Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Phytochemical, Pharmacognostic, and Pharmacological Aspects of Ricinus Communis Seed Oil: An Overview

Author(s): Shubhangi V. Shekade*, Satish V. Shirolkar, Sanjeevani S. Deshkar and Prabhanjan S. Giram

Volume 13, Issue 3, 2023

Published on: 09 September, 2022

Article ID: e070722206672 Pages: 17

DOI: 10.2174/2210315512666220707092403

Price: $65

conference banner
Abstract

Background: Castor oil is a multipurpose vegetable oil extracted from the seeds of the Ricinus communis from the family Euphorbiaceae. The castor oil contains a mixture of esters of saturated and unsaturated fatty acids such as ricinoleic, palmitic, stearic, oleic, linoleic, and linolenic acid linked to glycerol. The unique structure of major constituents of castor oil offers several functionalization possibilities for transforming it into advanced functional material. Although castor oil is considered nonedible, after purification, it is widely used for medicinal and cosmetic purposes.

Objective: The objective of this paper is to review and compile the research work on castor oil, its chemical composition, and different methods of extraction with their significance, and the use of castor oil and its derivatives in healthcare, agriculture, and industrial applications.

Methods: The literature related to castor oil and its applications was collected through different websites, academic research portals, and databases, sorted and presented in this review.

Results: Castor oil has been investigated for several medicinal applications including, antiulcer, antimicrobial, bone degeneration, wound healing, and immune-booster, etc. Recently, castor oil and its derivatives have been explored as lubricants, bioadhesives, polishing agents, insecticides, fertilizers, biodiesel production, and vehicles for various drug delivery systems. This review summarizes the chemical composition of castor oil, various methods for its extraction and purification, castor oil derivatives, and different pharmacological, medicinal, industrial, and drug delivery applications.

Conclusion: The castor oil and its derivatives offer numerous potential applications in the food, pharmaceutical, agricultural, and cosmetic industry that has opened up several opportunities for research in this area.

Keywords: Ricinoleic acid, fatty acid, non-edible oil, castor oil, biomedical application, Ricinus communis L.

Graphical Abstract
[1]
Wolf, Wj. Oilseed crops (2nd Edn), Edited by Ea Weiss Blackwell Science, Oxford In: J. Sci. Food Agri; , 2000; 80, pp. (10)1573-1574.
[2]
Thomas, A.; Matthäus, B. Fats and fatty oils. Ullmann’s Encycl. Ind. Chem., 2000, 15, 1-84.
[3]
Plants of China: A companion to the flora of China; Hong, Dy.; Blackmore, S., Eds.; Cambridge University Press, 2015.
[4]
Industrial Oil Crops; Mckeon, T.; Hildebrand, D.; Weselake, R., Eds.; Elsevier, 2016.
[5]
Mittaine, J.; Mielke, T. The globalization of international oil seeds trade. Ol. Corps Gras Lipides, 2012, 19(5), 249-260.
[http://dx.doi.org/10.1051/ocl.2012.0470]
[6]
Azadmard–Damirchi, So.; Achachlouei, Bf.; Alirezalu, K.; Alirezalu, A.; Hesari, J.; Emami, S. Physiological and medicinal properties of castor oil. RPMP, 2012, 33, 323-333.
[7]
Marter, A.D. Castor: Markets utilization and prospects; Tropical Product Institute, 1981, pp. 55-78.
[8]
Borch-Jensen, C.; Jensen, B.; Mathiasen, K.; Mollerup, J. Analysis of seed oil from Ricinus communis and dimorphoteca pluvialisby gas and supercritical fluid chromatography. J. Am. Oil Chem. Soc., 1997, 74(3), 277-284.
[http://dx.doi.org/10.1007/s11746-997-0136-7]
[9]
Hasenhuettl, G.L. Fats and fatty oils. In: Kirk‐Othmer Encyclopedia of Chemical Technology; John Wiley, 2000; pp. 1-87.
[http://dx.doi.org/10.1002/0471238961.0601201908011905.a01]
[10]
Ogunniyi, D.S. Castor oil: A vital industrial raw material. Bioresour. Technol., 2006, 97(9), 1086-1091.
[http://dx.doi.org/10.1016/j.biortech.2005.03.028] [PMID: 15919203]
[11]
Lord, J.M.; Roberts, L.M.; Robertus, J.D. Ricin: structure, mode of action, and some current applications. FASEB J., 1994, 8(2), 201-208.
[http://dx.doi.org/10.1096/fasebj.8.2.8119491] [PMID: 8119491]
[12]
Balint, G.A. Ricin: The toxic protein of castor oil seeds. Toxicology, 1974, 2(1), 77-102.
[http://dx.doi.org/10.1016/0300-483X(74)90044-4] [PMID: 4823740]
[13]
Achaya, K.T. Chemical derivatives of castor oil. J. Am. Oil Chem. Soc., 1971, 48(11), 758-763.
[http://dx.doi.org/10.1007/BF02638537] [PMID: 5131163]
[14]
Anjani, K. Castor genetic resources: A primary gene pool for exploitation. Ind. Crops Prod., 2012, 35(1), 1-4.
[http://dx.doi.org/10.1016/j.indcrop.2011.06.011]
[15]
Fatty acids: Chemistry, synthesis, and applications; Mu, A., Ed.; Elsevier, 2017.
[16]
Prasad, Rb.; Rao, Bv. Chemical derivatization of castor oil and their industrial utilization In: Fatty Acid; , 2017; pp. 279-303.
[http://dx.doi.org/10.1016/B978-0-12-809521-8.00008-8]
[17]
Scarpa, A.; Guerci, A. Various uses of the castor oil plant (Ricinus communis L.). A review. J. Ethnopharmacol., 1982, 5(2), 117-137.
[http://dx.doi.org/10.1016/0378-8741(82)90038-1] [PMID: 7035750]
[18]
Te, G.; Je, B. International cosmetic ingredient dictionary and handbook. Introduction Inci Name Monographs A–K, 10thEd; The Cosmetics, Toiletries and Fragrances Association, 2004, p. 1983.
[19]
Mckeon, T.A.; Chen, G.Q.; Lin, J-T. Biochemical aspects of castor oil biosynthesis. Biochem. Soc. Trans., 2000, 28(6), 972-974.
[http://dx.doi.org/10.1042/bst0280972]
[20]
Dumont, M.; Narine, S. Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Res. Int., 2007, 40(8), 957-974.
[http://dx.doi.org/10.1016/j.foodres.2007.06.006]
[21]
Larsen, S.W.; Rinvar, E.; Svendsen, O.; Lykkesfeldt, J.; Friis, G.J.; Larsen, C. Determination of the disappearance rate of iodine-125 labelled oils from the injection site after intramuscular and subcutaneous administration to pigs. Int. J. Pharm., 2001, 230(1-2), 67-75.
[http://dx.doi.org/10.1016/S0378-5173(01)00860-2] [PMID: 11672957]
[22]
Maier, M.; Staupendahl, D.; Duerr, H.R.; Refior, H.J. Castor oil decreases pain during extracorporeal shock wave application. Arch. Orthop. Trauma Surg., 1999, 119(7-8), 423-427.
[http://dx.doi.org/10.1007/s004020050013] [PMID: 10613232]
[23]
Raymond, C.R.; Paul, J.S.; Marian, E.Q. Handbook of pharmaceutical excipients, 6th ed; Published By The Pharmaceutical Press, 2009, p. 126.
[24]
Indian Pharmacopeia. The Indian Pharmacopeia commission, 8th edition; Ghaziabad, 2018, III, pp. 3767-3768.
[25]
Danlami, J.; Arsad, A.; Ma, Z.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng., 2014, 30(6), 605-626.
[http://dx.doi.org/10.1515/revce-2013-0038]
[26]
Zarnowski, R.; Suzuki, Y. Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J. Food Compos. Anal., 2004, 17(5), 649-664.
[http://dx.doi.org/10.1016/j.jfca.2003.09.007]
[27]
Mamidipally, P.K.; Liu, S.X. First approach on rice bran oil extraction using limonene. Eur. J. Lipid Sci. Technol., 2004, 106(2), 122-125.
[http://dx.doi.org/10.1002/ejlt.200300891]
[28]
Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 2010, 1217(16), 2383-2389.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[29]
Słomińska, M.; Zygler, A.; Namieśnik, J. Soxhlet extraction and new developments such as soxtec. In: Comprehansive Sampling and Sample Preparation.Comprehansive Sampling and Sample Preparation: Analytical Techniques for Scientists; , 2012, pp. 65-82.
[30]
Arisanu, A.O. Mechanical continuous oil expression from oil seeds: Oil yield and press capacity.International Conference “Computational Mechanics and Virtual Engineering” COMEC, Brasov, RomaniaOctober;2013 , pp. 24-25.
[31]
Kirk-Othmer. Encyclopedia of Chemical Technology; John Wiley & Sons: New York, 1979, Vol. 5, .
[32]
Muzenda, E.; Kabuba, J.; Mdletye, P.; Belaid, M. Optimization of process parameters for castor oil production. Proceedings of the World Congress on Engineering, 2012, III, pp. 4-6.
[33]
Abitogun, A.S.; Alademeyin, O.J.; Oloye, D.A. Extraction and characterization of castor seed oil. Internet J. Nutr. Wellness, 2009, 8(2), 1-8.
[34]
Patel, V.R.; Dumancas, G.G.; Kasi Viswanath, L.C.; Maples, R.; Subong, B.J. Castor oil: properties, uses and optimization of processing parameters in commercial production. Lipid Insights, 2016, 9, 1-12.
[http://dx.doi.org/10.4137/LPI.S40233] [PMID: 27656091]
[35]
Mudhaffar, B.; Salimon, J. Epoxidation of vegetable oils and fatty acids: Catalysts, methods and advantages. J. Appl. Sci. (Faisalabad), 2010, 10(15), 1545-1553.
[http://dx.doi.org/10.3923/jas.2010.1545.1553]
[36]
Campbell, S.J.; Nakayama, N.; Unger, E.H. Chemical degumming of crude vegetable oils. United Oilseed Products Ltd, Canadian Patent, 1983, 1(157), 883.
[37]
Akpan, U.; Jimoh, A.; Mohammed, Ad. Extraction, characterization and modification of castor seed oil. Leonardo J. Sci., 2006, 8(1), 43-52.
[38]
Okullo, A.; Temu, A.; Ogwok, P.; Ntalikwa, J. Physico-chemical properties of biodiesel from jatropha and castor oils. Inter. J. Renewable Energy Res. (Ijrer), 2012, 2(1), 47-52.
[39]
Cvengros, J. Physical refining of edible oils. J. Am. Oil Chem. Soc., 1995, 72(10), 1193-1196.
[http://dx.doi.org/10.1007/BF02540987]
[40]
Conceição, M.M.; Dantas, M.B.; Rosenhaim, R., Jr; Fernandes, V.J., Jr; Santos, I.M.G.; Souza, A.G. Evaluation of the oxidative induction time of the ethilic castor biodiesel. J. Therm. Anal. Calorim., 2009, 97(2), 643-646.
[http://dx.doi.org/10.1007/s10973-009-0362-3]
[41]
Naughton, F.C. Castor oil. Kirk-othmer encyclopedia of chemical technology; John Wiley & Sons, Inc, 2000.
[42]
Günç Ergönül, P.; Nergiz, C. The effect of different filter aid materials and winterization periods on the oxidative stability of sunflower and corn oils. CYTA J. Food, 2015, 13(2), 174-180.
[http://dx.doi.org/10.1080/19476337.2014.931889]
[43]
Ali, Mf Edible oils, fats and waxes. Handbook of Industrial Chemistry: Organic Chemicals; Mcgraw-Hill, New York, 2005, 12, pp. 86-121.
[44]
Cintas, P.; Calcio-Gaudino, E.; Cravotto, G. Pharmaceutical and nutraceutical compounds from natural matrices. In microwave-assisted extraction for bioactive compounds; Springer: Boston, Ma., 2012, pp. 181-206.
[http://dx.doi.org/10.1007/978-1-4614-4830-3_7]
[45]
Takadas, F.; And Doker, O. Extraction method and solvent effect on safflower seed oil production. Chem. Process Eng. Res., 2017, 51, 9-17.
[46]
Hashemi, S.M.B.; Michiels, J.; Yousafabad, S.H.A.; Hosseini, M. Kolkhoung (Pistacia khinjuk) kernel oil quality is affected by different parameters in pulsed ultrasound-assisted solvent extraction. Ind. Crops Prod., 2015, 70, 28-33.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.023]
[47]
Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M. Ultrasonic-assisted extraction and solvent extraction of papaya seed oil: Crystallization and thermal behaviour, saturation degree, colour and oxidative stability. Ind. Crops Prod., 2014, 52, 702-708.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.047]
[48]
Stanisavljević, I.T.; Lazić, M.L.; Veljković, V.B. Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason. Sonochem., 2007, 14(5), 646-652.
[http://dx.doi.org/10.1016/j.ultsonch.2006.10.003] [PMID: 17142082]
[49]
Dwivedi, M.C.; Sapre, S. Total vegetable-oil based greases prepared from castor oil. J. Synth. Lubr., 2002, 19(3), 229-241.
[http://dx.doi.org/10.1002/jsl.3000190305]
[50]
Mutlu, H.; Meier, M.A.R. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol., 2010, 112(1), 10-30.
[http://dx.doi.org/10.1002/ejlt.200900138]
[51]
Priest, G.W.; Mikusch, J.V. Composition and analysis of dehydrated castor oil. Ind. Eng. Chem., 1940, 32(10), 1314-1319.
[http://dx.doi.org/10.1021/ie50370a010]
[52]
Terrill, R.L. Dehydration of castor oil. J. Am. Oil Chem. Soc., 1950, 27(11), 477-481.
[http://dx.doi.org/10.1007/BF02637767]
[53]
Bhowmick, D.N.; Sarma, S.A. Dehydration of castor oil. Ind. Eng. Chem. Prod. Res. Dev., 1977, 16(1), 107-111.
[54]
Park, S.; Jin, F.; Lee, J-R. Synthesis and thermal properties of epoxidized vegetable oil. Macromol. Rapid Commun., 2004, 25(6), 724-727.
[http://dx.doi.org/10.1002/marc.200300191]
[55]
Sinadinović-Fišer, S.; Janković M.; Borota, O. Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Eng. Process., 2012, 62, 106-113.
[http://dx.doi.org/10.1016/j.cep.2012.08.005]
[56]
Gherca, D.; Pui, A.; Cornei, N.; Cojocariu, A.; Nica, V.; Caltun, O. Synthesis, characterization and magnetic properties of Mfe2o4 (M= Co, Mg, Mn, Ni) nanoparticles using ricin oil as capping agent. J. Magn. Magn. Mater., 2012, 324(22), 3906-3911.
[http://dx.doi.org/10.1016/j.jmmm.2012.06.027]
[57]
Zhang, Q.; Sun, Y.; Zhi, L.; Zhang, Y.; Di Serio, M. Properties of ethoxylated castor oil acid methyl esters prepared by ethoxylation over an alkaline catalyst. J. Surfactants Deterg., 2015, 18(2), 365-370.
[http://dx.doi.org/10.1007/s11743-014-1657-3]
[58]
Morgner, J. Kinetische betrachtungen zur autoxydation des rizinenöles. Fette Seifen Anstrichm., 1960, 62(6), 496-498.
[59]
Rakesh Ca, R.; Rajkumar, S.V.; Prasad Kabra, M.C. Pharmacological investigation on the wound healing of castor oil in rats. Int. J. Univers. Pharm. Life Sci., 2011, 1, 1-9.
[60]
Fitranda, M.I.; Sutrisno, S. Physicochemical properties and antibacterial activity of castor oil and its derivatives. In: IOP Conference Series Materials Science and Engineering; , 2020; 833, p. 012009.
[61]
Leonardo, M.R.; da Silva, L.A.; Filho, M.T.; Bonifácio, K.C.; Ito, I.Y. In vitro evaluation of the antimicrobial activity of a castor oil-based irrigant. J. Endod., 2001, 27(12), 717-719.
[http://dx.doi.org/10.1097/00004770-200112000-00001] [PMID: 11771574]
[62]
Yari, A.; Yeganeh, H.; Bakhshi, H.; Gharibi, R. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application. J. Biomed. Mater. Res. A, 2014, 102(1), 84-96.
[http://dx.doi.org/10.1002/jbm.a.34672] [PMID: 23606508]
[63]
Ayuba, L.; Agboire, S.; Gana, A.K.; Ishaq, M.; Aliyu, U.; Affiniki, G.; Manjang, J.I. Efficacy of castor oil in the control of throat, skin and enteric bacteria. Adv. Food Sci. Eng., 2017, 1(3), 1-15.
[64]
Sheriff, M.M.; Saeed, M.B.; Dawoud, A.; Mohammed, T.; Khan, K.A.; Ikbal, A.R.; Khan, A.A.; Shakeel, I.S.M. Efficacy of phytochemical constituents of castor essential oil towards the mucor-mycotic mold Cunninghamella bertholletiae. J. New Develop. Chem, 2020, 3(1), 1-11.
[65]
Abdulrasheed, A.; Aroke, U.O.; Muazu, M.T. Characterization and Utilization of castor bean seed oil extract for production of medicated soap. Am. J. Eng. Res., 2015, 4(12), 67-72.
[66]
Soujanya, K.; Srinivas Reddy, K.; Kumaraswamy, D.; Vishwanath Reddy, G.; Girija, P.; Sirisha, K. Formulations. Indian J. Pharm. Sci., 2020, 82(1), 174-179.
[67]
Beloti, M.M.; de Oliveira, P.T.; Tagliani, M.M.; Rosa, A.L. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase. J. Biomed. Mater. Res. A, 2008, 84(2), 435-441.
[http://dx.doi.org/10.1002/jbm.a.31344] [PMID: 17618485]
[68]
Tunaru, S.; Althoff, T.F.; Nüsing, R.M.; Diener, M.; Offermanns, S. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 9179-9184.
[http://dx.doi.org/10.1073/pnas.1201627109] [PMID: 22615395]
[69]
Mor, D.; Dande, P. Varicose veins: An overview of current and herbal treatments. Int. J. Pharm. Sci. Res., 2017, 8(5), 1959-1966.
[70]
Prewitt, D. Keep an Eye toward the Nose: These treatments can help stop the charge of Rhino conjunctivitis. Rev. Optometry, 2004, 15, 125-127.
[71]
Prism 2020. Available from: apothecary.com/Product-page (Accessed on Feb, 15, 2020)
[72]
Welch, H. Clark Co., Inc; Castor oil/home remedies using castor oil 2013.
[73]
Subramaniyan, V. Therapeutic importance of caster seed oil nuts and seeds in health and disease prevention, 2nd ed; , 2020, pp. 485-495.
[http://dx.doi.org/10.1016/B978-0-12-818553-7.00034-6]
[74]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]
[75]
Pal, N.; Saxena, N.; Mandal, A. Phase behavior, solubilization, and phase transition of a microemulsion system stabilized by a novel surfactant synthesized from castor oil. J. Chem. Eng. Data, 2017, 62(4), 1-14.
[http://dx.doi.org/10.1021/acs.jced.6b00806]
[76]
Rachmawati, H.; Novel, M.A.; Ayu, S.; Berlian, G.; Tandrasasmita, O.M.; Tjandrawinata, R.R.; Anggadiredja, K. The in vitro in vivo safety confirmation of peg-40 hydrogenated castor oil as a surfactant for oral nanoemulsion formulation. Sci. Pharm., 2017, 85(2), 1-10.
[http://dx.doi.org/10.3390/scipharm85020018] [PMID: 28362322]
[77]
Zhang, H.; Qin, H.; Li, L.; Zhou, X.; Wang, W.; Kan, C. Preparation and characterization of the controlled release avermectin/castor oil-based polyurethane nanoemulsions. J. Agric. Food Chem., 2017, 66(26), 6552-6560.
[PMID: 28562041]
[78]
Rimple; Newton, M.J. Impact of ocular compatible lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 33 full factorial design. Recent Pat. Inflamm. Allergy Drug Discov., 2018, 12(2), 169-183.
[http://dx.doi.org/10.2174/1872213X12666180730115225] [PMID: 30058499]
[79]
Heni, R.; Yang, A.A.; Sukmadjaja, A.; Kusnandar, A.; Raymond, R.T.; Gert, S. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system. Drug Deliv. Transl. Res., 2018, 8(3), 515-524.
[80]
Díez-Pascual, A.M.; Angel, L.D. Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZNO nanoparticles. Biomacromolecules, 2015, 16(9), 2631-2644.
[PMID: 26302315]
[81]
Shigehiro, T.; Masuda, J.; Saito, S.; Khayrani, A.C.; Jinno, K.; Seno, A.; Vaidyanath, A.; Mizutani, A.; Kasai, T.; Murakami, H.; Satoh, A. Practical liposomal formulation for taxanes with polyethoxylated castor oil and ethanol with complete encapsulation efficiency and high loading efficiency. Nanomaterials, 2017, 7(10), 1-13.
[http://dx.doi.org/10.3390/nano7100290]
[82]
Nerantzaki, M.; Skoufa, E.; Adam, K.V.; Nanaki, S.; Avgeropoulos, A.; Kostoglou, M.; Bikiaris, D. Amphiphilic block copolymer microspheres derived from castor oil, poly (ε-carpolactone), and poly (ethylene glycol): Preparation, characterization and application in naltrexone drug delivery. Materials, 1996, 11(10), 1-19.
[83]
Rezaei, H.S.; Parsapour, A.; Nouri, K.S.; Razavi, S.M.; Hashemibeni, B.; Heidari, F.; Khalili, S. Wound dressing application of castor oil-and CAPA-based polyurethane membranes. Polym. Bull., 2020, 77(6), 2945-2964.
[http://dx.doi.org/10.1007/s00289-019-02891-z]
[84]
Wilson, R.; Van Schie, B.J.; Howes, D. Overview of the preparation, use and biological studies on polyglycerol polyricinoleate (PGPR). Food Chem. Toxicol., 1998, 36(9-10), 711-718.
[http://dx.doi.org/10.1016/S0278-6915(98)00057-X] [PMID: 9737417]
[85]
Tenorio-Alfonso, A.; María, C.S.; José, M.F. Preparation, characterization and mechanical properties of bio-based polyurethane adhesives from isocyanate-functionalized cellulose acetate and castor oil for bonding wood. Polymers (Basel), 2017, 9(132), 1-14.
[86]
Drown, D.; Harper, K.; Frame, E. Screening vegetable oil alcohol esters as fuel lubricity enhancers. J. Am. Oil Chem. Soc., 2001, 78(6), 579-584.
[http://dx.doi.org/10.1007/s11746-001-0307-y]
[87]
Refaat, A. Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Technol., 2009, 6(4), 677-694.
[http://dx.doi.org/10.1007/BF03326109]
[88]
Berman, P.; Nizri, S.; Wiesman, Z. castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy, 2011, 35(7), 2861-2866.
[http://dx.doi.org/10.1016/j.biombioe.2011.03.024]
[89]
Shojaeefard, M.H.; Etgahni, M.M.; Meisami, F.; Barari, A. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine. Environ. Technol., 2013, 34(13-16), 2019-2026.
[http://dx.doi.org/10.1080/09593330.2013.777080] [PMID: 24350455]
[90]
Panwar, N.L.; Shrirame, H.Y.; Rathore, N.S.; Jindal, S.; Kurchania, A.K. Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil. Appl. Therm. Eng., 2010, 30(2-3), 245-249.
[http://dx.doi.org/10.1016/j.applthermaleng.2009.07.007]
[91]
Meneghetti, S.M.P.; Meneghetti, M.R.; Wolf, C.R.; Silva, E.C.; Lima, G.E.S.; de Lira Silva, L.; Serra, T.M.; Cauduro, F.; de Oliveira, L.G. Biodiesel from castor oil: A comparison of ethanolysis versus methanolysis. Energy Fuels, 2006, 20(5), 2262-2265.
[http://dx.doi.org/10.1021/ef060118m]
[92]
Ani, A.O.; Okorie, A.U. Response of broiler finishers to diets containing graded levels of processed castor oil bean (Ricinus communis L) meal. J. Anim. Physiol. Anim. Nutr. (Berl.), 2009, 93(2), 157-164.
[http://dx.doi.org/10.1111/j.1439-0396.2007.00796.x] [PMID: 19320928]
[93]
Gupta, A.; Antil, R.; Narwal, R. Utilization of deoiled castor cake for crop production. Arch. Agron. Soil Sci., 2004, 50(4-5), 389-395.
[http://dx.doi.org/10.1080/03650340410001663891]
[94]
Lima, R.; Severino, L.; Sampaio, L.; Sofiatti, V.; Gomes, J.A.; Beltrão, N.E.M. Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind. Crops Prod., 2011, 33(2), 364-368.
[http://dx.doi.org/10.1016/j.indcrop.2010.11.008]
[95]
Sharma, S.; Vasudevan, P.; Madan, M. Insecticidal value of castor (Ricinus cummunis) against termites. Int. Biodeter., 1991, 27(3), 249-254.
[http://dx.doi.org/10.1016/0265-3036(91)90053-T]
[96]
Chaudhary, B.I.; Sczekalla, B.; Meerbote, M.; Cheng, Y. Acetylated derivatives of castor oil and their blends with epoxidized fatty acid esters. US Patent 9,181,415, 2015.
[97]
Potula, S.B.; Korlipara, V.P.; Bhamidipati, V.S.; Krishnasamy, S.; Rachapudi, B.N. Castor oil fatty acid based estolide esters and their derivatives as potential lubricant base stocks. US Patent 8,742,150, 2014.
[98]
Stolz, H.J.; Bornicke, R.; Matzel, M. Skin cleansing agent with particles containing hydrogenated castor oil. US Patent 8,563,492, 2013.
[99]
Chaudhary, B.I.; Sczekalla, B.; Ghosh-Dastidar, A.; Cheng, Y.; Tatake, P.; Collins, R.M. Purified acetylated derivatives of castor oil and compositions including same. US Patent 8,552,098, 2013.
[100]
Doesburg, V.I.; Manning, J.W.; Riddle, D.L.; Smallfield, J.A.; Sellman, N.D., Jr; Kilpatrick, R.L. Novel polyurethane compositions including castor oil. United States patent application. US Patent 0062432A1, 2009.
[101]
Parker, H.W.; Tock, R.W.; Qiao, F.; Lenox, R.S. Elastomeric material compositions obtained from castor oil and epoxidized soybean oil. US Patent 7,196,124, 2007.
[102]
David, P. Hydrogenated castor oil dispersed in a lipid for pharmaceutically elegant topical ointment. CA Patent 2459239C, 2001.
[103]
Williams, J.B.; Chern, R.T. Long-acting injectable formulations containing hydrogenated castor oil. US Patent 6,174,540, 2001.
[104]
Earing, M. Petroleum based oil modified castor oil-urethane composition for electrical potting. US Patent 3,747,037, 1973.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy