Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Therapeutic Application of Nanoparticles in Hepatitis Diseases: A Narrative Review (2011-2021)

Author(s): Tahereh Zadeh Mehrizi* and Mehdi Shafiee Ardestani

Volume 24, Issue 5, 2023

Published on: 23 September, 2022

Page: [611 - 632] Pages: 22

DOI: 10.2174/1389201023666220727141624

Price: $65

Abstract

Hepatitis, an inflammation of the liver parenchyma, is a viral disease. Addressing the challenges of hepatitis is very important. Therefore, using nanoparticles (NPs) in solving the problems of hepatitis diagnosis and treatment can be considered a promising approach.

To the best of our knowledge, there are few studies to review the most widely used and effective NPs in the field of hepatitis. A literature review was performed on the publications available on the subject matter from 2011 to 2021. The keywords in different combinations such as “hepatitis,” “nanobiosensor,” “nanoparticles,” “drug delivery,” “vaccination,” “HBV,” and “HCV” were searched in databases of PubMed and Scopus. The collected data were then analyzed.

Our review study for introducing the widely used metallic, polymeric and carbon-based NPs with more promising effects in the field of hepatitis virus infection shows that the most effective metallic NPs were gold nanoparticles for designing detection sensors. Also, among polymeric NPs, chitosan NPs seem to be the best nanocarriers in drug delivery and vaccination for hepatitis and among carbon-based NPs, carbon dots had more promising effects for biosensing of hepatitis.

According to the results, it is suggested that more studies could be conducted on these NPs for further studies on hepatitis as well as other viral infectious diseases.

Keywords: Hepatitis, nanobiosensor, nanoparticles, drug delivery, vaccination, HBV, HCV.

Graphical Abstract
[1]
Shevtsov, M.; Zhao, L.; Protzer, U.; Klundert, M. Applicability of metal nanoparticles in the detection and monitoring of hepatitis B virus infection. Viruses, 2017, 9(7), 193.
[http://dx.doi.org/10.3390/v9070193] [PMID: 28753992]
[2]
Li, W.; Wu, P.; Zhang, H.; Cai, C. Catalytic signal amplification of gold nanoparticles combining with conformation-switched hairpin DNA probe for hepatitis C virus quantification. Chem. Commun. (Camb.), 2012, 48(63), 7877-7879.
[http://dx.doi.org/10.1039/c2cc33635a] [PMID: 22751549]
[3]
Zadeh Mehrizi, T.; Mousavi Hosseini, K. An overview on the investigation of nanomaterials’ effect on plasma components: Immunoglobulins and coagulation factor VIII, 2010–2020 review. Nanoscale Adv., 2021, 3(13), 3730-3745.
[http://dx.doi.org/10.1039/D1NA00119A]
[4]
Mehrizi, T.Z. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: A recent review study. Nano, 2021, 16(8), 2130007.
[http://dx.doi.org/10.1142/S1793292021300073]
[5]
Mehrizi, T.Z. An overview of the latest applications of platelet-derived microparticles and nanoparticles in medical technology 2010-2020. Curr. Mol. Med., 2021.
[PMID: 34602037]
[6]
Zadeh Mehrizi, T.; Amini Kafiabad, S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: A review. J. Pharm. Pharmacol., 2022, 74(2), 179-190.
[PMID: 34244798]
[7]
Zadeh Mehrizi, T.; Eshghi, P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int. Nano Lett., 2021, 12(1), 15-45.
[8]
Crespo, D.S. The use of nanotechnology: Polyanionic carbosilane dendrimers and antivirals as novel preventive methods against HIV-1 and HCV. Universidad Autónoma de Madrid, 2016. Corpus ID: 192148368.
[9]
Abd Ellah, N.H.; Tawfeek, H.M.; John, J.; Hetta, H.F. Nanomedicine as a future therapeutic approach for hepatitis C virus. Nanomedicine (Lond.), 2019, 14(11), 1471-1491.
[http://dx.doi.org/10.2217/nnm-2018-0348] [PMID: 31166139]
[10]
Elberry, M.H.; Darwish, N.H.E.; Mousa, S.A. Hepatitis C virus management: Potential impact of nanotechnology. Virol. J., 2017, 14(1), 88.
[http://dx.doi.org/10.1186/s12985-017-0753-1] [PMID: 28464951]
[11]
Shawky, S.M.; Bald, D.; Azzazy, H.M.E. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin. Biochem., 2010, 43(13-14), 1163-1168.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.07.001] [PMID: 20627095]
[12]
Shahabi, J.; Shahmabadi, H.E.; Alavi, S.E.; Movahedi, F.; Esfahani, M.K.M.; Mehrizi, T.Z.; Akbarzadeh, A. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: An in vitro study. Indian J. Clin. Biochem., 2014, 29(3), 315-320.
[http://dx.doi.org/10.1007/s12291-013-0355-7] [PMID: 24966479]
[13]
Tang, D.; Tang, J.; Su, B.; Li, Q.; Chen, G. Electrochemical detection of hepatitis C virus with signal amplification using BamHI endonuclease and horseradish peroxidase-encapsulated nanogold hollow spheres. Chem. Commun. (Camb.), 2011, 47(33), 9477-9479.
[http://dx.doi.org/10.1039/c1cc13340c] [PMID: 21785766]
[14]
Niu, S.; Nan, C.; Qu, L.; Huang, X. A fluorescence assay based on GoldMag-CS nanoparticles for hepatitis B virus DNA. Anal. Lett., 2012, 45(4), 418-425.
[http://dx.doi.org/10.1080/00032719.2011.644737]
[15]
Sabouri, S.; Ghourchian, H.; Shourian, M.; Boutorabi, M. A gold nanoparticle-based immunosensor for the chemiluminescence detection of the hepatitis B surface antigen. Anal. Methods, 2014, 6(14), 5059-5066.
[http://dx.doi.org/10.1039/C4AY00461B]
[16]
Mashhadizadeh, M.H.; Pourtaghavi Talemi, R. A highly sensitive and selective hepatitis B DNA biosensor using gold nanoparticle electrodeposition on an Au electrode and mercaptobenzaldehyde. Anal. Methods, 2014, 6(22), 8956-8964.
[http://dx.doi.org/10.1039/C4AY01465K]
[17]
Ghafary, Z.; Hallaj, R.; Salimi, A.; Akhtari, K. A novel immunosensing method based on the capture and enzymatic release of sandwich-type covalently conjugated thionine–gold nanoparticles as a new fluorescence label used for ultrasensitive detection of hepatitis B virus surface antigen. ACS Omega, 2019, 4(13), 15323-15336.
[http://dx.doi.org/10.1021/acsomega.9b00713] [PMID: 31572831]
[18]
Pei, F.; Wang, P.; Ma, E.; Yang, Q.; Yu, H.; Gao, C.; Li, Y.; Liu, Q.; Dong, Y. A sandwich-type electrochemical immunosensor based on RhPt NDs/NH2-GS and Au NPs/PPy NS for quantitative detection hepatitis B surface antigen. Bioelectrochemistry, 2019, 126, 92-98.
[http://dx.doi.org/10.1016/j.bioelechem.2018.11.008] [PMID: 30530260]
[19]
Liang, R.; Chen, Y.; Qiu, J. A sensitive amperometric immunosensor for hepatitis B surface antigen based on biocompatible redox-active chitosan–toluidine blue/gold nanoparticles composite film. Anal. Methods, 2011, 3(6), 1338-1343.
[http://dx.doi.org/10.1039/c0ay00774a]
[20]
Ahangar, L.E.; Mehrgardi, M.A. Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform. Bioelectrochemistry, 2017, 117, 83-88.
[http://dx.doi.org/10.1016/j.bioelechem.2017.06.006] [PMID: 28645004]
[21]
Qiu, J.D.; Huang, H.; Liang, R.P. Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly(allylamine)-branched ferrocene and gold nanoparticles. Mikrochim. Acta, 2011, 174(1-2), 97-105.
[http://dx.doi.org/10.1007/s00604-011-0585-4]
[22]
Augkarawaritsawong, S.; Srisurapanon, S.; Wachiralurpan, S.; Areekit, S.; Chansiri, K. Comparatively rapid screening tests for diagnosis of hepatitis b virus infection using Loop-Mediated Isothermal Amplification (LAMP) paired with Lateral Flow Dipstick (LFD), Gold Nanoparticles (AuNPs) and real-time turbidimetry. Sci. Technol. Asia, 2019, 24(2), 45-57.
[23]
Wang, Y.; Mao, H.J.; Zang, G.Q.; Zhang, H.L.; Jin, Q.H.; Zhao, J.L.; Zhang, H.L.; Qing-Hui, J.; Jian-Long, Z. Detection of hepatitis B virus deoxyribonucleic acid based on gold nanoparticle probe chip. Chin. J. Anal. Chem., 2010, 38(8), 1133-1138.
[http://dx.doi.org/10.1016/S1872-2040(09)60062-1]
[24]
Kim, D.; Kim, Y.; Hong, S.; Kim, J.; Heo, N.; Lee, M.K.; Lee, S.; Kim, B.; Kim, I.; Huh, Y.; Choi, B. Development of lateral flow assay based on size-controlled gold nanoparticles for detection of hepatitis B surface antigen. Sensors, 2016, 16(12), 2154.
[http://dx.doi.org/10.3390/s16122154] [PMID: 27999291]
[25]
Huang, K.J.; Li, J.; Liu, Y.M.; Cao, X.; Yu, S.; Yu, M. Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a nafioncysteine conjugate. Mikrochim. Acta, 2012, 177(3-4), 419-426.
[http://dx.doi.org/10.1007/s00604-012-0805-6]
[26]
De La Escosura-Muñiz, A.; Maltez-Da Costa, M.; Sánchez-Espinel, C.; Díaz-Freitas, B.; Fernández-Suarez, J.; González-Fernández, Á.; Merkoçi, A. Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens. Bioelectron., 2010, 26(4), 1710-1714.
[http://dx.doi.org/10.1016/j.bios.2010.07.069] [PMID: 20724135]
[27]
Wang, X.; Li, Y.; Wang, H.; Fu, Q.; Peng, J.; Wang, Y.; Du, J.; Zhou, Y.; Zhan, L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron., 2010, 26(2), 404-410.
[http://dx.doi.org/10.1016/j.bios.2010.07.121] [PMID: 20729056]
[28]
Xi, Z.; Gong, Q.; Wang, C.; Zheng, B. Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles. Sci. Rep., 2018, 8(1), 9444.
[http://dx.doi.org/10.1038/s41598-018-27792-5] [PMID: 29930331]
[29]
Chen, C.C.; Lai, Z.L.; Wang, G.J.; Wu, C.Y. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens. Bioelectron., 2016, 77, 603-608.
[http://dx.doi.org/10.1016/j.bios.2015.10.028] [PMID: 26479905]
[30]
Shourian, M.; Ghourchian, H.; Boutorabi, M. Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles. Anal. Chim. Acta, 2015, 895, 1-11.
[http://dx.doi.org/10.1016/j.aca.2015.07.013] [PMID: 26454455]
[31]
Moldoveanu, I.; Stefan-Van Staden, R.I.; Frederick Van Staden, J. Chitosan based diamond paste stochastic microsensors modified with gold nanoparticles detect hepatitis C virus core antigen. Electroanalysis, 2015, 27(8), 1842-1846.
[http://dx.doi.org/10.1002/elan.201500081]
[32]
Mohammed, A.S.; Nagarjuna, R.; Khaja, M.N.; Ganesan, R.; Ray Dutta, J. Effects of free patchy ends in ssDNA and dsDNA on gold nanoparticles in a colorimetric gene sensor for Hepatitis C virus RNA. Mikrochim. Acta, 2019, 186(8), 566.
[http://dx.doi.org/10.1007/s00604-019-3685-1] [PMID: 31338605]
[33]
Cheng, Y.H.; Tang, H.; Jiang, J.H. Enzyme mediated assembly of gold nanoparticles for ultrasensitive colorimetric detection of hepatitis C virus antibody. Anal. Methods, 2017, 9(25), 3777-3781.
[http://dx.doi.org/10.1039/C7AY01086A]
[34]
Shawky, S.M.; Awad, A.M.; Allam, W.; Alkordi, M.H.; ELKhamisy, S.F. Gold aggregating gold: A novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens. Bioelectron., 2017, 92, 349-356.
[http://dx.doi.org/10.1016/j.bios.2016.11.001] [PMID: 27836599]
[35]
Ma, C.; Xie, G.; Zhang, W.; Liang, M.; Liu, B.; Xiang, H. Label-free sandwich type of immunosensor for hepatitis C virus core antigen based on the use of gold nanoparticles on a nanostructured metal oxide surface. Mikrochim. Acta, 2012, 178(3-4), 331-340.
[http://dx.doi.org/10.1007/s00604-012-0842-1]
[36]
Liu, L.; Wang, X.; Ma, Q.; Lin, Z.; Chen, S.; Li, Y.; Lu, L.; Qu, H.; Su, X. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles. Anal. Chim. Acta, 2016, 916, 92-101.
[http://dx.doi.org/10.1016/j.aca.2016.02.024] [PMID: 27016443]
[37]
Liu, S.; Wu, P.; Li, W.; Zhang, H.; Cai, C. Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype 1b based on specific endonuclease combined with gold nanoparticles signal amplification. Anal. Chem., 2011, 83(12), 4752-4758.
[http://dx.doi.org/10.1021/ac200624f] [PMID: 21553883]
[38]
Biasotto, G.; Costa, J.P.C.; Costa, P.I.; Zaghete, M.A. ZnO nanorods-gold nanoparticle-based biosensor for detecting hepatitis C. Appl. Phys., A Mater. Sci. Process., 2019, 125(12), 821.
[http://dx.doi.org/10.1007/s00339-019-3128-1]
[39]
Chen, R.; Hu, Y.; Chen, M.; An, J.; Lyu, Y.; Liu, Y.; Li, D. Naked-eye detection of hepatitis B surface antigen using gold nanoparticles aggregation and catalase-functionalized polystyrene nanospheres. ACS Omega, 2021, 6(14), 9828-9833.
[http://dx.doi.org/10.1021/acsomega.1c00507] [PMID: 33869962]
[40]
Wang, Z.; Liu, H.; Yang, S.H.; Wang, T.; Liu, C.; Cao, Y.C. Nanoparticle-based artificial RNA silencing machinery for antiviral therapy. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12387-12392.
[http://dx.doi.org/10.1073/pnas.1207766109] [PMID: 22802676]
[41]
Rani, D.; Nayak, B.; Srivastava, S. Immunogenicity of gold nanoparticle-based truncated ORF2 vaccine in mice against hepatitis E virus. 3 Biotech, 2021, 11, 49.
[42]
Chen, J.; Chen, Q.; Gao, C.; Zhang, M.; Qin, B.; Qiu, H. A SiO 2 NP–DNA/silver nanocluster sandwich structure-enhanced fluorescence polarization biosensor for amplified detection of hepatitis B virus DNA. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(6), 964-967.
[http://dx.doi.org/10.1039/C4TB01875C] [PMID: 32261974]
[43]
Qu, F.; Liu, Y.; Kong, R.; You, J. A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: Application to aptamer-based determination of hepatitis B virus and of dopamine. Mikrochim. Acta, 2017, 184(11), 4417-4424.
[http://dx.doi.org/10.1007/s00604-017-2486-7]
[44]
Jin, F.; Li, H.; Xu, D. Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification. Anal. Chim. Acta, 2019, 1077, 297-304.
[http://dx.doi.org/10.1016/j.aca.2019.05.066] [PMID: 31307722]
[45]
Liu, Z.C.; Zhang, L.; Zhang, Y.M.; Liang, R.P.; Qiu, J.D. Exonuclease III-assisted recycling amplification detection of hepatitis B virus DNA by DNA-scaffolded silver nanoclusters probe. Sens. Actuators B Chem., 2014, 205, 219-226.
[http://dx.doi.org/10.1016/j.snb.2014.08.079]
[46]
Valipour, A.; Roushani, M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens. Bioelectron., 2017, 89(Pt 2), 946-951.
[http://dx.doi.org/10.1016/j.bios.2016.09.086] [PMID: 27818057]
[47]
Shady, N.H.; Khattab, A.R.; Ahmed, S.; Liu, M.; Quinn, R.J.; Fouad, M.A.; Kamel, M.S.; Muhsinah, A.B.; Krischke, M.; Mueller, M.J.; Abdelmohsen, U.R. Hepatitis C virus NS3 protease and helicase inhibitors from red sea sponge (Amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. Int. J. Nanomed., 2020, 15, 3377-3389.
[http://dx.doi.org/10.2147/IJN.S233766] [PMID: 32494136]
[48]
Oh, K.; Choi, Y.S.; Yoon, H.Y.; Park, N.; Kim, J.; Kim, Y.K. Immunochromatographic assay of hepatitis B surface antigen using magnetic nanoparticles as signal materials. IEEE Trans. Magn., 2014, 50(11), 1-4.
[http://dx.doi.org/10.1109/TMAG.2014.2324613]
[49]
Mashhadizadeh, M.H.; Talemi, R.P. Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor. Mater. Sci. Eng. C, 2016, 59, 773-781.
[http://dx.doi.org/10.1016/j.msec.2015.10.082] [PMID: 26652432]
[50]
Nourani, S.; Ghourchian, H.; Boutorabi, S.M. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Anal. Biochem., 2013, 441(1), 1-7.
[http://dx.doi.org/10.1016/j.ab.2013.06.011] [PMID: 23831477]
[51]
Vaculovicova, M.; Smerkova, K.; Sedlacek, J.; Vyslouzil, J.; Hubalek, J.; Kizek, R.; Adam, V. Integrated chip electrophoresis and magnetic particle isolation used for detection of hepatitis B virus oligonucleotides. Electrophoresis, 2013, 34(11), 1548-1554.
[http://dx.doi.org/10.1002/elps.201200697] [PMID: 23483558]
[52]
Xi, Z.; Huang, R.; Li, Z.; He, N.; Wang, T.; Su, E.; Deng, Y. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Appl. Mater. Interfaces, 2015, 7(21), 11215-11223.
[http://dx.doi.org/10.1021/acsami.5b01180] [PMID: 25970703]
[53]
Shen, G.; Zhang, Y. Highly sensitive electrochemical stripping detection of hepatitis B surface antigen based on copper-enhanced gold nanoparticle tags and magnetic nanoparticles. Anal. Chim. Acta, 2010, 674(1), 27-31.
[http://dx.doi.org/10.1016/j.aca.2010.06.007] [PMID: 20638495]
[54]
Delaviz, N.; Gill, P.; Ajami, A.; Aarabi, M. Aptamer-conjugated magnetic nanoparticles for the efficient removal of HCV particles from human plasma samples. RSC Advances, 2015, 5(97), 79433-79439.
[http://dx.doi.org/10.1039/C5RA12209K]
[55]
Shawky, S.M.; Guirgis, B.S.; Azzazy, H.M.E. Detection of unamplified HCV RNA in serum using a novel two metallic nanoparticle platform. Clin. Chem. Lab. Med., 2014, 52(4), 565-572.
[http://dx.doi.org/10.1515/cclm-2013-0521] [PMID: 24158422]
[56]
Ketabi, K.; Aryan, E.; Darroudi, M.; Farsiani, H.; Hooshyar, A.; Damavandi, M.S.; Gholoobi, A.; Naseri, S.; Abdoli, M.; Meshkat, Z. Comparison of PEG interferon loaded and non-loaded iron oxide nanoparticles on hepatitis C virus replication in cell culture system. Iran. J. Virol., 2017, 11, 19-26.
[57]
Ryoo, S.R.; Jang, H.; Kim, K.S.; Lee, B.; Kim, K.B.; Kim, Y.K.; Yeo, W.S.; Lee, Y.; Kim, D.E.; Min, D.H. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials, 2012, 33(9), 2754-2761.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.015] [PMID: 22206595]
[58]
Shakibaie, M.; Jafari, M.; Ameri, A.; Rahimi, H.R.; Forootanfar, H. Biosynthesis and physicochemical characterization, and cytotoxic evaluation of selenium nanoparticles produced by streptomyces lavendulae FSHJ9 against MCF-7 cell line. Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Rafsanjan, 2018, 17, 625-638.
[59]
Fang, X.; Wu, X.; Li, C.; Zhou, B.; Chen, X.; Chen, T.; Yang, F. Targeting selenium nanoparticles combined with baicalin to treat HBV-infected liver cancer. RSC Advances, 2017, 7(14), 8178-8185.
[http://dx.doi.org/10.1039/C6RA28229F]
[60]
Mahdavi, M.; Mavandadnejad, F.; Yazdi, M.H.; Faghfuri, E.; Hashemi, H.; Homayouni-Oreh, S.; Farhoudi, R.; Shahverdi, A.R. Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model. J. Infect. Public Health, 2017, 10(1), 102-109.
[http://dx.doi.org/10.1016/j.jiph.2016.02.006] [PMID: 27026241]
[61]
Cheng, Z.; Zhi, X.; Sun, G.; Guo, W.; Huang, Y.; Sun, W.; Tian, X.; Zhao, F.; Hu, K. Sodium selenite suppresses hepatitis B virus transcription and replication in human hepatoma cell lines. J. Med. Virol., 2016, 88(4), 653-663.
[http://dx.doi.org/10.1002/jmv.24366] [PMID: 26331371]
[62]
Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine, 2017, 13(1), 219-230.
[http://dx.doi.org/10.1016/j.nano.2016.08.016] [PMID: 27575283]
[63]
Yang, W.; Zhang, C.G.; Qu, H.Y.; Yang, H.H.; Xu, J.G. Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal. Chim. Acta, 2004, 503(2), 163-169.
[http://dx.doi.org/10.1016/j.aca.2003.10.045]
[64]
Xu, Y.; Li, Q. Multiple fluorescent labeling of silica nanoparticles with lanthanide chelates for highly sensitive time-resolved immunofluorometric assays. Clin. Chem., 2007, 53(8), 1503-1510.
[http://dx.doi.org/10.1373/clinchem.2006.078485] [PMID: 17556649]
[65]
Cha, B.H.; Lee, S.M.; Park, J.C.; Hwang, K.S.; Kim, S.K.; Lee, Y.S.; Ju, B.K.; Kim, T.S. Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens. Bioelectron., 2009, 25(1), 130-135.
[http://dx.doi.org/10.1016/j.bios.2009.06.015] [PMID: 19616931]
[66]
Mehrdad Vahdati, B.; Rashidi, A.; Naderi-Manesh, H.; Rasekh, B. Synthesis of carbon nanomaterials based on graphene quantum dots and improving their surface properties via chemical modification. Modares J. Biotechnol., 2020, 11, 71-76.
[67]
Wu, Y.; Zeng, L.; Xiong, Y.; Leng, Y.; Wang, H.; Xiong, Y. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of hepatitis B. Talanta, 2018, 181, 258-264.
[http://dx.doi.org/10.1016/j.talanta.2018.01.026] [PMID: 29426510]
[68]
Hu, Y.; Huang, Y.; Wang, Y.; Li, C.; Wong, W.; Ye, X.; Sun, D. A photoelectrochemical immunosensor based on gold nanoparticles/ZnAgInS quaternary quantum dots for the high-performance determination of hepatitis B virus surface antigen. Anal. Chim. Acta, 2018, 1035, 136-145.
[http://dx.doi.org/10.1016/j.aca.2018.06.019] [PMID: 30224131]
[69]
Huang, S.; Qiu, H.; Xiao, Q.; Huang, C.; Su, W.; Hu, B. A simple QD-FRET bioprobe for sensitive and specific detection of hepatitis B virus DNA. J. Fluoresc., 2013, 23(5), 1089-1098.
[http://dx.doi.org/10.1007/s10895-013-1238-2] [PMID: 23722996]
[70]
Shen, J.; Zhou, Y.; Fu, F.; Xu, H.; Lv, J.; Xiong, Y.; Wang, A. Immunochromatographic assay for quantitative and sensitive detection of hepatitis B virus surface antigen using highly luminescent quantum dot-beads. Talanta, 2015, 142, 145-149.
[http://dx.doi.org/10.1016/j.talanta.2015.04.058] [PMID: 26003704]
[71]
Roh, C.; Lee, H.Y.; Kim, S.E.; Jo, S.K. Quantum-dots-based detection of Hepatitis C Virus (HCV) NS3 using RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2010, 85(8), 1130-1134.
[http://dx.doi.org/10.1002/jctb.2409]
[72]
Ghanbari, K.; Roushani, M.; Azadbakht, A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal. Biochem., 2017, 534, 64-69.
[http://dx.doi.org/10.1016/j.ab.2017.07.016] [PMID: 28728900]
[73]
Roh, C. A facile inhibitor screening of hepatitis C virus NS3 protein using nanoparticle-based RNA. Biosensors, 2012, 2(4), 427-432.
[http://dx.doi.org/10.3390/bios2040427] [PMID: 25586033]
[74]
Wang, S.; Li, L.; Jin, H.; Yang, T.; Bao, W.; Huang, S.; Wang, J. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens. Bioelectron., 2013, 41, 205-210.
[http://dx.doi.org/10.1016/j.bios.2012.08.021] [PMID: 22947516]
[75]
Narang, J.; Singhal, C.; Malhotra, N.; Narang, S.; Pn, A.K.; Gupta, R.; Kansal, R.; Pundir, C.S. Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nano-composites. Biosens. Bioelectron., 2016, 86, 566-574.
[http://dx.doi.org/10.1016/j.bios.2016.07.013] [PMID: 27448547]
[76]
Abd Muain, M.F.; Cheo, K.H.; Omar, M.N.; Amir Hamzah, A.S.; Lim, H.N.; Salleh, A.B.; Tan, W.S.; Ahmad Tajudin, A. Gold nanoparticle-decorated reduced-graphene oxide targeting anti hepatitis B virus core antigen. Bioelectrochemistry, 2018, 122, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2018.04.004] [PMID: 29660648]
[77]
Walters, F; Rozhko, S; Buckley, D; Ahmadi, E; Ali, M; Tehrani, Z; Mitchell, J; Burwell, G; Liu, Y; Kazakova, O Real-time detection of hepatitis B surface antigen using a hybrid graphene-gold nanoparticle biosensor. 2D Materials, 2020, 7, 024009.
[78]
Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Advances, 2018, 8(4), 1820-1825.
[http://dx.doi.org/10.1039/C7RA11945C] [PMID: 35542626]
[79]
Mohsin, D.H.; Mashkour, M.S.; Fatemi, F. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of hepatitis B virus. Chem. Pap., 2021, 75(1), 279-295.
[http://dx.doi.org/10.1007/s11696-020-01292-1]
[80]
Liu, M.; Zheng, C.; Cui, M.; Zhang, X.; Yang, D.P.; Wang, X.; Cui, D. Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen. Mikrochim. Acta, 2018, 185(10), 458.
[http://dx.doi.org/10.1007/s00604-018-2989-x] [PMID: 30218157]
[81]
Ma, C.; Liang, M.; Wang, L.; Xiang, H.; Jiang, Y.; Li, Y.; Xie, G. MultisHRP-DNA-coated CMWNTs as signal labels for an ultrasensitive hepatitis C virus core antigen electrochemical immunosensor. Biosens. Bioelectron., 2013, 47, 467-474.
[http://dx.doi.org/10.1016/j.bios.2013.03.058] [PMID: 23624015]
[82]
Fan, J.; Yuan, L.; Liu, Q.; Tong, C.; Wang, W.; Xiao, F.; Liu, B.; Liu, X. An ultrasensitive and simple assay for the Hepatitis C virus using a reduced graphene oxide-assisted hybridization chain reaction. Analyst (Lond.), 2019, 144(13), 3972-3979.
[http://dx.doi.org/10.1039/C9AN00179D] [PMID: 31140473]
[83]
Jiang, P.; Li, Y.; Ju, T.; Cheng, W.; Xu, J.; Han, K. Ultrasensitive detection of hepatitis C virus DNA subtypes based on cucurbituril and graphene oxide nano-composite. Chem. Res. Chin. Univ., 2020, 36(2), 307-312.
[http://dx.doi.org/10.1007/s40242-020-9111-8]
[84]
Kim, S.; Ryoo, S.R.; Na, H.K.; Kim, Y.K.; Choi, B.S.; Lee, Y.; Kim, D.E.; Min, D.H. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Commun. (Camb.), 2013, 49(74), 8241-8243.
[http://dx.doi.org/10.1039/c3cc43368d] [PMID: 23926597]
[85]
Fatemeh, D.R.A.; Ebrahimi Shahmabadi, H.; Abedi, A.; Alavi, S.E.; Movahedi, F.; Koohi Moftakhari Esfahani, M.; Zadeh Mehrizi, T.; Akbarzadeh, A. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: Last status. Indian J. Clin. Biochem., 2014, 29(3), 333-338.
[http://dx.doi.org/10.1007/s12291-013-0364-6] [PMID: 24966482]
[86]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[87]
Syamila, N.; Syahir, A.; Ikeno, S.; Tan, W.S.; Ahmad, H.; Ahmad Tajudin, A. Interaction study of peptide-PAMAM as potential bionanogate for detecting anti-hepatitis B surface antigen. Colloids Surf. B Biointerfaces, 2020, 185, 110623.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110623] [PMID: 31735420]
[88]
Babamiri, B.; Hallaj, R.; Salimi, A. Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe@CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads. Sens. Actuators B Chem., 2018, 254, 551-560.
[http://dx.doi.org/10.1016/j.snb.2017.07.016]
[89]
Babamiri, B.; Hallaj, R.; Salimi, A. Solid surface fluorescence immunosensor for ultrasensitive detection of hepatitis B virus surface antigen using PAMAM/CdTe@CdS QDs nanoclusters. Methods Appl. Fluoresc., 2018, 6(3), 035013.
[http://dx.doi.org/10.1088/2050-6120/aac8f7] [PMID: 29848807]
[90]
Khosravy, M.S.; Shafiee Ardestani, M.; Ahangari Cohan, R.; Doroud, D.; Amini, S.; Momen, S.B.; Atyabi, S.M.; Heydari, H.; Vahabpour, R. Design, synthesis, physicochemical and immunological characterization of dendrimer-HBsAg conjugate. Vaccine Rep., 2014, 1(2), 24-28.
[http://dx.doi.org/10.18869/acadpub.vacres.1.2.24]
[91]
Javadi, F.; Rahimi, P.; Modarresi, M.H.; Bolhassani, A.; Shafiee Ardestani, M.; Sadat, S.M. G2 dendrimer as a carrier can enhance immune responses against hcv-ns3 protein in balb/c mice. Avicenna J. Med. Biotechnol., 2019, 11(4), 292-298.
[PMID: 31908737]
[92]
San Anselmo, M.; Lancelot, A.; Egido, J.E.; Clavería-Gimeno, R.; Casanova, Á.; Serrano, J.L.; Hernández-Ainsa, S.; Abian, O.; Sierra, T. Janus dendrimers to assess the Anti-HCV activity of molecules in cell-assays. Pharmaceutics, 2020, 12(11), 1062.
[http://dx.doi.org/10.3390/pharmaceutics12111062] [PMID: 33171841]
[93]
Bayat, M.; Taherpour, A.A.; Elahi, S.M. Molecular interactions between PAMAM dendrimer and some medicines that suppress the growth of hepatitis virus (Adefovir, Entecavir, Telbivudine, Lamivudine, Tenofovir): A theoretical study. Int. Nano Lett., 2019, 9(3), 231-244.
[http://dx.doi.org/10.1007/s40089-019-0277-3]
[94]
Lakshminarayanan, A.; Reddy, B.U.; Raghav, N.; Ravi, V.K.; Kumar, A.; Maiti, P.K.; Sood, A.K.; Jayaraman, N.; Das, S. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. Nanoscale, 2015, 7(40), 16921-16931.
[http://dx.doi.org/10.1039/C5NR02898A] [PMID: 26411288]
[95]
Sepúlveda-Crespo, D.; Jiménez, J.L.; Gómez, R.; De La Mata, F.J.; Majano, P.L.; Muñoz-Fernández, M. Á.; Gastaminza, P. Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. Nanomedicine, 2017, 13(1), 49-58.
[http://dx.doi.org/10.1016/j.nano.2016.08.018] [PMID: 27562210]
[96]
Khanmohammadi, M.; Elmizadeh, H.; Hassanzadeh, G.; Nassiri-Asl, M. Preparation and optimization of chitosan nanoparticles as carrier of anti-Alzheimer tacrine drug and size estimation of nanoparticles by chemometrics. J. Inflamm. Dis., 2013, 17, 10-16.
[97]
Liang, M.; Wang, L.; Ma, C.; Zhang, M.; Xie, G. Sandwich immunoassay for hepatitis C virus non-structural 5A protein using a glassy carbon electrode modified with an Au-MoO3/chitosan nanocomposite. Anal. Lett., 2013, 46(8), 1241-1254.
[http://dx.doi.org/10.1080/00032719.2012.755684]
[98]
AbdelAllah, N.H.; Abdeltawab, N.F.; Boseila, A.A.; Amin, M.A. Chitosan and sodium alginate combinations are alternative, efficient, and safe natural adjuvant systems for hepatitis B vaccine in mouse model. Evid. Based Complement. Alternat. Med., 2016, 2016, 7659684.
[http://dx.doi.org/10.1155/2016/7659684]
[99]
Prego, C.; Paolicelli, P.; Díaz, B.; Vicente, S.; Sánchez, A.; González-Fernández, Á.; Alonso, M.J. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28(14), 2607-2614.
[http://dx.doi.org/10.1016/j.vaccine.2010.01.011] [PMID: 20096389]
[100]
Fakharzadeh, S.; Kalanaky, S.; Hafizi, M.; Goya, M.M.; Masoumi, Z.; Namaki, S.; Shakeri, N.; Abbasi, M.; Mahdavi, M.; Nazaran, M.H. The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine. Vaccine, 2013, 31(22), 2591-2597.
[http://dx.doi.org/10.1016/j.vaccine.2013.03.030] [PMID: 23583463]
[101]
Bento, D.; Jesus, S.; Lebre, F.; Gonçalves, T.; Borges, O. Chitosan plus compound 48/80: Formulation and preliminary evaluation as a hepatitis B vaccine adjuvant. Pharmaceutics, 2019, 11(2), 72.
[http://dx.doi.org/10.3390/pharmaceutics11020072] [PMID: 30744102]
[102]
Zeng, P.; Xu, Y.; Zeng, C.; Ren, H.; Peng, M. Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int. J. Pharm., 2011, 415(1-2), 259-266.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.053] [PMID: 21645597]
[103]
Soares, E.; Jesus, S.; Borges, O. Oral hepatitis B vaccine: Chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int. J. Pharm., 2018, 535(1-2), 261-271.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.009] [PMID: 29133207]
[104]
Farhadian, A.; Dounighi, N.M.; Avadi, M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum. Vaccin. Immunother., 2015, 11(12), 2811-2818.
[http://dx.doi.org/10.1080/21645515.2015.1053663] [PMID: 26158754]
[105]
Lebre, F.; Borchard, G.; Faneca, H.; Pedroso de Lima, M.C.; Borges, O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol. Pharm., 2016, 13(2), 472-482.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00707] [PMID: 26651533]
[106]
Huang, S.T.; Du, Y.Z.; Yuan, H.; Zhang, X.G.; Miao, J.; Cui, F.D.; Hu, F.Q. Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr. Polym., 2011, 83(4), 1715-1722.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.032]
[107]
Mishra, N.; Khatri, K.; Gupta, M.; Vyas, S.P. Development and characterization of LTA-appended chitosan nanoparticles for mucosal immunization against hepatitis B. Artif. Cells Nanomed. Biotechnol., 2014, 42(4), 245-255.
[http://dx.doi.org/10.3109/21691401.2013.809726] [PMID: 23815286]
[108]
Saraf, S.; Jain, S.; Sahoo, R.N.; Mallick, S. Lipopolysaccharide derived alginate coated Hepatitis B antigen loaded chitosan nanoparticles for oral mucosal immunization. Int. J. Biol. Macromol., 2020, 154, 466-476.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.124] [PMID: 32194106]
[109]
Miao, J.; Zhang, X.; Hong, Y.; Rao, Y.; Li, Q.; Xie, X.; Wo, J.; Li, M. Inhibition on hepatitis B virus e-gene expression of 10–23 DNAzyme delivered by novel chitosan oligosaccharide–stearic acid micelles. Carbohydr. Polym., 2012, 87(2), 1342-1347.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.022]
[110]
Jesus, S.; Soares, E.; Borchard, G.; Borges, O. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine (Lond.), 2017, 12(19), 2335-2348.
[http://dx.doi.org/10.2217/nnm-2017-0138] [PMID: 28868964]
[111]
Soares, E.; Jesus, S.; Borges, O. Chitosan:β-glucan particles as a new adjuvant for the hepatitis B antigen. Eur. J. Pharm. Biopharm., 2018, 131, 33-43.
[http://dx.doi.org/10.1016/j.ejpb.2018.07.018] [PMID: 30048745]
[112]
Lebre, F.; Bento, D.; Jesus, S.; Borges, O. Chitosan-based nanoparticles as a hepatitis B antigen delivery system. Methods Enzymol., 2012, 509, 127-142.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00007-1] [PMID: 22568904]
[113]
Mehrabi, M.; Dounighi, N.M.; Rezayat Sorkhabadi, S.M.; Doroud, D.; Amani, A.; Khoobi, M.; Ajdary, S.; Pilehvar-Soltanahmadi, Y. Development and physicochemical, toxicity and immunogenicity assessments of recombinant Hepatitis B Surface Antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: As a novel vaccine delivery system and adjuvant. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 230-240.
[http://dx.doi.org/10.1080/21691401.2017.1417868] [PMID: 29260901]
[114]
Premaletha, K.; Licy, C.D.; Jose, S.; Saraladevi, A.; Shirwaikar, A.; Shirwaikar, A. Formulation, characterization and optimization of Hepatitis B surface Antigen (HBsAg)-loaded chitosan microspheres for oral delivery. Pharm. Dev. Technol., 2012, 17(2), 251-258.
[http://dx.doi.org/10.3109/10837450.2010.535824] [PMID: 21108582]
[115]
Tafaghodi, M.; Saluja, V.; Kersten, G.F.A.; Kraan, H.; Slütter, B.; Amorij, J.P.; Jiskoot, W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: Impact of formulation on physicochemical and immunological characteristics. Vaccine, 2012, 30(36), 5341-5348.
[http://dx.doi.org/10.1016/j.vaccine.2012.06.035] [PMID: 22749834]
[116]
Pawar, D.; Jaganathan, K.S. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: Enhancement of mucosal and systemic immune response. Drug Deliv., 2016, 23(1), 185-194.
[http://dx.doi.org/10.3109/10717544.2014.908427] [PMID: 24825494]
[117]
Subbiah, R.; Ramalingam, P.; Ramasundaram, S.; Kim, D.Y.; Park, K.; Ramasamy, M.K.; Choi, K.J. N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr. Polym., 2012, 89(4), 1289-1297.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.056] [PMID: 24750944]
[118]
Shrestha, B.; Rath, J.P. Poly (vinyl alcohol)-coated chitosan microparticles act as an effective oral vaccine delivery system for hepatitis B vaccine in rat model. IET Nanobiotechnol., 2014, 8, 201-207.
[119]
Loutfy, S.A.; Elberry, M.H.; Farroh, K.Y.; Mohamed, H.T. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. Int. J. Nanomed., 2020, 15, 2699-2715.
[120]
Loutfy, S.A.; Abdelhady, H.G.; Elberry, M.H.; Hamed, A.R.; Ahmed, H.; Hasanin, M.; Faraag, A.H.I.; Mohamed, E-C.B.; Dardeer, A.E.; Dawood, R. In vitro evaluation of cytotoxic and anti-HCV-4 properties of sofosbuvir encapsulated chitosan nanoparticles. arXivpreprint arXiv:2009.06041, 2020.
[121]
El-Shafai, N.M.; Shawky, S.; El-Mehasseb, I.M.; El-Kemary, M.A. Sandwich nanohybrid of chitosan-polyvinyl alcohol for water treatment and Sofosbuvir drug delivery for anti-Hepatitis C Virus (HCV). Int. J. Biol. Macromol., 2021, 190, 927-939.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.200] [PMID: 34480910]
[122]
Tu, H.; Lin, K.; Lun, Y.; Yu, L. Magnetic bead/capture DNA/glucose-loaded nanoliposomes for amplifying the glucometer signal in the rapid screening of hepatitis C virus RNA. Anal. Bioanal. Chem., 2018, 410(16), 3661-3669.
[http://dx.doi.org/10.1007/s00216-018-1055-1] [PMID: 29666912]
[123]
Duan, L.; Yan, Y.; Liu, J.; Wang, B.; Li, P.; Hu, Q.; Chen, W. Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C. Sci. Rep., 2016, 6(1), 24867.
[http://dx.doi.org/10.1038/srep24867] [PMID: 27113197]
[124]
Uhl, P.; Helm, F.; Hofhaus, G.; Brings, S.; Kaufman, C.; Leotta, K.; Urban, S.; Haberkorn, U.; Mier, W.; Fricker, G. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B. Eur. J. Pharm. Biopharm., 2016, 103, 159-166.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.031] [PMID: 27049970]
[125]
Feng, Z.; Guo, J.; Liu, X.; Song, H.; Zhang, C.; Huang, P.; Dong, A.; Kong, D.; Wang, W. Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials, 2020, 255, 120210.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120210] [PMID: 32592871]
[126]
Somiya, M.; Sasaki, Y.; Matsuzaki, T.; Liu, Q.; Iijima, M.; Yoshimoto, N.; Niimi, T.; Maturana, A.D.; Kuroda, S. Intracellular trafficking of bio-nanocapsule–liposome complex: Identification of fusogenic activity in the pre-S1 region of hepatitis B virus surface antigen L protein. J. Control. Release, 2015, 212, 10-18.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.012] [PMID: 26074149]
[127]
Wang, Y.J.; Gao, Y.Q.; Ni, B.B.; Li, C.; Wen, T.J.; Wang, Y.L.; Wang, J.; Li, C.L. Novel cationic liposome loading siRNA inhibits the expression of hepatitis B virus HBx gene. Yao Xue Xue Bao, 2014, 49(9), 1326-1330.
[PMID: 25518334]
[128]
Pollock, S.; Nichita, N.B.; Böhmer, A.; Radulescu, C.; Dwek, R.A.; Zitzmann, N. Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells. Proc. Natl. Acad. Sci. USA, 2010, 107(40), 17176-17181.
[http://dx.doi.org/10.1073/pnas.1009445107] [PMID: 20855621]
[129]
Moon, J.S.; Lee, S.H.; Han, S.H.; Kim, E.J.; Cho, H.; Lee, W.; Kim, M.K.; Kim, T.E.; Park, H.J.; Rhee, J.K.; Kim, S.J.; Cho, S.W.; Han, S.H.; Oh, J.W. Inhibition of hepatitis C virus in mouse models by lipidoid nanoparticle-mediated systemic delivery of siRNA against PRK2. Nanomedicine, 2016, 12(6), 1489-1498.
[http://dx.doi.org/10.1016/j.nano.2016.02.015] [PMID: 27013134]
[130]
Chandra, P.K.; Kundu, A.K.; Hazari, S.; Chandra, S.; Bao, L.; Ooms, T.; Morris, G.F.; Wu, T.; Mandal, T.K.; Dash, S. Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes. Mol. Ther., 2012, 20(9), 1724-1736.
[http://dx.doi.org/10.1038/mt.2012.107] [PMID: 22617108]
[131]
Dallas, A.; Ilves, H.; Shorenstein, J.; Judge, A.; Spitler, R.; Contag, C.; Wong, S.P.; Harbottle, R.P.; MacLachlan, I.; Johnston, B.H. Minimal-length synthetic shRNAs formulated with lipid nanoparticles are potent inhibitors of hepatitis C virus ires-linked gene expression in mice. Mol. Ther. Nucleic Acids, 2013, 2, e123.
[http://dx.doi.org/10.1038/mtna.2013.50] [PMID: 24045712]
[132]
Torrecilla, J.; del Pozo-Rodríguez, A.; Solinís, M.; Apaolaza, P.S.; Berzal-Herranz, B.; Romero-López, C.; Berzal-Herranz, A.; Rodríguez-Gascón, A. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the Internal Ribosome Entry Site (IRES). Colloids Surf. B Biointerfaces, 2016, 146, 808-817.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.026] [PMID: 27451369]
[133]
Torrecilla, J.; del Pozo-Rodríguez, A.; Apaolaza, P.S.; Solinís, M. Á.; Rodríguez-Gascón, A. Solid lipid nanoparticles as non-viral vector for the treatment of chronic hepatitis C by RNA interference. Int. J. Pharm., 2015, 479(1), 181-188.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.047] [PMID: 25542984]
[134]
Suzuki, Y.; Onuma, H.; Sato, R.; Sato, Y.; Hashiba, A.; Maeki, M.; Tokeshi, M.; Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K.; Harashima, H. Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. J. Control. Release, 2021, 330, 61-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.013] [PMID: 33333121]
[135]
Thomas, C.; Rawat, A.; Hope-Weeks, L.; Ahsan, F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm., 2011, 8(2), 405-415.
[http://dx.doi.org/10.1021/mp100255c] [PMID: 21189035]
[136]
Zheng, X.; Huang, Y.; Zheng, C.; Dong, S.; Liang, W. Alginate-chitosan-PLGA composite microspheres enabling single-shot hepatitis B vaccination. AAPS J., 2010, 12(4), 519-524.
[http://dx.doi.org/10.1208/s12248-010-9213-1] [PMID: 20577912]
[137]
Qiu, S.; Wei, Q.; Liang, Z.; Ma, G.; Wang, L.; An, W.; Ma, X.; Fang, X.; He, P.; Li, H.; Hu, Z. Biodegradable polylactide microspheres enhance specific immune response induced by hepatitis B surface antigen. Hum. Vaccin. Immunother., 2014, 10(8), 2350-2356.
[http://dx.doi.org/10.4161/hv.29559] [PMID: 25424942]
[138]
Dai, X.; He, J.; Zhang, R.; Wu, G.; Xiong, F.; Zhao, B. Co-delivery of polyinosinic:polycytidylic acid and flagellin by poly(lactic-coglycolic acid) MPs synergistically enhances immune response elicited by intranasally delivered hepatitis B surface antigen. Int. J. Nanomed., 2017, 12, 6617-6632.
[http://dx.doi.org/10.2147/IJN.S146912] [PMID: 28924346]
[139]
Saini, V.; Jain, V.; Sudheesh, M.S.; Jaganathan, K.S.; Murthy, P.K.; Kohli, D.V. Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen. Int. J. Pharm., 2011, 408(1-2), 50-57.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.045] [PMID: 21291968]
[140]
Eratalay, A.; Coşkun-Ari, F.F.; Öner, F.; Özcengīz, E. In vitro and in vivo evaluations of PLGA microsphere vaccine formulations containing pDNA coexpressing hepatitis B surface antigen and interleukin-2. J. Microencapsul., 2010, 27(1), 48-56.
[http://dx.doi.org/10.3109/02652040902937666] [PMID: 19545223]
[141]
Mishra, N.; Tiwari, S.; Vaidya, B.; Agrawal, G.P.; Vyas, S.P. Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J. Drug Target., 2011, 19(1), 67-78.
[http://dx.doi.org/10.3109/10611861003733946] [PMID: 20334603]
[142]
Zhu, J.; Qin, F.; Ji, Z.; Fei, W.; Tan, Z.; Hu, Y.; Zheng, C. Mannose-modified PLGA nanoparticles for sustained and targeted delivery in hepatitis B virus immunoprophylaxis. AAPS Pharm. Sci. Tech., 2020, 21(1), 13.
[http://dx.doi.org/10.1208/s12249-019-1526-5] [PMID: 31807947]
[143]
Dewangan, H.K.; Pandey, T.; Singh, S. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2033-2042.
[PMID: 29179600]
[144]
Jain, A.K.; Goyal, A.K.; Mishra, N.; Vaidya, B.; Mangal, S.; Vyas, S.P. PEG–PLA–PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int. J. Pharm., 2010, 387(1-2), 253-262.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.013] [PMID: 20005936]
[145]
Giri, N.; Tomar, P.; Karwasara, V.S.; Pandey, R.S.; Dixit, V.K. Targeted novel surface-modified nanoparticles for interferon delivery for the treatment of hepatitis B. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(11), 877-883.
[http://dx.doi.org/10.1093/abbs/gmr082] [PMID: 21914636]
[146]
Ayoub, M.M.; Elantouny, N.G.; El-Nahas, H.M.; Ghazy, F.E.D.S. Injectable PLGA Adefovir microspheres; the way for long term therapy of chronic hepatitis-B. Eur. J. Pharm. Sci., 2018, 118, 24-31.
[http://dx.doi.org/10.1016/j.ejps.2018.03.016] [PMID: 29555501]
[147]
Roopngam, P.; Liu, K.; Mei, L.; Zheng, Y.; Zhu, X.; Tsai, H.; Huang, L. Hepatitis C virus E2 protein encapsulation into poly D, L-lactic-co-glycolide microspheres could induce mice cytotoxic T-cell response. Int. J. Nanomed., 2016, 11, 5361-5370.
[http://dx.doi.org/10.2147/IJN.S109081] [PMID: 27789948]
[148]
Hekmat, S.; Aslani, M.; Shafiee Ardestani, M.; Aghasadeghi, M.; Siadat, S.; Sadat, S.; Mahdavi, M.; Shahbazi, S.; Asgarhalvaee, F.; Ghahari, S.; Tohidi, F. Preparation and characterization of PLGA Nanoparticles containing recombinant core-NS3 Fusion protein of hepatitis C virus as a nano-vaccine candidate. Vaccine Rep., 2017, 4, 13-18.
[149]
Jyothi, K.R.; Beloor, J.; Jo, A.; Nguyen, M.N.; Choi, T.G.; Kim, JH.; Akter, S.; Lee, S-K.; Maeng, C.H.; Baik, H.H.; Kang, I.; Ha, J.; Kim, S.S. Liver-targeted cyclosporine A-encapsulated poly (lacticco-glycolic) acid nanoparticles inhibit hepatitis C virus replication. Int. J. Nanomed., 2015, 10, 903-921.
[PMID: 25673987]
[150]
Jannat, K.; Paul, A.K.; Bondhon, T.A.; Hasan, A.; Nawaz, M.; Jahan, R.; Mahboob, T.; Nissapatorn, V.; Wilairatana, P.; Pereira, M.L.; Rahmatullah, M. Nanotechnology applications of flavonoids for viral diseases. Pharmaceutics, 2021, 13(11), 1895.
[http://dx.doi.org/10.3390/pharmaceutics13111895] [PMID: 34834309]
[151]
Gismondi, A.; Nanni, V.; Reina, G.; Orlanducci, S.; Terranova, M.L.; Canini, A. Nanodiamonds coupled with 5,7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization. Int. J. Nanomed., 2016, 11, 557-574.
[http://dx.doi.org/10.2147/IJN.S96614] [PMID: 26893562]
[152]
Shibata, C.; Ohno, M.; Otsuka, M.; Kishikawa, T.; Goto, K.; Muroyama, R.; Kato, N.; Yoshikawa, T.; Takata, A.; Koike, K. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology, 2014, 462-463, 42-48.
[http://dx.doi.org/10.1016/j.virol.2014.05.024] [PMID: 25092460]
[153]
Lee, M.Y.; Yang, J.A.; Jung, H.S.; Beack, S.; Choi, J.E.; Hur, W.; Koo, H.; Kim, K.; Yoon, S.K.; Hahn, S.K. Hyaluronic acid-gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano, 2012, 6(11), 9522-9531.
[http://dx.doi.org/10.1021/nn302538y] [PMID: 23092111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy