Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Nanocarrier-Based Drug Delivery to Brain: Interventions of Surface Modification

Author(s): Surbhi Sharma and Shweta Dang*

Volume 21, Issue 3, 2023

Published on: 25 October, 2022

Page: [517 - 535] Pages: 19

DOI: 10.2174/1570159X20666220706121412

Price: $65

Abstract

Brain disorders are a prevalent and rapidly growing problem in the medical field as they adversely affect the quality of life of a human. With an increase in life expectancy, it has been reported that diseases like Alzheimer’s, Parkinson’s, stroke and brain tumors, along with neuropsychological disorders, are also being reported at an alarmingly high rate. Despite various therapeutic methods for treating brain disorders, drug delivery to the brain has been challenging because of a very complex Blood Brain Barrier, which precludes most drugs from entering the brain in effective concentrations. Nano-carrier-based drug delivery systems have been reported widely by researchers to overcome this barrier layer. These systems due to their small size, offer numerous advantages; however, their short residence time in the body owing to opsonization hinders their success in vivo. This review article focuses on the various aspects of modifying the surfaces of these nano-carriers with polymers, surfactants, protein, antibodies, cell-penetrating peptides, integrin binding peptides and glycoproteins such as transferrin & lactoferrin leading to enhanced residence time, desirable characteristics such as the ability to cross the blood-brain barrier (BBB), increased bioavailability in regions of the brain and targeted drug delivery.

Keywords: Blood brain barrier, CNS disorders, nanoparticles, surface modification, mucoadhesive, antibodies, transferrin, lactoferrin.

Graphical Abstract
[1]
Barnabas, W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods, 2019, 311, 133-146.
[http://dx.doi.org/10.1016/j.jneumeth.2018.10.015] [PMID: 30336221]
[2]
Masserini, M. Nanoparticles for brain drug delivery. ISRN Biochem., 2013, 2013, 238428.
[PMID: 25937958]
[3]
Xu, Y.; Wei, L.; Wang, H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J. Drug Deliv. Sci. Technol., 2020, 57, 101636.
[http://dx.doi.org/10.1016/j.jddst.2020.101636]
[4]
Tam, V.H.; Sosa, C.; Liu, R.; Yao, N.; Priestley, R.D. Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier. Int. J. Pharm., 2016, 515(1-2), 331-342.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.031] [PMID: 27769885]
[5]
Di Luca, M.; Nutt, D.; Oertel, W.; Boyer, P.; Jaarsma, J.; Destrebecq, F.; Esposito, G.; Quoidbach, V. Towards earlier diagnosis and treatment of disorders of the brain. Bull. World Health Organ., 2018, 96(5), 298-298A.
[http://dx.doi.org/10.2471/BLT.17.206599] [PMID: 29875510]
[6]
Tong, G.F.; Qin, N.; Sun, L.W. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm. J., 2017, 25(6), 844-851.
[http://dx.doi.org/10.1016/j.jsps.2016.12.003] [PMID: 28951668]
[7]
Lang, A.E. Clinical trials of disease-modifying therapies for neurodegenerative diseases: The challenges and the future. Nat. Med., 2010, 16(11), 1223-1226.
[http://dx.doi.org/10.1038/nm.2220] [PMID: 21052078]
[8]
Katare, Y.K.; Piazza, J.E.; Bhandari, J.; Daya, R.P.; Akilan, K.; Simpson, M.J.; Hoare, T.; Mishra, R.K. Intranasal delivery of antipsychotic drugs. Schizophr. Res., 2017, 184, 2-13.
[http://dx.doi.org/10.1016/j.schres.2016.11.027] [PMID: 27913162]
[9]
Dimitrijevic, I.; Pantic, I. Application of nanoparticles in psychophysiology and psychiatry research. Mater. Sci., 2014, 38, 1-6.
[10]
Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci., 2011, 12(12), 723-738.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[11]
Kim, J.; Ahn, S.I.; Kim, Y. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J. Ind. Eng. Chem., 2019, 73, 8-18.
[http://dx.doi.org/10.1016/j.jiec.2019.01.021] [PMID: 31588177]
[12]
Pande, V.V. Studies on the characteristics of zaltoprofen loaded gelatin nanoparticles by nanoprecipitation. Inventi Rapid: NDDS, 2015, 1-7.
[13]
Mahmoudi Saber, M. Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf. B Biointerfaces, 2019, 183, 110407.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110407] [PMID: 31400613]
[14]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; Bosi, S.; Carril, M.; Chan, W.C.W.; Chen, C.; Chen, X.; Chen, X.; Cheng, Z.; Cui, D.; Du, J.; Dullin, C.; Escudero, A.; Feliu, N.; Gao, M.; George, M.; Gogotsi, Y.; Grünweller, A.; Gu, Z.; Halas, N.J.; Hampp, N.; Hartmann, R.K.; Hersam, M.C.; Hunziker, P.; Jian, J.; Jiang, X.; Jungebluth, P.; Kadhiresan, P.; Kataoka, K.; Khademhosseini, A.; Kopeček, J.; Kotov, N.A.; Krug, H.F.; Lee, D.S.; Lehr, C.M.; Leong, K.W.; Liang, X.J.; Ling Lim, M.; Liz-Marzán, L.M.; Ma, X.; Macchiarini, P.; Meng, H.; Möhwald, H.; Mulvaney, P.; Nel, A.E.; Nie, S.; Nordlander, P.; Okano, T.; Oliveira, J.; Park, T.H.; Penner, R.M.; Prato, M.; Puntes, V.; Rotello, V.M.; Samarakoon, A.; Schaak, R.E.; Shen, Y.; Sjöqvist, S.; Skirtach, A.G.; Soliman, M.G.; Stevens, M.M.; Sung, H.W.; Tang, B.Z.; Tietze, R.; Udugama, B.N.; VanEpps, J.S.; Weil, T.; Weiss, P.S.; Willner, I.; Wu, Y.; Yang, L.; Yue, Z.; Zhang, Q.; Zhang, Q.; Zhang, X.E.; Zhao, Y.; Zhou, X.; Parak, W.J. Diverse applications of nanomedicine. ACS Nano, 2017, 11(3), 2313-2381.
[http://dx.doi.org/10.1021/acsnano.6b06040] [PMID: 28290206]
[15]
Felipe, A. Surface-Modified nanoparticles to improve drug delivery. In: Dekker Encyclopedia of Nanoscience and nanotechnology, 3rd ed. 2014, pp. 1-7.
[16]
Mout, R.; Moyano, D.F.; Rana, S.; Rotello, V.M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev., 2012, 41(7), 2539-2544.
[http://dx.doi.org/10.1039/c2cs15294k] [PMID: 22310807]
[17]
Shen, Z.; Nieh, M.P.; Li, Y. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges. Polymers (Basel), 2016, 8(3), 83.
[http://dx.doi.org/10.3390/polym8030083] [PMID: 30979183]
[18]
Singh, D.; Kapahi, H.; Rashid, M.; Prakash, A.; Majeed, A.B.; Mishra, N. Recent prospective of surface engineered nanoparticles in the management of neurodegenerative disorders. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 780-791.
[PMID: 26107112]
[19]
Gao, X.; Tao, W.; Lu, W.; Zhang, Q.; Zhang, Y.; Jiang, X.; Fu, S. Lectin-conjugated PEG–PLA nanoparticles: Preparation and brain delivery after intranasal administration. Biomaterials, 2006, 27(18), 3482-3490.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.038] [PMID: 16510178]
[20]
Huang, R.; Ma, H.; Guo, Y.; Liu, S.; Kuang, Y.; Shao, K.; Li, J.; Liu, Y.; Han, L.; Huang, S.; An, S.; Ye, L.; Lou, J.; Jiang, C. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm. Res., 2013, 30(10), 2549-2559.
[http://dx.doi.org/10.1007/s11095-013-1005-8] [PMID: 23703371]
[21]
Barbu, E.; Molnàr, É.; Tsibouklis, J.; Górecki, D.C. The potential for nanoparticle-based drug delivery to the brain: Overcoming the blood–brain barrier. Expert Opin. Drug Deliv., 2009, 6(6), 553-565.
[http://dx.doi.org/10.1517/17425240902939143] [PMID: 19435406]
[22]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski, G.S.; Raffin, P.A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics, 2018, 10(1), 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[23]
Sosnik, A. das Neves, J.; Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog. Polym. Sci., 2014, 39(12), 2030-2075.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[24]
Ugwoke, M.; Agu, R.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev., 2005, 57(11), 1640-1665.
[http://dx.doi.org/10.1016/j.addr.2005.07.009] [PMID: 16182408]
[25]
Pardeshi, C.V.; Kulkarni, A.D.; Sonawane, R.O.; Belgamwar, V.S.; Chaudhari, P.J.; Surana, S.J. Mucoadhesive nanoparticles: A roadmap to encounter the challenge of rapid nasal mucociliary clearance. Indian J. Pharm. Edu. Res., 2019, 53(2s), s17-s27.
[http://dx.doi.org/10.5530/ijper.53.2s.45]
[26]
Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[27]
Sosnik, A.; Neves, J.; Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery system for administration by non-parenteral routes: A review. Prog. Polym. Sci., 2014, 39(12), 2030-2075.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[28]
Lee, D.; Powers, K.; Baney, R. Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr. Polym., 2004, 58(4), 371-377.
[http://dx.doi.org/10.1016/j.carbpol.2004.06.033]
[29]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorptionand brain targeting. Eur. J. Pharm. Biopharm., 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[30]
Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release, 2014, 190, 189-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.003] [PMID: 24818769]
[31]
Singh, D.; Rashid, M.; Hallan, S.S.; Mehra, N.K.; Prakash, A.; Mishra, N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 865-877.
[PMID: 26042481]
[32]
Chalikwar, S.S.; Mene, B.S.; Pardeshi, C.V.; Belgamwar, V.S.; Surana, S. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: Design, development and ex vivo characterization. Polym. Plast. Technol. Eng., 2013, 52(4), 368-380.
[http://dx.doi.org/10.1080/03602559.2012.751999]
[33]
Ahmad, N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of Parkinson’s disease. J. Liq. Chromatogr. Relat. Technol., 2017, 40(13), 677-690.
[http://dx.doi.org/10.1080/10826076.2017.1343735]
[34]
Piazzini, V.; Landucci, E.; D’Ambrosio, M.; Tiozzo Fasiolo, L.; Cinci, L.; Colombo, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Luceri, C.; Bergonzi, M.C. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int. J. Biol. Macromol., 2019, 129, 267-280.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.005] [PMID: 30726749]
[35]
Chatzitaki, A.T.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D.G.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm., 2020, 589, 119776.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119776] [PMID: 32818538]
[36]
Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O.P.; Singh, B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces, 2021, 205, 111838.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111838] [PMID: 34022704]
[37]
Bruinsmann, F.A.; de Cristo Soares, A.A.; de Fraga Dias, A.; Lopes, S.L.F.; Visioli, F.; Raffin, P.A.; Figueiró, F.; Sonvico, F.; Stanisçuaski, G.S. Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. Int. J. Pharm., 2022, 616, 121563.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121563] [PMID: 35151819]
[38]
Devkar, T.B.; Tekade, A.R.; Khandelwal, K.R. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf. B Biointerfaces, 2014, 122, 143-150.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.037] [PMID: 25033434]
[39]
Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res., 2014, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[40]
Pardeshi, C.V.; Belgamwar, V.S. N N,N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int. J. Biol. Macromol. 2018, 120(Pt B), 2560-2571.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.032] [PMID: 30201564]
[41]
Bostanudin, M.F.; Lalatsa, A.; Górecki, D.C.; Barbu, E. Engineering butylglyceryl-modified polysaccharides towards nanomedicines for brain drug delivery. Carbohydr. Polym., 2020, 236, 116060.
[http://dx.doi.org/10.1016/j.carbpol.2020.116060] [PMID: 32172875]
[42]
Liu, M.; Zhang, J.; Shan, W.; Huang, Y. Developments of mucus penetrating nanoparticles. Asian J. Pharm. Sci., 2015, 10(4), 275-282.
[http://dx.doi.org/10.1016/j.ajps.2014.12.007]
[43]
Gajbhiye, K.R.; Pawar, A.; Mahadik, K.R.; Gajbhiye, V. PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids Surf. B Biointerfaces, 2020, 187, 110770.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110770] [PMID: 31926790]
[44]
Piazza, J.; Hoare, T.; Molinaro, L.; Terpstra, K.; Bhandari, J.; Selvaganapathy, P.R.; Gupta, B.; Mishra, R.K. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d,l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia. Eur. J. Pharm. Biopharm., 2014, 87(1), 30-39.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.007] [PMID: 24560967]
[45]
Pinzón-Daza, M.; Campia, I.; Kopecka, J.; Garzón, R.; Ghigo, D.; Rigant, C. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier. Curr. Drug Metab., 2013, 14(6), 625-640.
[http://dx.doi.org/10.2174/1389200211314060001] [PMID: 23869808]
[46]
Rip, J.; Chen, L.; Hartman, R.; van den Heuvel, A.; Reijerkerk, A.; van Kregten, J.; van der Boom, B.; Appeldoorn, C.; de Boer, M.; Maussang, D.; de Lange, E.C.M.; Gaillard, P.J. Glutathione PEGylated liposomes: Pharmacokinetics and delivery of cargo across the blood–brain barrier in rats. J. Drug Target., 2014, 22(5), 460-467.
[http://dx.doi.org/10.3109/1061186X.2014.888070] [PMID: 24524555]
[47]
Tiwari, A.; Kesharwani, P.; Gajbhiye, V.; Jain, N.K. Synthesis and characterization of dendro-PLGA nanoconjugate for protein stabilization. Colloids Surf. B Biointerfaces, 2015, 134, 279-286.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.064] [PMID: 26209778]
[48]
Parashar, A.K.; Jain, N.K.; Gupta, A.K. Synthesis and characterization of Agiopep-2 anchored PEGylated poly propyleneimine dendrimers for targeted drug delivery to glioblastoma multiforme. J. Drug Deliv. Ther., 2018, 8(6-A), 74-79.
[49]
Santos, S.D.; Xavier, M.; Leite, D.M.; Moreira, D.A.; Custódio, B.; Torrado, M.; Castro, R.; Leiro, V.; Rodrigues, J.; Tomás, H.; Pêgo, A.P. PAMAM dendrimers: Blood-brain barrier transport and neuronal uptake after focal brain ischemia. J. Control. Release, 2018, 291, 65-79.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.006]
[50]
Elsewedy, H.S.; Dhubiab, B.E.A.; Mahdy, M.A.; Elnahas, H.M. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv., 2020, 27(1), 1134-1146.
[http://dx.doi.org/10.1080/10717544.2020.1797237] [PMID: 32729331]
[51]
Yang, S.B.; Li, X.L.; Li, K.; Zhang, X.X.; Yuan, M.; Guo, Y.S.; Bi, X. The colossal role of H-MnO2-PEG in ischemic stroke. Nanomedicine, 2021, 33, 102362.
[http://dx.doi.org/10.1016/j.nano.2021.102362] [PMID: 33476765]
[52]
Wiwatchaitawee, W.; Ebeid, K.; Quarterman, J.C.; Naguib, Y.; Ali, Y.; Oliva, C.; Griguer, C.; Salem, A.K. Surface modification of nanoparticles enhances drug delivery to the brain and improves survival in a glioblastoma multiforme murine model; Bioconjugate Chem, 2022.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00479]
[53]
Tröster, S.D.; Kreuter, J. Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly (methyl methacrylate) surfaces. Int. J. Pharm., 1988, 45(1-2), 91-100.
[http://dx.doi.org/10.1016/0378-5173(88)90037-3]
[54]
Tröster, S.D.; Müller, U.; Kreuter, J. Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int. J. Pharm., 1990, 61(1-2), 85-100.
[http://dx.doi.org/10.1016/0378-5173(90)90047-8]
[55]
Abdelrahman, F.E.; Elsayed, I.; Gad, M.K.; Elshafeey, A.H.; Mohamed, M.I. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int. J. Pharm., 2017, 530(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.050] [PMID: 28733244]
[56]
Grant, S.; Fitton, A. Risperidone. Drugs, 1994, 48(2), 253-273.
[http://dx.doi.org/10.2165/00003495-199448020-00009] [PMID: 7527327]
[57]
Ray, S.; Sinha, P.; Laha, B.; Maiti, S.; Bhattacharyya, U.K.; Nayak, A.K. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol., 2018, 48, 21-29.
[http://dx.doi.org/10.1016/j.jddst.2018.08.016]
[58]
Soudi, S.A.; Nounou, M.I.; Sheweita, S.A.; Ghareeb, D.A.; Younis, L.K.; El-Khordagui, L.K. Protective effect of surface-modified berberine nanoparticles against LPS-induced neurodegenerative changes: A preclinical study. Drug Deliv. Transl. Res., 2019, 9(5), 906-919.
[http://dx.doi.org/10.1007/s13346-019-00626-1] [PMID: 30868509]
[59]
Wilson, B.; Selvam, J.; Mukundan, G.K.; Premakumari, K.B.; Jenita, J.L. Albumin nanoparticles coated with polysorbate 80 for the targeted delivery of antiepileptic drug levetiracetam into the brain. Drug Deliv. Transl. Res., 2020, 10(6), 1853-1861.
[http://dx.doi.org/10.1007/s13346-020-00831-3] [PMID: 32783151]
[60]
Yusuf, M.; Khan, M.; Alrobaian, M.M.; Alghamdi, S.A.; Warsi, M.H.; Sultana, S.; Khan, R.A. Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights. J. Drug Deliv. Sci. Technol., 2021, 61, 102214.
[http://dx.doi.org/10.1016/j.jddst.2020.102214]
[61]
Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein based nanostructures for drug delivery. J. Pharm. (Cairo), 2018, 2018, 9285854.
[http://dx.doi.org/10.1155/2018/9285854] [PMID: 29862118]
[62]
Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel), 2018, 11(7), 1154.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[63]
ShamarekhHeba. K.S.; Gad, H.A.; Soliman, M.A.; Sammour, O.A. Development and evaluation of protamine-coated PLGA nanoparticles for nose-tobrain delivery of tacrine: In vitro and in vivo assessment. J. Drug Deliv. Sci. Technol., 2020, 57, 101724.
[http://dx.doi.org/10.1016/j.jddst.2020.101724]
[64]
Lu, Y.M.; Huang, J.Y.; Wang, H.; Lou, K.F.; Liao, M.H.; Hong, L.J.; Tao, R.; Ahmed, M.; Shan, C.L.; Wang, X.L.; Fukunaga, K.; Du, Y.Z.; Han, F. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials, 2014, 35(1), 530-537.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.093] [PMID: 24120040]
[65]
Joana, A. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid andanti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf. B Biointerfaces, 2016, 145, 8-13.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.041]
[66]
Monge, M.; Fornaguera, C.; Quero, C.; Dols-Perez, A.; Calderó, G.; Grijalvo, S.; García-Celma, M.J.; Rodríguez-Abreu, C.; Solans, C. Functionalized PLGA nanoparticles prepared by nano-emulsion templating interact selectively with proteins involved in the transport through the blood-brain barrier. Eur. J. Pharm. Biopharm., 2020, 156, 155-164.
[http://dx.doi.org/10.1016/j.ejpb.2020.09.003] [PMID: 32927077]
[67]
Lin, T.; Liu, E.; He, H.; Shin, M.C.; Moon, C.; Yang, V.C.; Huang, Y. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm. Sin. B, 2016, 6(4), 352-358.
[http://dx.doi.org/10.1016/j.apsb.2016.04.001] [PMID: 27471676]
[68]
Sonali, P.A.; Agrawal, P.; Singh, R.P.; Rajesh, C.V.; Singh, S.; Vijayakumar, M.R.; Pandey, B.L.; Muthu, M.S. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv., 2016, 23(5), 1788-1798.
[http://dx.doi.org/10.3109/10717544.2015.1094681] [PMID: 26431064]
[69]
Liu, Z.; Jiang, M.; Kang, T.; Miao, D.; Gu, G.; Song, Q.; Yao, L.; Hu, Q.; Tu, Y.; Pang, Z.; Chen, H.; Jiang, X.; Gao, X.; Chen, J. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials, 2013, 34(15), 3870-3881.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.003] [PMID: 23453061]
[70]
Derakhshankhah, H.; Jafari, S. Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed. Pharmacother., 2018, 108, 1090-1096.
[http://dx.doi.org/10.1016/j.biopha.2018.09.097] [PMID: 30372809]
[71]
Xie, J.; Bi, Y.; Zhang, H.; Dong, S.; Teng, L.; Lee, R.J.; Yang, Z. Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Front. Pharmacol., 2020, 11, 697.
[http://dx.doi.org/10.3389/fphar.2020.00697] [PMID: 32508641]
[72]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[73]
Fonseca, S.B.; Pereira, M.P.; Kelley, S.O. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv. Drug Deliv. Rev., 2009, 61(11), 953-964.
[http://dx.doi.org/10.1016/j.addr.2009.06.001] [PMID: 19538995]
[74]
Gartziandia, O.; Egusquiaguirre, S.P.; Bianco, J.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M.; Préat, V.; Beloqui, A. Nanoparticle transport across in vitro olfactory cell monolayers. Int. J. Pharm., 2016, 499(1-2), 81-89.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.046] [PMID: 26721725]
[75]
Qin, Y.; Zhang, Q.; Chen, H.; Yuan, W.; Kuai, R.; Xie, F.; Zhang, L.; Wang, X.; Zhang, Z.; Liu, J.; He, Q. Comparison of four different peptides to enhance accumulation of liposomes into the brain. J. Drug Target., 2012, 20(3), 235-245.
[http://dx.doi.org/10.3109/1061186X.2011.639022] [PMID: 22188312]
[76]
Nai, J.; Zhang, J.; Li, J.; Li, H.; Yang, Y.; Yang, M.; Wang, Y.; Gong, W.; Li, Z.; Li, L.; Gao, C. Macrophage membrane- and cRGD-functionalized thermosensitive liposomes combined with CPP to realize precise siRNA delivery into tumor cells. Mol. Ther. Nucleic Acids, 2021, 27, 349-362.
[http://dx.doi.org/10.1016/j.omtn.2021.12.016] [PMID: 35024246]
[77]
Arora, S.; Kanekiyo, T.; Singh, J. Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer’s disease pathology in transgenic mouse model. Int. J. Biol. Macromol., 2022, 208, 901-911.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.203] [PMID: 35378156]
[78]
Johnsen, K.B.; Burkhart, A.; Thomsen, L.B.; Andresen, T.L.; Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol., 2019, 181, 101665.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101665] [PMID: 31376426]
[79]
Huebers, H.A.; Finch, C.A. The physiology of transferrin and transferrin receptors. Physiol. Rev., 1987, 67(2), 520-582.
[http://dx.doi.org/10.1152/physrev.1987.67.2.520] [PMID: 3550839]
[80]
Moos, T.; Morgan, E.H. Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol., 2000, 20(1), 77-95.
[http://dx.doi.org/10.1023/A:1006948027674] [PMID: 10690503]
[81]
Morgan, E.H. Studies on the mechanism of iron release from transferrin. Biochim. Biophys. Acta Protein Struct., 1979, 580(2), 312-326.
[http://dx.doi.org/10.1016/0005-2795(79)90144-2]
[82]
Li, H.; Qian, Z.M. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev., 2002, 22(3), 225-250.
[http://dx.doi.org/10.1002/med.10008] [PMID: 11933019]
[83]
Visser, C.C.; Stevanović, S.; Heleen Voorwinden, L.; Gaillard, P.J.; Crommelin, D.J.A.; Danhof, M.; de Boer, A.G. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J. Drug Target., 2004, 12(3), 145-150.
[http://dx.doi.org/10.1080/10611860410001701706] [PMID: 15203893]
[84]
Sahoo, S.K.; Labhasetwar, V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm., 2005, 2(5), 373-383.
[http://dx.doi.org/10.1021/mp050032z] [PMID: 16196490]
[85]
Jones, A.R.; Shusta, E.V. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm. Res., 2007, 24(9), 1759-1771.
[http://dx.doi.org/10.1007/s11095-007-9379-0] [PMID: 17619996]
[86]
Das, M.; Wang, C.; Bedi, R.; Mohapatra, S.S.; Mohapatra, S. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury. Nanomedicine, 2014, 10(7), 1539-1548.
[http://dx.doi.org/10.1016/j.nano.2014.01.003] [PMID: 24486465]
[87]
Ghadiri, M.; Vasheghani-Farahani, E.; Atyabi, F.; Kobarfard, F.; Mohamadyar-Toupkanlou, F.; Hosseinkhani, H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105(10), 2851-2864.
[http://dx.doi.org/10.1002/jbm.a.36145] [PMID: 28639394]
[88]
Han, Y.; Zhang, Y.; Li, D.; Chen, Y.; Sun, J.; Kong, F. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int. J. Nanomedicine, 2014, 9, 4107-4116.
[PMID: 25187713]
[89]
Lopalco, A.; Cutrignelli, A.; Denora, N.; Lopedota, A.; Franco, M.; Laquintana, V. Transferrin functionalized liposomes loading dopamine HCl: Development and permeability studies across an in vitro model of human blood–brain barrier. Nanomaterials (Basel), 2018, 8(3), 178.
[http://dx.doi.org/10.3390/nano8030178] [PMID: 29558440]
[90]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[91]
dos Santos Rodrigues, B.; Kanekiyo, T.; Singh, J. In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine, 2020, 28, 102225.
[http://dx.doi.org/10.1016/j.nano.2020.102225] [PMID: 32485318]
[92]
Ramalho, M.J.; Bravo, M.; Loureiro, J.A.; Lima, J.; Pereira, M.C. Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells. Life Sci., 2022, 296, 120435.
[http://dx.doi.org/10.1016/j.lfs.2022.120435] [PMID: 35247437]
[93]
Liu, F.; Zhang, S.; Li, J.; McClements, D.J.; Liu, X. Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends Food Sci. Technol., 2018, 79, 67-77.
[http://dx.doi.org/10.1016/j.tifs.2018.06.013]
[94]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[95]
Singh, I.; Swami, R.; Pooja, D.; Jeengar, M.K.; Khan, W.; Sistla, R. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. J. Drug Target., 2016, 24(3), 212-223.
[http://dx.doi.org/10.3109/1061186X.2015.1068320] [PMID: 26219519]
[96]
Chen, Y.; Zhao, Z.; Xia, G.; Xue, F.; Chen, C.; Zhang, Y. Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7,8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility. Int. J. Biol. Macromol., 2020, 146, 179-192.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.251] [PMID: 31899246]
[97]
Hoekman, J.D.; Srivastava, P.; Ho, R.J.Y. Aerosol-stable peptide-coated liposome nanoparticles: A proof-of-concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure. J. Pharm. Sci., 2014, 103(8), 2231-2239.
[http://dx.doi.org/10.1002/jps.24022] [PMID: 24909764]
[98]
Zhang, M.; Asghar, S.; Tian, C.; Hu, Z.; Ping, Q.; Chen, Z.; Shao, F.; Xiao, Y. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma. Carbohydr. Polym., 2021, 253, 117194.
[http://dx.doi.org/10.1016/j.carbpol.2020.117194] [PMID: 33278970]
[99]
Kim, H.S.; Lee, S.J.; Lee, D.Y. Milk protein-shelled gold nanoparticles with gastrointestinally active absorption for aurotherapy to brain tumor. Bioact. Mater., 2022, 8, 35-48.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.026]
[100]
Teixeira, M.I.; Lopes, C.M.; Gonçalves, H.; Catita, J.; Silva, A.M.; Rodrigues, F.; Amaral, M.H.; Costa, P.C. Formulation, characterization, and cytotoxicity evaluation of lactoferrin functionalized lipid nanoparticles for riluzole delivery to the brain. Pharmaceutics, 2022, 14(1), 185.
[http://dx.doi.org/10.3390/pharmaceutics14010185] [PMID: 35057079]
[101]
Krishna, K.V.; Wadhwa, G.; Alexander, A.; Kanojia, N.; Saha, R.N.; Kukreti, R.; Singhvi, G.; Dubey, S.K. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem. Neurosci., 2019, 10(9), 4124-4135.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[102]
Wünsch, A.; Mulac, D.; Langer, K. Lipoprotein imitating nanoparticles: Lecithin coating binds ApoE and mediates non-lysosomal uptake leading to transcytosis over the blood-brain barrier. Int. J. Pharm., 2020, 589, 119821.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119821] [PMID: 32861770]
[103]
Afzalipour, R.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Jamali Raoufi, N.; Motevalian, M.; Karimi, M.R. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater. Sci. Eng., 2019, 5(11), 6000-6011.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00856] [PMID: 33405722]
[104]
Chen, H.; Zhou, M.; Zeng, Y.; Miao, T.; Luo, H.; Tong, Y.; Zhao, M.; Mu, R.; Gu, J.; Yang, S.; Han, L. Biomimetic lipopolysaccharide‐free bacterial outer membrane‐functionalized nanoparticles for brain‐targeted drug delivery. Adv. Sci. (Weinh.), 2022, 9(16), 2105854.
[http://dx.doi.org/10.1002/advs.202105854]
[105]
Salama, H.A.; Mahmoud, A.A.; Kamel, A.O.; Abdel Hady, M.; Awad, G.A.S. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surf. B Biointerfaces, 2012, 100, 146-154.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.010]
[106]
Wagner, S.; Zensi, A.; Wien, S.L.; Tschickardt, S.E.; Maier, W.; Vogel, T.; Worek, F.; Pietrzik, C.U.; Kreuter, J.; von Briesen, H. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One, 2012, 7(3), e32568.
[http://dx.doi.org/10.1371/journal.pone.0032568] [PMID: 22396775]
[107]
Yuan, B.; Zhao, Y.; Dong, S.; Sun, Y.; Hao, F.; Xie, J.; Teng, L.; Lee, R.J.; Fu, Y.; Bi, Y. Cell-penetrating peptide-coated liposomes for drug delivery across the blood–brain barrier. Anticancer Res., 2019, 39(1), 237-243.
[http://dx.doi.org/10.21873/anticanres.13103] [PMID: 30591464]
[108]
Tang, S.; Wang, A.; Yan, X.; Chu, L.; Yang, X.; Song, Y.; Sun, K.; Yu, X.; Liu, R.; Wu, Z.; Xue, P. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv., 2019, 26(1), 700-707.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy