: 20201556]
[20]
Loughrey, B.T.; Williams, M.L.; Healy, P.C.; Innocenti, A.; Vullo, D.; Supuran, C.T.; Parsons, P.G.; Poulsen, S.A. Novel organometallic cationic ruthenium(II) pentamethylcyclopentadienyl benzenesulfonamide complexes targeted to inhibit carbonic anhydrase. Eur. J. Biochem., 2009, 14(6), 935-945.
[http://dx.doi.org/10.1007/s00775-009-0506-8] [PMID: 19390880]
[21]
Ceruso, M.; Bragagni, M.; AlOthman, Z.; Osman, S.M.; Supuran, C.T. New series of sulfonamides containing amino acid moiety act as effective and selective inhibitors of tumor-associated carbonic anhydrase XII. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 430-434.
[http://dx.doi.org/10.3109/14756366.2014.942659] [PMID: 25089707]
[22]
Buemi, M.R.; De Luca, L.; Ferro, S.; Bruno, E.; Ceruso, M.; Supuran, C.T.; Pospíšilová, K.; Brynda, J.; Řezáčová, P.; Gitto, R. Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. Eur. J. Med. Chem., 2015, 102, 223-232.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.049] [PMID: 26276436]
[23]
Saha, T.; Hossain, M.S.; Saha, D.; Lahiri, M.; Talukdar, P. Chloride-mediated apoptosis-inducing activity of bis(sulfonamide) anionophores. J. Am. Chem. Soc., 2016, 138(24), 7558-7567.
[http://dx.doi.org/10.1021/jacs.6b01723] [PMID: 27222916]
[24]
Vullo, D.; Voipio, J.; Innocenti, A.; Rivera, C.; Ranki, H.; Scozzafava, A.; Kaila, K.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isozyme VII with aromatic and heterocyclic sulfonamides. Bioorg. Med. Chem. Lett., 2005, 15(4), 971-976.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.052] [PMID: 15686895]
[25]
Fabrizi, F.; Mincione, F.; Somma, T.; Scozzafava, G.; Galassi, F.; Masini, E.; Impagnatiello, F.; Supuran, C.T. A new approach to antiglaucoma drugs: Carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J. Enzyme Inhib. Med. Chem., 2012, 27(1), 138-147.
[http://dx.doi.org/10.3109/14756366.2011.597749] [PMID: 21815773]
[26]
Bai, R.; Liang, Z.; Yoon, Y.; Salgado, E.; Feng, A.; Gurbani, S.; Shim, H. Novel anti-inflammatory agents targeting CXCR4: Design, synthesis, biological evaluation and preliminary pharmacokinetic study. Eur. J. Med. Chem., 2017, 136, 360-371.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.030] [PMID: 28521261]
[27]
Hanke, T.; Rörsch, F.; Thieme, T.M.; Ferreiros, N.; Schneider, G.; Geisslinger, G.; Proschak, E.; Grösch, S.; Schubert-Zsilavecz, M. Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. Bioorg. Med. Chem., 2013, 21(24), 7874-7883.
[http://dx.doi.org/10.1016/j.bmc.2013.10.006] [PMID: 24183739]
[28]
Mekheimer, R.A.; Ahmed, E.A.; Sadek, K.U. Recent developments in the chemistry of pyrazolo[4,3-c]quinolines. Tetrahedron, 2012, 68, 1637-1667.
[http://dx.doi.org/10.1016/j.tet.2011.10.088]
[29]
Wang, X.; Ahn, Y-M.; Lentscher, A.G.; Lister, J.S.; Brothers, R.C.; Kneen, M.M.; Gerratana, B.; Boshoff, H.I.; Dowd, C.S. Design, synthesis, and evaluation of substituted nicotinamide adenine dinucleotide (NAD+) synthetase inhibitors as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2017, 27(18), 4426-4430.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.012] [PMID: 28827112]
[30]
Martinez, A.A.; Espinosa, B.A.; Adamek, R.N.; Thomas, B.A.; Chau, J.; Gonzalez, E.; Keppetipola, N.; Salzameda, N.T. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur. J. Med. Chem., 2018, 157, 1202-1213.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.077] [PMID: 30193218]
[31]
Yeung, K-S.; Meanwell, N.A.; Qiu, Z.; Hernandez, D.; Zhang, S.; McPhee, F.; Weinheimer, S.; Clark, J.M.; Janc, J.W. Structure-activity relationship studies of a bisbenzimidazole-based, Zn(2+)-dependent inhibitor of HCV NS3 serine protease. Bioorg. Med. Chem. Lett., 2001, 11(17), 2355-2359.
[http://dx.doi.org/10.1016/S0960-894X(01)00457-7] [PMID: 11527730]
[32]
Müller, S.L.; Schreiber, J.A.; Schepmann, D.; Strutz-Seebohm, N.; Seebohm, G.; Wünsch, B. Systematic variation of the benzenesulfonamide part of the GluN2A selective NMDA receptor antagonist TCN-201. Eur. J. Med. Chem., 2017, 129, 124-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.018] [PMID: 28222314]
[33]
Procopiou, P.A.; Barrett, J.W.; Barton, N.P.; Begg, M.; Clapham, D.; Copley, R.C.; Ford, A.J.; Graves, R.H.; Hall, D.A.; Hancock, A.P.; Hill, A.P.; Hobbs, H.; Hodgson, S.T.; Jumeaux, C.; Lacroix, Y.M.; Miah, A.H.; Morriss, K.M.; Needham, D.; Sheriff, E.B.; Slack, R.J.; Smith, C.E.; Sollis, S.L.; Staton, H. Synthesis and structure-activity relationships of indazole arylsulfonamides as allosteric CC-chemokine receptor 4 (CCR4) antagonists. J. Med. Chem., 2013, 56(5), 1946-1960.
[http://dx.doi.org/10.1021/jm301572h] [PMID: 23409871]
[34]
Ritschel, T.; Hermans, S.M.; Schreurs, M.; van den Heuvel, J.J.; Koenderink, J.B.; Greupink, R.; Russel, F.G. In silico identification and in vitro validation of potential cholestatic compounds through 3D ligand-based pharmacophore modeling of BSEP inhibitors. Chem. Res. Toxicol., 2014, 27(5), 873-881.
[http://dx.doi.org/10.1021/tx5000393] [PMID: 24713091]
[35]
Futatsugi, K.; Piotrowski, D.W.; Casimiro-Garcia, A.; Robinson, S.; Sammons, M.; Loria, P.M.; Banker, M.E.; Petersen, D.N.; Schmidt, N.J. Design and synthesis of aryl sulfonamide-based nonsteroidal mineralocorticoid receptor antagonists. Bioorg. Med. Chem. Lett., 2013, 23(23), 6239-6242.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.099] [PMID: 24157365]
[36]
Zenova, A.; Gong, W.; Chowdhury, S.; Wilson, M.; Burford, K.; Andrez, J.; Shuart, N.G.; Tari, P.K.; Kwan, R.; Khakh, K. Effect of bridged pyrrolidine rings on SAR and physicochemical properties in a series of Nav1.6 selective aryl sulfonamide inhibitors. Abstracts of Papers 258th ACS National Meeting, San Diego, USA2019.
[37]
Focken, T.; Burford, K.; Grimwood, M.E.; Zenova, A.; Andrez, J.C.; Gong, W.; Wilson, M.; Taron, M.; Decker, S.; Lofstrand, V.; Chowdhury, S.; Shuart, N.; Lin, S.; Goodchild, S.J.; Young, C.; Soriano, M.; Tari, P.K.; Waldbrook, M.; Nelkenbrecher, K.; Kwan, R.; Lindgren, A.; de Boer, G.; Lee, S.; Sojo, L.; DeVita, R.J.; Cohen, C.J.; Wesolowski, S.S.; Johnson, J.P., Jr; Dehnhardt, C.M.; Empfield, J.R. identification of CNS-penetrant arylsulfonamides as isoform-selective Nav1.6 inhibitors with efficacy in mouse models of epilepsy. J. Med. Chem., 2019, 62(21), 9618-9641.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01032] [PMID: 31525968]
[38]
Del Prete, S.; Vullo, D.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Sulfonamide inhibition profiles of the β-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible of the febrile illness tularemia. Bioorg. Med. Chem., 2017, 25(13), 3555-3561.
[http://dx.doi.org/10.1016/j.bmc.2017.05.007] [PMID: 28511911]
[39]
Nishimori, I.; Minakuchi, T.; Kohsaki, T.; Onishi, S.; Takeuchi, H.; Vullo, D.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: The beta-carbonic anhydrase from Helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(13), 3585-3594.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.063] [PMID: 17482815]
[40]
Huitema, C.; Zhang, J.; Yin, J.; James, M.N.; Vederas, J.C.; Eltis, L.D. Heteroaromatic ester inhibitors of hepatitis A virus 3C proteinase: Evaluation of mode of action. Bioorg. Med. Chem., 2008, 16(10), 5761-5777.
[http://dx.doi.org/10.1016/j.bmc.2008.03.059] [PMID: 18407505]
[41]
Bissinger, E.M.; Heinke, R.; Spannhoff, A.; Eberlin, A.; Metzger, E.; Cura, V.; Hassenboehler, P.; Cavarelli, J.; Schüle, R.; Bedford, M.T.; Sippl, W.; Jung, M. Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg. Med. Chem., 2011, 19(12), 3717-3731.
[http://dx.doi.org/10.1016/j.bmc.2011.02.032] [PMID: 21440447]
[42]
Werner, S.; Mesch, S.; Hillig, R.C.; Ter Laak, A.; Klint, J.; Neagoe, I.; Laux-Biehlmann, A.; Dahllöf, H.; Bräuer, N.; Puetter, V.; Nubbemeyer, R.; Schulz, S.; Bairlein, M.; Zollner, T.M.; Steinmeyer, A. Discovery and characterization of the potent and selective P2X4 inhibitor N-4-(3-chlorophenoxy)-3-sulfamoylphenyl]-2-phenylacetamide (BAY-1797) and structure-guided amelioration of its CYP3A4 induction profile. J. Med. Chem., 2019, 62(24), 11194-11217.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01304] [PMID: 31746599]
[43]
Habens, F.; Srinivasan, N.; Oakley, F.; Mann, D.A.; Ganesan, A.; Packham, G. Novel sulfasalazine analogues with enhanced NF-kB inhibitory and apoptosis promoting activity. Apoptosis, 2005, 10(3), 481-491.
[http://dx.doi.org/10.1007/s10495-005-1877-0] [PMID: 15909110]
[44]
Ouyang, Q.; Tong, Q.; Feng, R.; Myint, K.Z.; Yang, P.; Xie, X.Q. Trisubstituted sulfonamides: A new chemotype for development of potent and selective CB2 receptor inverse agonists. ACS Med. Chem. Lett., 2013, 4(4), 387-392.
[http://dx.doi.org/10.1021/ml3004236] [PMID: 24729834]
[45]
Ku, J.M.; Park, K.; Lee, J.H.; Cho, K.J.; Nam, Y.J.; Jeong, D.Y.; Kim, Y.H.; Kwon, S.; Park, J.Y.; Yang, J.; Nam, T.G.; Yoon, S.H.; Ahn, S.; Choi, Y. Discovery, optimization, and biological evaluation of sulfonamidoacetamides as an inducer of Axon regeneration. J. Med. Chem., 2016, 59(10), 4676-4687.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00015] [PMID: 27007292]
[46]
Summer, S.L.; Kell, S.A.; Zhu, Z.; Moore, R.; Liotta, D.C.; Myers, S.J.; Koszalka, G.W.; Traynelis, S.F.; Menaldino, D.S. Di-arylsulfonamide motif adds π-stacking bulk in negative allosteric modulators of the NMDA receptor. ACS Med. Chem. Lett., 2019, 10(3), 248-254.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00395] [PMID: 30891121]
[47]
Wu, Y.J.; Guernon, J.; McClure, A.; Luo, G.; Rajamani, R.; Ng, A.; Easton, A.; Newton, A.; Bourin, C.; Parker, D.; Mosure, K.; Barnaby, O.; Soars, M.G.; Knox, R.J.; Matchett, M.; Pieschl, R.; Herrington, J.; Chen, P.; Sivarao, D.V.; Bristow, L.J.; Meanwell, N.A.; Bronson, J.; Olson, R.; Thompson, L.A.; Dzierba, C. Discovery of non-zwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorg. Med. Chem., 2017, 25(20), 5490-5505.
[http://dx.doi.org/10.1016/j.bmc.2017.08.012] [PMID: 28818462]
[48]
Adachi, R.; Ishii, T.; Matsumoto, S.; Satou, T.; Sakamoto, J.; Kawamoto, T. Discovery of human intestinal MGAT inhibitors using high-throughput mass spectrometry. SLAS Discov., 2017, 22(4), 360-365.
[http://dx.doi.org/10.1177/1087057116673181] [PMID: 28328319]
[49]
Swain, N.A.; Batchelor, D.; Beaudoin, S.; Bechle, B.M.; Bradley, P.A.; Brown, A.D.; Brown, B.; Butcher, K.J.; Butt, R.P.; Chapman, M.L.; Denton, S.; Ellis, D.; Galan, S.R.G.; Gaulier, S.M.; Greener, B.S.; de Groot, M.J.; Glossop, M.S.; Gurrell, I.K.; Hannam, J.; Johnson, M.S.; Lin, Z.; Markworth, C.J.; Marron, B.E.; Millan, D.S.; Nakagawa, S.; Pike, A.; Printzenhoff, D.; Rawson, D.J.; Ransley, S.J.; Reister, S.M.; Sasaki, K.; Storer, R.I.; Stupple, P.A.; West, C.W. Discovery of clinical candidate 4-2-(5-amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and optimization of diaryl ether aryl sulfonamides as selective inhibitors of Nav1.7. J. Med. Chem., 2017, 60, 7029-7042.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00598] [PMID: 28682065]
[50]
Pero, J.E.; Rossi, M.A.; Lehman, H.D.G.F.; Kelly, M.J., III; Mulhearn, J.J.; Wolkenberg, S.E.; Cato, M.J.; Clements, M.K.; Daley, C.J.; Filzen, T.; Finger, E.N.; Gregan, Y.; Henze, D.A.; Jovanovska, A.; Klein, R.; Kraus, R.L.; Li, Y.; Liang, A.; Majercak, J.M.; Panigel, J.; Urban, M.O.; Wang, J.; Wang, Y.H.; Houghton, A.K.; Layton, M.E. Benzoxazolinone aryl sulfonamides as potent, selective Nav1.7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg. Med. Chem. Lett., 2017, 27(12), 2683-2688.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.040] [PMID: 28465103]
[51]
Focken, T.; Liu, S.; Chahal, N.; Dauphinais, M.; Grimwood, M.E.; Chowdhury, S.; Hemeon, I.; Bichler, P.; Bogucki, D.; Waldbrook, M.; Bankar, G.; Sojo, L.E.; Young, C.; Lin, S.; Shuart, N.; Kwan, R.; Pang, J.; Chang, J.H.; Safina, B.S.; Sutherlin, D.P.; Johnson, J.P., Jr; Dehnhardt, C.M.; Mansour, T.S.; Oballa, R.M.; Cohen, C.J.; Robinette, C.L. Discovery of arylsulfonamides as isoform-selective inhibitors of Nav1.7 with efficacy in rodent pain models. ACS Med. Chem. Lett., 2016, 7(3), 277-282.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00447] [PMID: 26985315]
[52]
Ahuja, S.; Mukund, S.; Deng, L.; Khakh, K.; Chang, E.; Ho, H.; Shriver, S.; Young, C.; Lin, S.; Johnson, J.P., Jr; Wu, P.; Li, J.; Coons, M.; Tam, C.; Brillantes, B.; Sampang, H.; Mortara, K.; Bowman, K.K.; Clark, K.R.; Estevez, A.; Xie, Z.; Verschoof, H.; Grimwood, M.; Dehnhardt, C.; Andrez, J.C.; Focken, T.; Sutherlin, D.P.; Safina, B.S.; Starovasnik, M.A.; Ortwine, D.F.; Franke, Y.; Cohen, C.J.; Hackos, D.H.; Koth, C.M.; Payandeh, J. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science, 2015, 350(6267), aac5464.
[http://dx.doi.org/10.1126/science.aac5464] [PMID: 26680203]
[53]
Bruno, E.; Buemi, M.R.; De Luca, L.; Ferro, S.; Monforte, A.M.; Supuran, C.T.; Vullo, D.; De Sarro, G.; Russo, E.; Gitto, R. In vivo evaluation of selective carbonic anhydrase inhibitors as potential anticonvulsant agents. ChemMedChem, 2016, 11(16), 1812-1818.
[http://dx.doi.org/10.1002/cmdc.201500596] [PMID: 26915563]
[54]
Fotsch, C.; Han, N.; Bo, Y.; Carmouche, M.; Chen, N.; Davis, J.; Goldberg, M.H.; Hale, C.; Hsieh, F.Y.; Kelly, M.G.; Liu, Q.; Norman, M.H.; Smith, D.M.; Stec, M.; Tamayo, N.; Xi, N.; Xu, S.; Bannon, A.W.; Baumgartner, J.W. Melanocortin subtype-4 receptor agonists containing a piperazine core with substituted arylsulfonamides. Bioorg. Med. Chem. Lett., 2005, 15, 1623-1627.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.060] [PMID: 15745810]
[55]
Lolicato, M.; Arrigoni, C.; Mori, T.; Sekioka, Y.; Bryant, C.; Clark, K.A.; Minor, D.L., Jr K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature, 2017, 547(7663), 364-368.
[http://dx.doi.org/10.1038/nature22988] [PMID: 28693035]
[56]
Gardner, D.S.; Santella, J.B., III; Duncia, J.V.; Carter, P.H.; Dhar, T.G.; Wu, H.; Guo, W.; Cavallaro, C.; Van Kirk, K.; Yarde, M.; Briceno, S.W.; Grafstrom, R.R.; Liu, R.; Patel, S.R.; Tebben, A.J.; Camac, D.; Khan, J.; Watson, A.; Yang, G.; Rose, A.; Foster, W.R.; Cvijic, M.E.; Davies, P.; Hynes, J., Jr The discovery of BMS-457, a potent and selective CCR1 antagonist. Bioorg. Med. Chem. Lett., 2013, 23(13), 3833-3840.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.079] [PMID: 23707259]
[57]
Govinda Rao, B.; Bandarage, U.K.; Wang, T.; Come, J.H.; Perola, E.; Wei, Y.; Tian, S.K.; Saunders, J.O. Novel thiol-based TACE inhibitors: Rational design, synthesis, and SAR of thiol-containing aryl sulfonamides. Bioorg. Med. Chem. Lett., 2007, 17(8), 2250-2253.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.064] [PMID: 17289381]
[58]
Wenglowsky, S.; Ren, L.; Grina, J.; Hansen, J.D.; Laird, E.R.; Moreno, D.; Dinkel, V.; Gloor, S.L.; Hastings, G.; Rana, S.; Rasor, K.; Sturgis, H.L.; Voegtli, W.C.; Vigers, G.; Willis, B.; Mathieu, S.; Rudolph, J. Highly potent and selective 3-N-methylquinazoline-4(3H)-one based inhibitors of B-Raf(V600E) kinase. Bioorg. Med. Chem. Lett., 2014, 24(8), 1923-1927.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.007] [PMID: 24675381]
[59]
Chan, M.; Lao, F.S.; Chu, P.J.; Shpigelman, J.; Yao, S.; Nan, J.; Sato-Kaneko, F.; Li, V.; Hayashi, T.; Corr, M.; Carson, D.A.; Cottam, H.B.; Shukla, N.M. Structure-activity relationship studies to identify affinity probes in bis-arylsulfonamides that prolong immune stimuli. J. Med. Chem., 2019, 62(21), 9521-9540.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00870] [PMID: 31603681]
[60]
Dahl, R.; Sergienko, E.A.; Su, Y.; Mostofi, Y.S.; Yang, L.; Simao, A.M.; Narisawa, S.; Brown, B.; Mangravita-Novo, A.; Vicchiarelli, M.; Smith, L.H.; O’Neill, W.C.; Millán, J.L.; Cosford, N.D. Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J. Med. Chem., 2009, 52(21), 6919-6925.
[http://dx.doi.org/10.1021/jm900383s] [PMID: 19821572]
[61]
Liang, C. Aryl-sulfonamide and aryl-sulfone derivatives as TRPML modulators. Patent WO 2018208630 A1, 2018.
[62]
Sinha, N.; Karche, N.; Hatnapure, G.D.; Hajare, A.K.; Palle, V.; Kamboj, R.K.; Kumar, R. Preparation of biaryl derivatives as nAChR modulators. Patent WO 2013005153 A1, 2013.
[63]
Takashi, O.; Yoichi, O.; Taro, S. Use of sulfonamide-including compounds in combination with angiogenesis inhibitors. Patent US8772269 (B2), 2014.
[64]
Smith-Jones, M.; Zhang, H.; Carlin, S.D. Preparation of aryl and heteroaryl sulfonamide compounds useful as carbonic anhydrase modulators and as imaging agents for diagnosis or prognosis of carbonic anhydrase IX-positive tumors. Patent WO 2010147666 A1, 2010.
[65]
Krall, N.; Decurtins, W.; Neri, D.; Scheuermann, J.; Wichert, M. Small molecule drug conjugates. Patent WO 2015114171 A1, 2015.
[66]
Spyvee, M. Preparation of substitutes aryl sulfonamides as dUTPase inhibitors for the treatment of cancer. Patent WO 2018098209 A1, 2018.
[67]
Abe, Y.M. Preparation of pyrrolopyridazines as inhibitors of phosphodiesterase IV (PDE IV) and production of tumor necrosis factor-α (TNF-α). Patent WO 2004063197 A1, 2004.
[68]
Bearss, D.J.; Grand, C.L.; Liu, X-H.; Vankayalapati, H. Piperazinylpyrimidoindole derivatives as protein kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancer. Patent WO 2008055233 A1, 2008.
[69]
Corbett, T.H.; Grossman, C.S.; Lobb, K.L.; Shih, C.; Hipskind, A.; Lin, H-S. Benzoylsulfonamides and sulfonylbenzamidines for use as antitumour agents. Patent WO 2002098848 A1, 2002.
[70]
Ungashe, S.; Wright, J.J.; Pennell, A.; Wei, Z.; Melikan, A. Preparation of aryl sulfonamides as antagonists of CCR9 receptor. Patent US 7420055 B2, 2008.
[71]
Cappel, M. Azaaryl-1H-pyrazol-1-yl benzenesulfonamides as CCR9 antagonists and their preparation. Patent US 20180009797 A1, 2018.
[72]
Ben-Tal, N.; Armen, R.S.; Eisenlohr, L.C.; Belani, J.; Miller, M.; Fish, I.; Kalid, O. Antiviral agents for drug-resistant influenza. Patent WO 2017106820 A1 20170622, 2017.
[73]
Sauzeau, V.; Loirand, G.; Lebreton, J.; Tessier, A.; Quemenier, A. Preparation of benzene-sulfonamides as Rac1 inhibitors and uses thereof for inducing bronchodilation. Patent WO 2018224560 A1, 2018.
[74]
Zhang, Z. Preparation of aryl sulfonamide compounds as carbonic anhydrase inhibitors for treatment of cancer metastases. Patent WO 2017004543 A1, 2017.
[75]
Potter, P.M.; Hyatt, J.L.; Morton, C.L.; Beroza, P.P.; Damoradan, K.V. Amide, aryl sulfonamide, aryl urea, and α,β-diketone carboxylesterase inhibitors and uses thereof. Patent WO 2005021721 A2, 2005.
[76]
Noronha, G.; Cao, J.; Gritzen, C.; Mak, C.C.; Mcpherson, A.; Pathak, V.; Renick, J.; Soll, R.M.; Zeng, B.; Dneprovskaia, E. Preparation of 2-amino-5-substituted pyrimidine kinase inhibitors and use in therapy. Patent WO 2008008234 A1, 2008.
[77]
Nirogi, R.; Kambhampati, R.S.; Shinde, A.K.; Daulatabad, A.V.; Dwarampudi, A.R.; Kandikere, N.V.; Vishwakarma, S.; Jasti, V. Aminoalkoxy arylsulfonamide compounds and their use as 5-HT6 ligands Patent IN 285812 B, 2017.
[78]
Marron, B.E.; Fritch, C.; Markworth, C.J.; Maynard, A.T.; Swain, N.A. N-Azolyl aminocarbonyl arylsulfonamide derivatives as inhibitors of ion channels and their preparation, pharmaceutical compositions and use in the treatment of diseases. Patent WO 2008118758 A1, 2008.
[79]
Beaudoin, S.; Johnson, M.S.; Marron, B.E.; Suto, M.J. Sodium channel inhibitors. Patent WO 2009012241 A1, 2009.
[80]
Wang, X.; Fulp, A.; Marron, B.; Beaudoin, S.; Seconi, D.; Suto, M. Aryl sulfonamide compound sodium channel inhibitors, and their therapeutic use. Patent WO 2007056099 A2, 2007.
[81]
Rossello, A.; Nuti, E.; Tuccinardi, T.; Orlandini, E. Arylsulfonamide derivatives, especially dimeric hydroxamic acid-containing amino acids, metalloproteases inhibitors and their preparation, pharmaceutical compositions and use in the treatment of degenerative disorders. WO 2010010080 A1, 2010.
[82]
Rossello, A.; Nuti, E.; Orlandini, E.; Balsamo, A.; Tuccinardi, T. Arylsulfonamide derivatives as metalloproteases inhibitors and their preparation, pharmaceutical compositions and use in the treatment of degenerative disorders. Patent WO 2008113756 A2, 2008.
[83]
Degraffenreid, M.R.; He, X.; Powers, J.; Sun, D.; Yan, X. Preparation of aryl sulfonamides as inhibitors of hydroxysteroid dehydrogenases (HSDs). Patent WO 2005063247 A1, 2005.
[84]
Supuran, C.T.; Scozzafava, A.; Pastorekova, S.; Pastorek, J. Use of sulfonamide carbonic anhydrase IX-specific inhibitors for the diagnosis, prognosis, and treatment of preneoplastic and neoplastic diseases. Patent US 20060057068 A1, 2006.
[85]
Testi, R.; Incani, O. Compositions and methods for treating Friedreich’s ataxia. Patent WO 2011070444 A2, 2011.
[86]
Lawrence, H.; Ge, Y.; Sebti, S.M.; Guida, W. Proteasome inhibitors for selectively inducing apoptosis in cancer cells. Patent US 8673910B2, 2014.
[87]
Smith, N.D.; Bonnefous, C.; Payne, J.E.; Hoffman, T.Z.; Wash, L.; Hassig, C.A.; Scranton, S.A. Multicyclic sulfonamide compounds as inhibitors of hystone deaetylase for the treatment of disease. Patent WO 2007067994 A1, 2007.
[88]
Malecha, J.W.; Noble, S.A.; Wiley, B.M.; Hoffman, T.Z.; Bonnefous, C.; Sertic, M.; Wash, L.; Smith, N.D.; Hassig, C.A.; Scranton, S.A.; Payne, J.E.; Hager, J. Multicyclic sulfonamide compounds as inhibitors of histone deacetylase for the treatment of disease. Patent US 20070027184 A1, 2007.
[89]
Van Loevezijn, A.; Iwema Bakker, W.I.; Stoit, A.; Rensink, A.A.M.; Venhorst, J.; Van der Neut, M.A.W.; De Haan, M.; Kruse, C.G. Pyrazoline carboxamidine derivatives as 5-HT6 antagonists. Patent WO 2009115515 A1, 2009.
[90]
Vernier, J-M.; Rowlings, C.E.; Girardet, J-L.; Dimock, S.; Quart, B.; Miner, J.N. Combinations of MEK inhibitors and RAF kinase inhibitors and uses thereof. Patent US 8648116 B2, 2014.
[91]
Bindi, S.; Carenzi, D.; Motto, I.; Pulici, M. N-Aryl sulfonamide derivatives as kinase inhibitors and their preparation. Patent WO 2017220477, 2017.
[92]
Budzik, B.W.; Cooper, A.W.J.; Corbett, D.F.; Jin, J.; Laine, D.I.; Wang, Y.; Moore, M.L.; Rivero, R.A.; Shi, D.; Wang, F. Preparation of biaryl amines as M3 muscarinic acetylcholine receptor antagonists. Patent WO 2005087236 A1, 2005.
[93]
Beausoleil, A-M.; Ryan, H. Preparation of aryl sulfonamides useful as bcl family antagonists for the treatment of senescent related diseases and cancer. Patent WO 2019241567 A1, 2019.
[94]
Dai, M.; Guan, B.; Bennett, R.A.; Burdi, D.F.; Ghosh, S.; Li, G.; Minor, C.J.; Tracy, J. Preparation of aryl sulfonamides as inhibitors of the chemokine receptor CCR8 for the treatment of Th2-and eosinophil-mediated diseases. Patent US 20050085518 A1, 2005.
[95]
Allison, B.D.; Rabinowitz, M.H.; Rosen, M.D.; Woods, C.R. Preparation of aryl sulfonamide compounds as modulators of the CCK2 receptor for treating cancer, gastrointestinal disorders, and other diseases. Patent WO 2008124524 A2, 2008.
[96]
Supuran, C.T.; Benedini, F.; Biondi, S.; Ongini, E. Preparation of nitrate esters of (hetero)arylsulfonamide carbonic anhydrase inhibitors as agents for treating eye disorders and cancer. Patent WO 2008071421 A1, 2008.
[97]
Ungashe, S.; Wei, Z.; Basak, A.; Charvat, T.T.; Chen, W.; Jin, J.; Moore, J.; Zeng, Y.; Punna, S.; Dairaghi, D. Prepa-ration of aryl and heteroaryl sulfonamides as CCR2 antagonists. WO 2006076644 A2, 2006.
[98]
Ungashe, S.; Wright, J.J.; Pennell, A.; Wei, Z.; Melikian, A. Preparation of aryl sulfonamides as antagonists of CCR9 receptor. Patent WO 2005112925 A1, 2005.
[99]
Ungashe, S.; Wright, J.J.; Pennell, A. Preparation of aryl sulfonamides as antagonists of CCR9. Patent WO 2005113513 A2, 2005.
[100]
Zhao, C.; Malecha, J.W.; Noble, S.A.; Duron, S.G.; Lindstrom, A.K.; Shiau, A.K. Preparation of aryl sulfonamide and sulfonyl compounds as modulators of PPAR and methods of treating metabolic disorders. Patent US 20050234046 A1, 2005.
[101]
Dennis, A.; Hollander, M.C.; Nicklaus, M.; Peach, M.; Chemler, S.R. Method of treating or preventing cancer. Patent WO 2011009059 A2, 2011.
[102]
Gaillard, P.; Quattropani, A.; Pomel, V.; Rueckle, T.; Klicic, J.; Church, D. Preparation of pyrazine derivatives, particularly N-[3-(oxyphenylamino)quinoxalin-2-yl] sulfonamides, as PI3K Inhibitors. Patent WO 2007023186 A1, 2007.
[103]
Wright, J.J. Treatment of asthma with aryl sulfonamides that modulate chemokine receptors. Patent US 20080214672 A1, 2008.
[104]
Rigby, A.C.; Balk, S.; Shanmugasundaram, K.; Shen, H.C.N.N. N-(1,3-Benzodioxol-5-ylmethyl) benzenesulfonamides as androgen receptor inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancer Patent WO 2012082862 A2, 2012.
[105]
Irwin, J.; Sutphin, P.; Chan, D.; Turcotte, S.; Giaccia, A.; Lai, E.; Razorenova, O.; Hay, M.; Bonnet, M.; Sun, C. Glucose transporter-1 (GLUT1) inhibitors for treatment of cancer. Patent WO 2012100223 A1, 2012.
[106]
Popovici-Muller, J.; Salituro, F.G.; Saunders, J.O.; Travins, J.; Yan, S. Preparation of aryl sulfonamide diarylurea derivatives as inhibitors of mutant isocitrate dehydrogenase ½ for treating cancer. Patent WO 2014062511 A1, 2014.
[107]
Armer, R.; Guisot, N.E.S.; Lucas, C. Preparation of pyrazolo[3,4-d]pyrimidines as Bruton's tyrosine kinase inhibitors. Patent WO 2015140566 A1, 2015.
[108]
Vernier, J-M.; Rowlings, C.E.; Girardet, J-L.; Dimock, S.; Quart, B.; Miner, J.N. Preparation of N-[2-(arylamino)aryl] sulfonamide compounds as MEK kinase inhibitors. Patent WO 2009018233 A1, 2009.
[109]
Gregan, F.; Remko, M.; Sluciakova, E.; Knapikova, J. Sulfonamide derivatives as carboanhydrase inhibitors and the process for their preparation, pharmaceutical compositions and use in the treatment of glaucoma. Patent WO 2008130332 A1, 2008.
[110]
Nakamura, T.; Sakagami, K.; Konishi, K.; Yamamoto, K.; Masuda, S.; Matsuda, Y.; Okada, K.; Shibata, T.; Ohta, H.; Yasuhara, A. Preparation of heteroaryl-pyrazole derivatives as group II mGlu receptor antagonists. Patent WO 2012020820 A1, 2012.
[111]
Neidhart, W.; Nettekoven, M.H.; Pflieger, P. Preparation of thiazoles as NPY5 receptor antagonists. Patent US 20050038089 A1, 2005.
[112]
Singh, J.; Gurney, M.; Hategan, G. Arylsulfonamide acid peri-substituted bicyclics and their preparation, pharmaceutical compositions, and prostanoid EP3 receptor binding activity for treatment of occlusive artery disease. Patent WO 2006044405 A1, 2006.
[113]
Schmidt, B.; Flockerzi, D.; Hatzelmann, A.; Zitt, C.; Barsig, J.; Marx, D.; Kley, H-P.; Kautz, U. Preparation of thio-containing phenylphenanthridines as PDE4 inhibitors for the treatment of respiratory diseases. Patent WO 2005087744 A1, 2005.
[114]
Muto, T.; Tanaka, T.; Maruoka, H.; Imajo, S.; Tomimori, Y.; Sato, K.; Yagi, T. Preparation of 1,4-diazepane-3,5- dione derivatives as chymase inhibitors and pharmaceutical use thereof. Patent WO 2007139230 A1, 2007.
[115]
Fukami, H.; Ito, A.; Imajo, S. Preparation of quinazoline derivatives as chymase inhibitors. Patent WO 2000010982 A1, 2000.
[116]
Dachary, E.; Dargazanli, G.; Estenne, B.G.; Marabout, B.; Rakotoarisoa, N.; Roger, P.; Sevrin, M. reparation of N-[phenyl(piperidin-2-yl)methyl]benzamides as specific inhibitors of glycine transporters glyt1 and/or glyt2. Patent FR 2842805 A1, 2004.
[117]
Sutphin, P.; Chan, D.; Turcotte, S.; Denny, W.A.; Hay, M.; Giddens, A.C.; Bonnet, M.; Giaccia, A. Preparation of heteroaryl benzamides useful in treating diseases. Patent WO 2011011514 A1, 2011.
[118]
Shim, H.; Shi, Q.; Renren, B. Amide-sulfamide derivatives, compositions, and uses related to CXCR4 inhibition. Patent WO 2017160832 A1, 2017.
[119]
McComas, C.C.; Cohn, S.T.; Crawley, M.L.; Fensome, A.; Goldberg, J.A.; Jenkins, D.J.; Kim, C.Y.; Mahaney, E.; Mann, C.W.; Marella, M.A. Aryl sulfamide derivatives as monoamine reuptake inhibitors and their preparation and methods of their use. Patent WO 2008073459 A1, 2008.
[120]
Nilsson, C. Use of an aryl sulfonamide compound inhibitor of 11b-hydroxysteroid dehydrogenase type 1 for promoting wound healing. Patent WO 2004113310 A1, 2004.
[121]
Lai, Y.; Wang, F.; Zou, Y.; Xu, Q.; Guo, W.; Wang, Y.; Sun, Q.; Li, Y. Benzenesulfonamide indoleamine 2,3- dioxygenase 1 (IDO1) inhibitor, its preparation method and application. Patent CN 106928101 A, 2017.
[122]
Rao, Z.; Yang, C.; Lou, Z.; Xiao, Y.; Wang, J.; Wang, T.; Liu, W.; Xia, Q. Application of sulfonamide compound in inhibiting NDM-1 activity. Patent CN 103191091 A, 2013.
[123]
Liu, X.; Chen, H.N.N. N-(2-(N-Acylaminomethyl)phenyl) thiazole-4-carboxamide derivatives as direct factor Xa inhibitors and their preparation, pharmaceutical compositions and use in the treatment of platelet disorders Patent CN 104016944 A, 2014.
[124]
Wang, X.; Hu, Y.; Ye, Q.; Hu, X. N-benzyl-N-aryl sulfonamide derivative, its preparation method and application for treating autoimmune disease mediated by Kv1.3. Patent CN 109651297 A, 2019.
[125]
Zhao, Z.; Liu, J.; Lu, Y.; Chen, Y.; Bi, L.; Xu, S.; Wang, J.; Gu, Y. N-4-(isopimaric acid acylamino) phenyl. Aryl sulfonamide compound useful in treatment of cancer and its preparation. Patent CN 106431998 A, 2017.
[126]
Huang, Z. Arylsulfonamide-piperazine derivatives as DPP-IV inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diabetes. Patent CN 101486688 A, 2009.
[127]
Kayakiri, H.; Abe, Y.; Hamashima, H.; Sawada, H.; Ishibashi, N.; Setoi, H.; Oku, T.; Yamasaki, N.; Imoto, T.; Hiramura, T. Preparation of sulfonamides as medicines. Patent WO 2000034277 A1, 2000.
[128]
Ueda, I.; Taniguchi, K.; Saito, Y.; Katsura, Y. Benzenesulfonamide derivatives Jpn. Patent JP 58124758 A, 1983.
[129]
Kim, G.Y.; Ahn, J.H.; Kang, S.G.; Lee, S.D.; Bae, M.A.; Ahn, S.H.; Kim, H.Y.; Jung, W.H.; Kang, N.S. Preparation of arylsulfonamide derivatives containing cyclopropyl moiety as 11β-HSD1 inhibitors. Patent KR 2012111347 A, 2012.
[130]
Sonpavde, G.; Hutson, T.E. Pazopanib: A novel multitargeted tyrosine kinase inhibitor. Curr. Oncol. Rep., 2007, 9(2), 115-119.
[http://dx.doi.org/10.1007/s11912-007-0007-2] [PMID: 17288876]
[131]
Harris, P.A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R.M.; Davis-Ward, R.G.; Epperly, A.H.; Hinkle, K.W.; Hunter, R.N., III; Johnson, J.H.; Knick, V.B.; Laudeman, C.P.; Luttrell, D.K.; Mook, R.A.; Nolte, R.T.; Rudolph, S.K.; Szewczyk, J.R.; Truesdale, A.T.; Veal, J.M.; Wang, L.; Stafford, J.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem., 2008, 51(15), 4632-4640.
[http://dx.doi.org/10.1021/jm800566m] [PMID: 18620382]
[132]
Peppercorn, M.A. Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med., 1984, 101(3), 377-386.
[http://dx.doi.org/10.7326/0003-4819-101-3-377] [PMID: 6147110]
[133]
Markham, A. Baricitinib: First global approval. Drugs, 2017, 77(6), 697-704.
[http://dx.doi.org/10.1007/s40265-017-0723-3] [PMID: 28290136]
[134]
FDA news release. Coronavirus (COVID-19) Update: FDA Authorizes Drug Combination for Treatment of COVID-19. 2020. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19
[135]
De Benedetti, G.; Quartieri, S.; Rastelli, A. A theoretical study of the structure-activity relationship in sulpha drugs. J. Mol. Struct. Theochem., 1981, 85, 45-51.
[http://dx.doi.org/10.1016/0166-1280(81)85048-8]
[136]
De Benedetti, G.; Frassineti, C. A theoretical study of the structure-activity relationship in diaryl sulphones, comparison with sulpha drugs. J. Mol. Struct. Theochem., 1983, 91, 191-196.
[137]
MacPherson, L.J.; Bayburt, E.K.; Capparelli, M.P.; Carroll, B.J.; Goldstein, R.; Justice, M.R.; Zhu, L.; Hu, S.; Melton, R.A.; Fryer, L.; Goldberg, R.L.; Doughty, J.R.; Spirito, S.; Blancuzzi, V.; Wilson, D.; O’Byrne, E.M.; Ganu, V.; Parker, D.T. Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J. Med. Chem., 1997, 40(16), 2525-2532.
[http://dx.doi.org/10.1021/jm960871c] [PMID: 9258358]
[138]
Stams, T.; Spurlino, J.C.; Smith, D.L.; Wahl, R.C.; Ho, T.F.; Qoronfleh, M.W.; Banks, T.M.; Rubin, B. Structure of human neutrophil collagenase reveals large S1′ specificity pocket. Nat. Struct. Biol., 1994, 1(2), 119-123.
[http://dx.doi.org/10.1038/nsb0294-119] [PMID: 7656015]
[139]
Gonnella, N.C.; Li, Y.C.; Zhang, X.; Paris, C.G. Bioactive conformation of a potent stromelysin inhibitor determined by X-nucleus filtered and multidimensional NMR spectroscopy. Bioorg. Med. Chem., 1997, 5(12), 2193-2201.
[http://dx.doi.org/10.1016/S0968-0896(97)00173-9] [PMID: 9459017]
[140]
Christmann-Franck, S.; Bertrand, H.O.; Goupil-Lamy, A.; der Garabedian, P.A.; Mauffret, O.; Hoffmann, R.; Fermandjian, S. Structure-based virtual screening: An application to human topoisomerase II α. J. Med. Chem., 2004, 47(27), 6840-6853.
[http://dx.doi.org/10.1021/jm049745w] [PMID: 15615533]
[141]
Ala, P.J.; Gonneville, L.; Hillman, M.; Becker-Pasha, M.; Yue, E.W.; Douty, B.; Wayland, B.; Polam, P.; Crawley, M.L.; McLaughlin, E.; Sparks, R.B.; Glass, B.; Takvorian, A.; Combs, A.P.; Burn, T.C.; Hollis, G.F.; Wynn, R. Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B. J. Biol. Chem., 2006, 281(49), 38013-38021.
[http://dx.doi.org/10.1074/jbc.M607913200] [PMID: 17028182]
[142]
Combs, A.P.; Yue, E.W.; Bower, M.; Ala, P.J.; Wayland, B.; Douty, B.; Takvorian, A.; Polam, P.; Wasserman, Z.; Zhu, W.; Crawley, M.L.; Pruitt, J.; Sparks, R.; Glass, B.; Modi, D.; McLaughlin, E.; Bostrom, L.; Li, M.; Galya, L.; Blom, K.; Hillman, M.; Gonneville, L.; Reid, B.G.; Wei, M.; Becker-Pasha, M.; Klabe, R.; Huber, R.; Li, Y.; Hollis, G.; Burn, T.C.; Wynn, R.; Liu, P.; Metcalf, B. Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J. Med. Chem., 2005, 48(21), 6544-6548.
[http://dx.doi.org/10.1021/jm0504555] [PMID: 16220970]
[143]
Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): Theory and application. J. Chem. Inf. Model., 2007, 47(2), 279-294.
[http://dx.doi.org/10.1021/ci600253e] [PMID: 17381166]
[144]
Spyrakis, F.; Singh, R.; Cozzini, P.; Campanini, B.; Salsi, E.; Felici, P.; Raboni, S.; Benedetti, P.; Cruciani, G.; Kellogg, G.E.; Cook, P.F.; Mozzarelli, A. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One, 2013, 8(10), e77558.
[http://dx.doi.org/10.1371/journal.pone.0077558] [PMID: 24167577]
[145]
Yi, F.; Mou, T.C.; Dorsett, K.N.; Volkmann, R.A.; Menniti, F.S.; Sprang, S.R.; Hansen, K.B. Structural basis for negative allosteric modulation of GluN2A-Containing NMDA receptors neuron. J. Gen. Physiol., 2016, 91(6), 1316-1329.
[PMID: 27618671]
[146]
Moro, W.B.; Yang, Z.; Kane, T.A.; Brouillette, C.G.; Brouillette, W.J. Virtual screening to identify lead inhibitors for bacterial NAD synthetase (NADs). Bioorg. Med. Chem. Lett., 2009, 19(7), 2001-2005.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.034] [PMID: 19249205]
[147]
Moro, W.B.; Yang, Z.; Kane, T.A.; Zhou, Q.; Harville, S.; Brouillette, C.G.; Brouillette, W.J. SAR studies for a new class of antibacterial NAD biosynthesis inhibitors. J. Comb. Chem., 2009, 11(4), 617-625.
[http://dx.doi.org/10.1021/cc9000357] [PMID: 19408950]
[148]
Schwertz, G.; Frei, M.S.; Witschel, M.C.; Rottmann, M.; Leartsakulpanich, U. Chitnumsub, Jaruwat A; Ittarat, W.; Schaefer, A.; Aponte, R.A.; Trapp, N.; Mark, K.; Diederich, F. Conformational aspects in the design of inhibitors for Serine Hydroxymethyltransferase (SHMT): Biphenyl, aryl sulfonamide, and aryl sulfone motifs. J. Chem. Eur., 2017, 23, 14345-14357.
[http://dx.doi.org/10.1002/chem.201703244]
[149]
Gerber, P.R.; Müller, K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J. Comput. Aided Mol. Des., 1995, 9(3), 251-268.
[http://dx.doi.org/10.1007/BF00124456] [PMID: 7561977]
[150]
Stebbins, J.L.; Jung, D.; Leone, M.; Zhang, X.K.; Pellecchia, M. A structure-based approach to retinoid X receptor-α inhibition. J. Biol. Chem., 2006, 281(24), 16643-16648.
[http://dx.doi.org/10.1074/jbc.M600318200] [PMID: 16606625]
[151]
Almerico, A.M.; Tutone, M.; Lauria, A. In-silico screening of new potential Bcl-2/Bcl-xl inhibitors as apoptosis modulators. J. Mol. Model., 2009, 15(4), 349-355.
[http://dx.doi.org/10.1007/s00894-008-0405-x] [PMID: 19066994]
[152]
Alyar, S.; Sen, T.; Ozmen, U.O.; Alyar, H.; Adem, S.; Sen, C. Synthesis, spectroscopic characterizations, enzyme inhibition, molecular docking study and DFT calculations of new Schiff bases of sulfa drugs. J. Mol. Struct., 2019, 1185, 416-424.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.002]
[153]
Vanga, S.R.; Sävmarker, J.; Ng, L.; Larhed, M.; Hallberg, M.; Åqvist, J.; Hallberg, A.; Chai, S.Y.; Gutiérrez-de-Terán, H. Structural basis of inhibition of human insulin-regulated aminopeptidase (IRAP) by arylsulfonamides. ACS Omega, 2018, 3(4), 4509-4521.
[http://dx.doi.org/10.1021/acsomega.8b00595] [PMID: 30023895]
[154]
Aqvist, J.; Medina, C.; Samuelsson, J.E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng., 1994, 7(3), 385-391.
[http://dx.doi.org/10.1093/protein/7.3.385] [PMID: 8177887]
[155]
Hansson, T.; Marelius, J.; Aqvist, J. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol. Des., 1998, 12(1), 27-35.
[http://dx.doi.org/10.1023/A:1007930623000] [PMID: 9570087]
[156]
Oddsson, S.; Kowal, N.M.; Ahring, P.K.; Olafsdottir, E.S.; Balle, T. Structure-Based discovery of dual-target hits for acetylcholinesterase and the α7 nicotinic acetylcholine receptors: In silico studies and in vitro confirmation. Molecules, 2020, 25(12), 2872.
[http://dx.doi.org/10.3390/molecules25122872] [PMID: 32580406]
[157]
Frankowski, K.J.; Hedrick, M.P.; Gosalia, P.; Li, K.; Shi, S.; Whipple, D.; Ghosh, P.; Prisinzano, T.E.; Schoenen, F.J.; Su, Y.; Vasile, S.; Sergienko, E.; Gray, W.; Hariharan, S.; Milan, L.; Heynen-Genel, S.; Mangravita-Novo, A.; Vicchiarelli, M.; Smith, L.H.; Streicher, J.M.; Caron, M.G.; Barak, L.S.; Bohn, L.M.; Chung, T.D.Y.; Aubé, J. Discovery of small molecule kappa Opioid receptor agonist and antagonist chemotypes through a HTS and Hit refinement strategy. ACS Chem. Neurosci., 2012, 3(3), 221-236.
[http://dx.doi.org/10.1021/cn200128x] [PMID: 22737280]
[158]
Balaramnavar, V.M.; Srivastava, R.; Rahuja, N.; Gupta, S.; Rawat, A.K.; Varshney, S.; Chandasana, H.; Chhonker, Y.S.; Doharey, P.K.; Kumar, S.; Gautam, S.; Srivastava, S.P.; Bhatta, R.S.; Saxena, J.K.; Gaikwad, A.N.; Srivastava, A.K.; Saxena, A.K. Identification of novel PTP1B inhibitors by pharmacophore based virtual screening, scaffold hopping and docking. Eur. J. Med. Chem., 2014, 87, 578-594.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.097] [PMID: 25299681]
[159]
Rueeger, H.; Rigollier, P.; Yamaguchi, Y.; Schmidlin, T.; Schilling, W.; Criscione, L.; Whitebread, S.; Chiesi, M.; Walker, M.W.; Dhanoa, D.; Islam, I.; Zhang, J.; Gluchowski, C. Design, synthesis and SAR of a series of 2-substituted 4-amino-quinazoline neuropeptide Y Y5 receptor antagonists. Bioorg. Med. Chem. Lett., 2000, 10(11), 1175-1179.
[http://dx.doi.org/10.1016/S0960-894X(00)00177-3] [PMID: 10866375]
[160]
Dragovich, P.S.; Zhao, G.; Baumeister, T.; Bravo, B.; Giannetti, A.M.; Ho, Y.C.; Hua, R.; Li, G.; Liang, X.; Ma, X.; O’Brien, T.; Oh, A.; Skelton, N.J.; Wang, C.; Wang, W.; Wang, Y.; Xiao, Y.; Yuen, P.W.; Zak, M.; Zhao, Q.; Zheng, X. Fragment-based design of 3-aminopyridine-derived amides as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorg. Med. Chem. Lett., 2014, 24(3), 954-962.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.062] [PMID: 24433859]
[161]
Zhao, F.; Jin, W.; Ma, L.; Zhang, J.Y.; Wang, J.L.; Zhang, J.H.; Song, Y.B. Investigation of the selectivity of one type of small-molecule inhibitor for three Nav channel isoforms based on the method of computer simulation. J. Biomol. Struct. Dyn., 2019, 37(3), 702-713.
[http://dx.doi.org/10.1080/07391102.2018.1438921] [PMID: 29448911]
[162]
Wang, M.; Wang, Y.; Kong, D.; Jiang, H.; Wang, J.; Cheng, M. In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Comput. Biol. Chem., 2018, 77, 214-225.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.10.009] [PMID: 30359866]
[163]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[164]
Kong, D.J.; Wang, Y.; Wang, H.X.; Wang, M.X.; Wang, J.; Cheng, M.S. Molecular determinants for ligand binding at Nav1.4 and Nav1.7 channels: Experimental affinity results analyzed by molecular modeling. Comput. Biol. Chem., 2019, 83, 107132.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107132] [PMID: 31563636]
[165]
Fantacuzzi, M.; De Filippis, B.; Gallorini, M.; Ammazzalorso, A.; Giampietro, L.; Maccallini, C.; Aturki, Z.; Donati, E.; Ibrahim, R.S.; Shawky, E.; Cataldi, A.; Amoroso, R. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem., 2020, 185, 111815.
[http://dx.doi.org/10.1016/j.ejmech.2019.111815] [PMID: 31732252]
[166]
Rudnitskaya, A.; Borkin, D.A.; Huynh, K.; Török, B.; Stieglitz, K. Rational design, synthesis, and potency of N-substituted indoles, pyrroles, and triarylpyrazoles as potential fructose 1,6-bisphosphatase inhibitors. ChemMedChem, 2010, 5(3), 384-389.
[http://dx.doi.org/10.1002/cmdc.200900493] [PMID: 20069623]
[167]
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem., 2003, 46(12), 2287-2303.
[http://dx.doi.org/10.1021/jm0203783] [PMID: 12773034]
[168]
Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des., 2002, 16(1), 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[169]
Ahad, A.M.; Zuohe, S.; Du-Cuny, L.; Moses, S.A.; Zhou, L.L.; Zhang, S.; Powis, G.; Meuillet, E.J.; Mash, E.A. Development of sulfonamide AKT PH domain inhibitors. Bioorg. Med. Chem., 2011, 19(6), 2046-2054.
[http://dx.doi.org/10.1016/j.bmc.2011.01.049] [PMID: 21353784]
[170]
Mahadevan, D.; Powis, G.; Mash, E.A.; George, B.; Gokhale, V.M.; Zhang, S.; Shakalya, K.; Du-Cuny, L.; Berggren, M.; Ali, M.A.; Jana, U.; Ihle, N.; Moses, S.; Franklin, C.; Narayan, S.; Shirahatti, N.; Meuillet, E.J. Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol. Cancer Ther., 2008, 7(9), 2621-2632.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2276] [PMID: 18790745]
[171]
Du-Cuny, L.; Song, Z.; Moses, S.; Powis, G.; Mash, E.A.; Meuillet, E.J.; Zhang, S. Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain. Bioorg. Med. Chem., 2009, 17(19), 6983-6992.
[http://dx.doi.org/10.1016/j.bmc.2009.08.022] [PMID: 19734051]
[172]
Moses, S.A.; Ali, M.A.; Zuohe, S.; Du-Cuny, L.; Zhou, L.L.; Lemos, R.; Ihle, N.; Skillman, A.G.; Zhang, S.; Mash, E.A.; Powis, G.; Meuillet, E.J. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT. Cancer Res., 2009, 69(12), 5073-5081.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3839] [PMID: 19491272]
[173]
Allen, B.K.; Mehta, S.; Ember, S.W.J.; Zhu, J.Y.; Schönbrunn, E.; Ayad, N.G.; Schürer, S.C. Identification of a novel class of BRD4 inhibitors by computational screening and binding simulations. ACS Omega, 2017, 2(8), 4760-4771.
[http://dx.doi.org/10.1021/acsomega.7b00553] [PMID: 28884163]
[174]
Yrjölä, S.; Parkkari, T.; Navia-Paldanius, D.; Laitinen, T.; Kaczor, A.A.; Kokkola, T.; Adusei-Mensah, F.; Savinainen, J.R.; Laitinen, J.T.; Poso, A.; Alexander, A.; Penman, J.; Stott, L.; Anskat, M.; Irving, A.J.; Nevalainen, T.J. Potent and selective N-(4-sulfamoylphenyl)thiourea-based GPR55 agonists. Eur. J. Med. Chem., 2016, 107, 119-132.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.050] [PMID: 26575458]
[175]
Koca, I.; Yigitcan, S.; Gumus, M.; Gokce, H.; Sert, Y. A new series of sulfa drugs containing pyrazolyl acylthiourea moiety: Synthesis, experimental and theoretical spectral characterization and molecular docking studies. J. Mol. Struct., 2020, 1204, 127479.
[http://dx.doi.org/10.1016/j.molstruc.2019.127479]
[176]
Lauria, A.; Abbate, I.; Gentile, C.; Angileri, F.; Martorana, A.; Almerico, A.M. Synthesis and biological activities of a new class of heat shock protein 90 inhibitors, designed by energy-based pharmacophore virtual screening. J. Med. Chem., 2013, 56(8), 3424-3428.
[http://dx.doi.org/10.1021/jm4002023] [PMID: 23520985]
[177]
Barril, X.; Brough, P.; Drysdale, M.; Hubbard, R.E.; Massey, A.; Surgenor, A.; Wright, L. Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(23), 5187-5191.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.092] [PMID: 16202589]
[178]
Khanfar, M.A.; Taha, M.O. Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors. J. Chem. Inf. Model., 2013, 53(10), 2587-2612.
[http://dx.doi.org/10.1021/ci4003798] [PMID: 24050502]
[179]
Zhang, Y.; Zhang, T.J.; Tu, S.; Zhang, Z.H.; Meng, F.H. Identification of novel Src inhibitors: Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations. Molecules, 2020, 25(18), 4094.
[http://dx.doi.org/10.3390/molecules25184094] [PMID: 32911607]
[180]
Khan, M.F.; Verma, G.; Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Rizvi, M.A.; Mumtaz, M. Alam Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl-1,3,4-thiadiazole amides and sulfonamides as antitubulin agents. Arab. J. Chem., 2019, 12, 5000-5018.
[http://dx.doi.org/10.1016/j.arabjc.2016.11.004]
[181]
Elliott, J.M.; Broughton, H.; Cascieri, M.A.; Chicchi, G.; Huscroft, I.T.; Kurtz, M.; MacLeod, A.M.; Sadowski, S.; Stevenson, G.I. Serine derived NK1 antagonists. 2: A pharmacophore model for arylsulfonamide binding. Bioorg. Med. Chem. Lett., 1998, 8(14), 1851-1856.
[http://dx.doi.org/10.1016/S0960-894X(98)00319-9] [PMID: 9873446]
[182]
Pinsetta, F.R.; Taft, C.A.; de Paula da Silva, C.H. Structure- and ligand-based drug design of novel p38-alpha MAPK inhibitors in the fight against the Alzheimer’s disease. J. Biomol. Struct. Dyn., 2014, 32(7), 1047-1063.
[http://dx.doi.org/10.1080/07391102.2013.803441] [PMID: 23805842]
[183]
Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol., 2016, 12(1), 25-36.
[http://dx.doi.org/10.1038/nrrheum.2015.167] [PMID: 26633291]
[184]
Keystone, E.C.; Taylor, P.C.; Drescher, E.; Schlichting, D.; Beattie, D. Berclaz, Lee, C; Fidelus-Gort, R.; Luchi, M.; Rooney, T.; Macias, W. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have an inadequate response to methotrexate. Ann. Rheum. Dis., 2015, 74, 333-340.
[http://dx.doi.org/10.1136/annrheumdis-2014-206478] [PMID: 25431052]
[185]
Vasbinder, M.M.; Alimzhanov, M.; Augustin, M.; Bebernitz, G.; Bell, K.; Chuaqui, C.; Deegan, T.; Ferguson, A.D.; Goodwin, K.; Huszar, D.; Kawatkar, A.; Kawatkar, S.; Read, J.; Shi, J.; Steinbacher, S.; Steuber, H.; Su, Q.; Toader, D.; Wang, H.; Woessner, R.; Wu, A.; Ye, M.; Zinda, M. Identification of azabenzimidazoles as potent JAK1 selective inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(1), 60-67.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.031] [PMID: 26614408]
[186]
Simov, V.; Deshmukh, S.V.; Dinsmore, C.J.; Elwood, F.; Fernandez, R.B.; Garcia, Y.; Gibeau, C.; Gunaydin, H.; Jung, J.; Katz, J.D.; Kraybill, B.; Lapointe, B.; Patel, S.B.; Siu, T.; Su, H.; Young, J.R. Structure-based design and development of (benz)imidazole pyridones as JAK1-selective kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(7), 1803-1808.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.035] [PMID: 26927423]
[187]
Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jussif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutylpropane-1-sulfonamide (PF-04965842): A Selective JAK1 Clinical Candidate for the Treatment of Autoimmune Diseases. J. Med. Chem., 2018, 61(3), 1130-1152.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01598] [PMID: 29298069]
[188]
Brodney, M.A.; Barreiro, G.; Ogilvie, K.; Hajos-Korcsok, E.; Murray, J.; Vajdos, F.; Ambroise, C.; Christoffersen, C.; Fisher, K.; Lanyon, L.; Liu, J.; Nolan, C.E.; Withka, J.M.; Borzilleri, K.A.; Efremov, I.; Oborski, C.E.; Varghese, A.; O’Neill, B.T. Spirocyclic sulfamides as β-secretase 1 (BACE-1) inhibitors for the treatment of Alzheimer’s disease: Utilization of structure based drug design, WaterMap, and CNS penetration studies to identify centrally efficacious inhibitors. J. Med. Chem., 2012, 55(21), 9224-9239.
[http://dx.doi.org/10.1021/jm3009426] [PMID: 22984865]
[189]
Breiten, B.; Lockett, M.R.; Sherman, W.; Fujita, S.; Al-Sayah, M.; Lange, H.; Bowers, C.M.; Heroux, A.; Krilov, G.; Whitesides, G.M. Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. J. Am. Chem. Soc., 2013, 135(41), 15579-15584.
[http://dx.doi.org/10.1021/ja4075776] [PMID: 24044696]
[190]
Lockett, M.R.; Lange, H.; Breiten, B.; Heroux, A.; Sherman, W.; Rappoport, D.; Yau, P.O.; Snyder, P.W.; Whitesides, G.M. The binding of benzoarylsulfonamide ligands to human carbonic anhydrase is insensitive to formal fluorination of the ligand. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7714-7717.
[http://dx.doi.org/10.1002/anie.201301813] [PMID: 23788494]
[191]
DiSalvo, D.; Kuzmich, D.; Bentzien, J.; Regan, J.; Kukulka, A.; Fadra-Khan, T.; Nelson, R.; Harcken, C.; Thomson, D.; Nabozny, G. Substituted phenyl as a steroid A-ring mimetic: Providing agonist activity to a class of arylsulfonamide nonsteroidal glucocorticoid ligands. Bioorg. Med. Chem. Lett., 2013, 23(24), 6645-6649.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.047] [PMID: 24239189]
[192]
Le Bourdonnec, B.; Ajello, C.W.; Seida, P.R.; Susnow, R.G.; Cassel, J.A.; Belanger, S.; Stabley, G.J.; DeHaven, R.N.; DeHaven-Hudkins, D.L.; Dolle, R.E. Arylacetamide κ opioid receptor agonists with reduced cytochrome P450 2D6 inhibitory activity. Bioorg. Med. Chem. Lett., 2005, 15(10), 2647-2652.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.020] [PMID: 15863335]
[193]
Zhang, J.; Liu, G.; Tang, Y. Chemical function-based pharmacophore generation of selective κ-opioid receptor agonists by catalyst and phase. J. Mol. Model., 2009, 15(9), 1027-1041.
[http://dx.doi.org/10.1007/s00894-008-0418-5] [PMID: 19205759]
[194]
Myrianthopoulos, V.; Lozach, O.; Zareifi, D.; Alexopoulos, L.; Meijer, L.; Gorgoulis, V.G.; Mikros, E. Combined virtual and experimental screening for ck1 inhibitors identifies a modulator of p53 and reveals important aspects of in silico screening performance. Int. J. Mol. Sci., 2017, 18(10), 2102.
[http://dx.doi.org/10.3390/ijms18102102] [PMID: 28984824]
[195]
Tutone, M.; Almerico, A.M. Recent advances on CDK inhibitors: An insight by means of in silico methods. Eur. J. Med. Chem., 2017, 142, 300-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.067] [PMID: 28802482]
[196]
Alzate-Morales, JH; Caballero, J; Gonzalez-Nilo, FD; Contreras, R A computational ONIOM model for the description of the H-bond interactions between NU2058 analogues and CDK2 active site. Chem. Phys. Lett., 2009, 479, 149e155.
[http://dx.doi.org/10.1016/j.cplett.2009.08.020]
[197]
Vulpetti, A.; Casale, E.; Roletto, F.; Amici, R.; Villa, M.; Pevarello, P. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors. J. Mol. Graph. Model., 2006, 24(5), 341-348.
[http://dx.doi.org/10.1016/j.jmgm.2005.09.012] [PMID: 16260160]
[198]
McMartin, C.; Bohacek, R.S. QXP: Powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des., 1997, 11(4), 333-344.
[http://dx.doi.org/10.1023/A:1007907728892] [PMID: 9334900]
[199]
Li, J.; Liu, H.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal. Chim. Acta, 2007, 581(2), 333-342.
[http://dx.doi.org/10.1016/j.aca.2006.08.031] [PMID: 17386461]
[200]
Lücking, U.; Jautelat, R.; Krüger, M.; Brumby, T. Lienau, Schäfer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; Wengner, A.M.; Siemeister, G. The Lab Oddity Prevails: Discovery of Pan-CDK Inhibitor (R)-S-Cyclopropyl-S-(4-{4-{(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoro-methyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the treatment of cancer. ChemMedChem, 2013, 8, 1067-1085.
[http://dx.doi.org/10.1002/cmdc.201300096] [PMID: 23671017]
[201]
Ferreira, F.; Couto, W.F.; Fontana, V.; Taft, C.A.; Da Silva, C.H.T. Dynamics, density functional theory, pharmacophore modeling, molecular interaction fields and ADME/Tox investigation of novel bioactive compounds interacting with CDK2 surfaces. Curr. Phys. Chem., 2014, 4, 94-105.
[http://dx.doi.org/10.2174/18779468113036660017]
[202]
Xu, X.; Ren, J.; Ma, Y.; Liu, H.; Rong, Q.; Feng, Y.; Wang, Y.; Cheng, Y.; Ge, R.; Li, Z.; Bian, J. Discovery of cyanopyridine scaffold as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors through virtual screening and preliminary hit optimisation. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 250-263.
[http://dx.doi.org/10.1080/14756366.2018.1480614] [PMID: 30734612]
[203]
Al-Rashida, M.; Ejaz, S.A.; Ali, S.; Shaukat, A.; Hamayoun, M.; Ahmed, M.; Iqbal, J. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies. Bioorg. Med. Chem., 2015, 23(10), 2435-2444.
[http://dx.doi.org/10.1016/j.bmc.2015.03.054] [PMID: 25865133]
[204]
Singh, O.; Kakularam, K.R.; Reddanna, P.; Aparoy, P. Understanding the dual inhibition of COX-2 and carbonic anhydrase-II by celecoxib and CG100649 using density functional theory calculations and other molecular modelling approaches. Protein Pept. Lett., 2015, 22(10), 903-912.
[http://dx.doi.org/10.2174/0929866522666150622102131] [PMID: 26095375]
[205]
King, R.W.; Burgen, A.S. Sulphonamide complexes of human carbonic anhydrases. Ultraviolet difference spectroscopy. Biochim. Biophys. Acta, 1970, 207(2), 278-285.
[http://dx.doi.org/10.1016/0005-2795(70)90020-6] [PMID: 4988873]
[206]
Abbate, F.; Supuran, C.T.; Scozzafava, A.; Orioli, P.; Stubbs, M.T.; Klebe, G. Nonaromatic sulfonamide group as an ideal anchor for potent human carbonic anhydrase inhibitors: Role of hydrogen-bonding networks in ligand binding and drug design. J. Med. Chem., 2002, 45(17), 3583-3587.
[http://dx.doi.org/10.1021/jm011131t] [PMID: 12166931]
[207]
Pacchiano, F.; Carta, F.; McDonald, P.C.; Lou, Y.; Vullo, D.; Scozzafava, A.; Dedhar, S.; Supuran, C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem., 2011, 54(6), 1896-1902.
[http://dx.doi.org/10.1021/jm101541x] [PMID: 21361354]
[208]
Ivanova, J.; Balode, A.; Žalubovskis, R.; Leitans, J.; Kazaks, A.; Vullo, D.; Tars, K.; Supuran, C.T. 5-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: Solution and crystallographic investigations. Bioorg. Med. Chem., 2017, 25(3), 857-863.
[http://dx.doi.org/10.1016/j.bmc.2016.11.045] [PMID: 28024887]
[209]
Leitans, J.; Sprudza, A.; Tanc, M.; Vozny, I.; Zalubovskis, R.; Tars, K.; Supuran, C.T. 5-Substituted-(1,2,3-triazol-4-yl)thiophene-2-sulfonamides strongly inhibit human carbonic anhydrases I, II, IX and XII: Solution and X-ray crystallographic studies. Bioorg. Med. Chem., 2013, 21(17), 5130-5138.
[http://dx.doi.org/10.1016/j.bmc.2013.06.041] [PMID: 23859774]
[210]
Avvaru, B.S.; Wagner, J.M.; Maresca, A.; Scozzafava, A.; Robbins, A.H.; Supuran, C.T.; McKenna, R. Carbonic anhydrase inhibitors. The X-ray crystal structure of human isoform II in adduct with an adamantyl analogue of acetazolamide resides in a less utilized binding pocket than most hydrophobic inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(15), 4376-4381.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.082] [PMID: 20605094]
[211]
Ivanova, J.; Leitans, J.; Tanc, M.; Kazaks, A.; Zalubovskis, R.; Supuran, C.T.; Tars, K. X-ray crystallography-promoted drug design of carbonic anhydrase inhibitors. Chem. Commun. (Camb.), 2015, 51(33), 7108-7111.
[http://dx.doi.org/10.1039/C5CC01854D] [PMID: 25813715]
[212]
Grüneberg, S.; Wendt, B.; Klebe, G. Subnanomolar Inhibitors from computer screening: A model study using human carbonic anhydrase II. Angew. Chem. Int. Ed. Engl., 2001, 40(2), 389-393.
[http://dx.doi.org/10.1002/1521-3773(20010119)40:2<389:AID-ANIE389>3.0.CO;2-#] [PMID: 11180334]
[213]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[214]
Schmid, M.; Nogueira, E.S.; Monnard, F.W.; Ward, T.R.; Meuwly, M. Arylsulfonamides as inhibitors for carbonic anhydrase: Prediction & validation. Chem. Sci. (Camb.), 2012, 3, 690-700.
[http://dx.doi.org/10.1039/C1SC00628B]
[215]
Srivastava, P.; Srivastava, S.P.; Soni, A.K.; Singh, R.K. Comparative study of interaction of benzene sulfonamides with Zn-metal, Zn2+-ion and carbonic anhydrase (Zn2+-CA). J. Chem. Pharm. Res., 2012, 4, 3107-3115.
[216]
Esposito, E.X.; Baran, K.; Kelly, K.; Madura, J.D. Docking substrates to metalloenzymes. Mol. Simul., 2000, 24, 293-306.
[http://dx.doi.org/10.1080/08927020008022377]
[217]
Grüneberg, S.; Stubbs, M.T.; Klebe, G. Successful virtual screening for novel inhibitors of human carbonic anhydrase: Strategy and experimental confirmation. J. Med. Chem., 2002, 45(17), 3588-3602.
[http://dx.doi.org/10.1021/jm011112j] [PMID: 12166932]
[218]
Tuccinardi, T.; Nuti, E.; Ortore, G.; Supuran, C.T.; Rossello, A.; Martinelli, A. Analysis of human carbonic anhydrase II: Docking reliability and receptor-based 3D-QSAR study. J. Chem. Inf. Model., 2007, 47(2), 515-525.
[http://dx.doi.org/10.1021/ci600469w] [PMID: 17295464]
[219]
al-Rashida, M.; Hussain, S.; Hamayoun, M.; Altaf, A.; Iqbal, J. Sulfa drugs as inhibitors of carbonic anhydrase: New targets for the old drugs. BioMed Res. Int., 2014, 2014, 162928.
[http://dx.doi.org/10.1155/2014/162928] [PMID: 25538942]
[220]
Swenson, E.R. Safety of carbonic anhydrase inhibitors. Expert Opin. Drug Saf., 2014, 13(4), 459-472.
[http://dx.doi.org/10.1517/14740338.2014.897328] [PMID: 24611470]
[221]
Sağlık, B.N.; Çevik, U.A.; Osmaniye, D.; Levent, S.; Çavuşoğlu, B.K.; Demir, Y.; Ilgın, S.; Özkay, Y.; Koparal, A.S.; Beydemir, Ş.; Kaplancıklı, Z.A. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorg. Med. Chem., 2019, 91, 103153.
[http://dx.doi.org/10.1016/j.bioorg.2019.103153] [PMID: 31382057]
[222]
Weber, A.; Böhm, M.; Supuran, C.T.; Scozzafava, A.; Sotriffer, C.A.; Klebe, G. 3D QSAR selectivity analyses of carbonic anhydrase inhibitors: Insights for the design of isozyme selective inhibitors. J. Chem. Inf. Model., 2006, 46(6), 2737-2760.
[http://dx.doi.org/10.1021/ci600298r] [PMID: 17125213]
[223]
Thiry, A.; Masereel, B.; Dogné, J.M.; Supuran, C.T.; Wouters, J.; Michaux, C. Exploration of the binding mode of indanesulfonamides as selective inhibitors of human carbonic anhydrase type VII by targeting Lys 91. ChemMedChem, 2007, 2(9), 1273-1280.
[http://dx.doi.org/10.1002/cmdc.200700057] [PMID: 17607683]
[224]
Ghorab, M.M.; Alsaid, M.S.; Ceruso, M.; Nissan, Y.M.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis, molecular docking, cytotoxic and inhibition of the human carbonic anhydrase isoforms I, II, IX, XII with novel benzenesulfonamides incorporating pyrrole, pyrrolopyrimidine and fused pyrrolopyrimidine moieties. Bioorg. Med. Chem., 2014, 22(14), 3684-3695.
[http://dx.doi.org/10.1016/j.bmc.2014.05.009] [PMID: 24878360]
[225]
Thiry, A.; Ledecq, M.; Cecchi, A.; Dogné, J.M.; Wouters, J.; Supuran, C.T.; Masereel, B. Indanesulfonamides as carbonic anhydrase inhibitors. Toward structure-based design of selective inhibitors of the tumor-associated isozyme CA IX. J. Med. Chem., 2006, 49(9), 2743-2749.
[http://dx.doi.org/10.1021/jm0600287] [PMID: 16640335]
[226]
Alterio, V.; Vitale, R.M.; Monti, S.M.; Pedone, C.; Scozzafava, A.; Cecchi, A.; De Simone, G.; Supuran, C.T. Carbonic anhydrase inhibitors: X-ray and molecular modeling study for the interaction of a fluorescent antitumor sulfonamide with isozyme II and IX. J. Am. Chem. Soc., 2006, 128(25), 8329-8335.
[http://dx.doi.org/10.1021/ja061574s] [PMID: 16787097]
[227]
Tuccinardi, T.; Ortore, G.; Rossello, A.; Supuran, C.T.; Martinelli, A. Homology modeling and receptor-based 3D-QSAR study of carbonic anhydrase IX. J. Chem. Inf. Model., 2007, 47(6), 2253-2262.
[http://dx.doi.org/10.1021/ci700214j] [PMID: 17949069]
[228]
Bianco, G.; Meleddu, R.; Distinto, S.; Cottiglia, F.; Gaspari, M.; Melis, C.; Corona, A.; Angius, R.; Angeli, A.; Taverna, D.; Alcaro, S.; Leitans, J.; Kazaks, A.; Tars, K.; Supuran, C.T.; Maccioni, E. N-acylbenzenesulfonamide dihydro-1,3,4-oxadiazole hybrids: Seeking selectivity toward carbonic anhydrase isoforms. ACS Med. Chem. Lett., 2017, 8(8), 792-796.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00205] [PMID: 28835790]
[229]
Ferraroni, M.; Cornelio, B.; Sapi, J.; Supuran, C.T.; Scozzafava, A. Sulfonamide carbonic anhydrase inhibitors: Zinc coordination and tail effects influence inhibitory efficacy and selectivity for different isoforms. Inorg. Chim. Acta, 2018, 470, 128-132.
[http://dx.doi.org/10.1016/j.ica.2017.03.038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy