Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke

Author(s): Meizhen Xie, Yulei Hao, Liangshu Feng, Tian Wang, Mengyue Yao, Hui Li, Di Ma* and Jiachun Feng*

Volume 21, Issue 3, 2023

Published on: 08 November, 2022

Page: [621 - 650] Pages: 30

DOI: 10.2174/1570159X20666220706115957

Price: $65

Abstract

As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.

Keywords: Neutrophils, ischemic stroke, heterogeneity, N1 neutrophils, N2 neutrophils, neuroinflammation.

Graphical Abstract
[1]
Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.E.; Adebayo, O.M.; Adeoye, A.M.; Agarwal, G.; Agrawal, S.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alahdab, F.; Ali, R.; Alvis-Guzman, N.; Anber, N.H.; Anjomshoa, M.; Arabloo, J.; Arauz, A.; Ärnlöv, J.; Arora, A.; Awasthi, A.; Banach, M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Basu, S.; Belachew, A.B.; Belayneh, Y.M.; Bennett, D.A.; Bensenor, I.M.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bin Sayeed, M.S.; Butt, Z.A.; Cahuana-Hurtado, L.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Chaiah, Y.; Chiang, P.P-C.; Choi, J-Y.J.; Christensen, H.; Chu, D-T.; Cortinovis, M.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Daryani, A.; Davletov, K.; de Courten, B.; De la Cruz-Góngora, V.; Degefa, M.G.; Dharmaratne, S.D.; Diaz, D.; Dubey, M.; Duken, E.E.; Edessa, D.; Endres, M.; Faraon, E.J.A.; Farzadfar, F.; Fernandes, E.; Fischer, F.; Flor, L.S.; Ganji, M.; Gebre, A.K.; Gebremichael, T.G.; Geta, B.; Gezae, K.E.; Gill, P.S.; Gnedovskaya, E.V.; Gómez-Dantés, H.; Goulart, A.C.; Grosso, G.; Guo, Y.; Gupta, R.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamidi, S.; Hankey, G.J.; Hassen, H.Y.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Herial, N.A.; Hosseini, M.A.; Hostiuc, S.; Irvani, S.S.N.; Islam, S.M.S.; Jahanmehr, N.; Javanbakht, M.; Jha, R.P.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karch, A.; Karimi, N.; Karimi-Sari, H.; Kasaeian, A.; Kassa, T.D.; Kazemeini, H.; Kefale, A.T.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kisa, A.; Kivimäki, M.; Koyanagi, A.; Krishnamurthi, R.K.; Kumar, G.A.; Lafranconi, A.; Lewington, S.; Li, S.; Lo, W.D.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Mackay, M.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Manafi, N.; Mansournia, M.A.; Mehndiratta, M.M.; Mehta, V.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mirrakhimov, E.M.; Mohajer, B.; Mohammad, Y.; Mohammadoo-khorasani, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Mokhayeri, Y.; Moradi, G.; Morawska, L.; Moreno Velásquez, I.; Mousavi, S.M.; Muhammed, O.S.S.; Muruet, W.; Naderi, M.; Naghavi, M.; Naik, G.; Nascimento, B.R.; Negoi, R.I.; Nguyen, C.T.; Nguyen, L.H.; Nirayo, Y.L.; Norrving, B.; Noubiap, J.J.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Olagunju, T.O.; Owolabi, M.O.; Pandian, J.D.; Patel, S.; Perico, N.; Piradov, M.A.; Polinder, S.; Postma, M.J.; Poustchi, H.; Prakash, V.; Qorbani, M.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.A.; Reis, C.; Remuzzi, G.; Renzaho, A.M.N.; Ricci, S.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Roshandel, G.; Sabbagh, P.; Safari, H.; Safari, S.; Safiri, S.; Sahebkar, A.; Salehi Zahabi, S.; Samy, A.M.; Santalucia, P.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sartorius, B.; Sawant, A.R.; Schutte, A.E.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Shams-Beyranvand, M.; Sheikh, A.; Sheth, K.N.; Shibuya, K.; Shigematsu, M.; Shin, M-J.; Shiue, I.; Siabani, S.; Sobaih, B.H.; Sposato, L.A.; Sutradhar, I.; Sylaja, P.N.; Szoeke, C.E.I.; Te Ao, B.J.; Temsah, M-H.; Temsah, O.; Thrift, A.G.; Tonelli, M.; Topor-Madry, R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Venketasubramanian, N.; Vosoughi, K.; Vu, G.T.; Waheed, Y.; Weiderpass, E.; Weldegwergs, K.G.; Westerman, R.; Wolfe, C.D.A.; Wondafrash, D.Z.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yatsuya, H.; Yimer, E.M.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zamani, M.; Zarghi, A.; Zhang, Y.; Zodpey, S.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 439-458.
[http://dx.doi.org/10.1016/S1474-4422(19)30034-1] [PMID: 30871944]
[2]
Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; van der Lugt, A.; de Miquel, M.A.; Donnan, G.A.; Roos, Y.B.W.E.M.; Bonafe, A.; Jahan, R.; Diener, H.C.; van den Berg, L.A.; Levy, E.I.; Berkhemer, O.A.; Pereira, V.M.; Rempel, J.; Millán, M.; Davis, S.M.; Roy, D.; Thornton, J.; Román, L.S.; Ribó, M.; Beumer, D.; Stouch, B.; Brown, S.; Campbell, B.C.V.; van Oostenbrugge, R.J.; Saver, J.L.; Hill, M.D.; Jovin, T.G. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet, 2016, 387(10029), 1723-1731.
[http://dx.doi.org/10.1016/S0140-6736(16)00163-X] [PMID: 26898852]
[3]
Ao, L.; Yan, Y.Y.; Zhou, L.; Li, C.; Li, W.T.; Fang, W.; Li, Y. Immune Cells After Ischemic Stroke Onset: Roles, Migration, and Target Intervention. J. Mol. Neurosci., 2018, 66(3), 342-355.
[http://dx.doi.org/10.1007/s12031-018-1173-4] [PMID: 30276612]
[4]
Weisenburger-Lile, D.; Dong, Y.; Yger, M.; Weisenburger, G.; Polara, G.F.; Chaigneau, T.; Ochoa, R.Z.; Marro, B.; Lapergue, B.; Alamowitch, S.; Elbim, C. Harmful neutrophil subsets in patients with ischemic stroke. Neurol. Neuroimmunol. Neuroinflamm., 2019, 6(4)e571
[http://dx.doi.org/10.1212/NXI.0000000000000571] [PMID: 31355307]
[5]
Use of anti-ICAM-1 therapy in ischemic stroke: Results of the enlimomab acute stroke trial. Neurology, 2001, 57(8), 1428-1434.
[http://dx.doi.org/10.1212/WNL.57.8.1428] [PMID: 11673584]
[6]
Krams, M.; Lees, K.R.; Hacke, W.; Grieve, A.P.; Orgogozo, J.M.; Ford, G.A. Acute stroke therapy by inhibition of neutrophils (ASTIN): An adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke, 2003, 34(11), 2543-2548.
[http://dx.doi.org/10.1161/01.STR.0000092527.33910.89] [PMID: 14563972]
[7]
Ng, L.G.; Ostuni, R.; Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol., 2019, 19(4), 255-265.
[http://dx.doi.org/10.1038/s41577-019-0141-8] [PMID: 30816340]
[8]
Hua, X.; Hu, G.; Hu, Q.; Chang, Y.; Hu, Y.; Gao, L.; Chen, X.; Yang, P.C.; Zhang, Y.; Li, M.; Song, J. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation, 2020, 142(4), 384-400.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043545] [PMID: 32431172]
[9]
Szczerba, B.M.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M.C.; Donato, C.; Scherrer, R.; Singer, J.; Beisel, C.; Kurzeder, C.; Heinzelmann-Schwarz, V.; Rochlitz, C.; Weber, W.P.; Beerenwinkel, N.; Aceto, N. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature, 2019, 566(7745), 553-557.
[http://dx.doi.org/10.1038/s41586-019-0915-y] [PMID: 30728496]
[10]
Cuartero, M.I.; Ballesteros, I.; Moraga, A.; Nombela, F.; Vivancos, J.; Hamilton, J.A.; Corbí, Á.L.; Lizasoain, I.; Moro, M.A. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke, 2013, 44(12), 3498-3508.
[http://dx.doi.org/10.1161/STROKEAHA.113.002470] [PMID: 24135932]
[11]
Hou, Y.; Yang, D.; Xiang, R.; Wang, H.; Wang, X.; Zhang, H.; Wang, P.; Zhang, Z.; Che, X.; Liu, Y.; Gao, Y.; Yu, X.; Gao, X.; Zhang, W.; Yang, J.; Wu, C. N2 neutrophils may participate in spontaneous recovery after transient cerebral ischemia by inhibiting ischemic neuron injury in rats. Int. Immunopharmacol., 2019, 77105970
[http://dx.doi.org/10.1016/j.intimp.2019.105970] [PMID: 31675618]
[12]
Basu, S.; Hodgson, G.; Katz, M.; Dunn, A.R. Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood, 2002, 100(3), 854-861.
[http://dx.doi.org/10.1182/blood.V100.3.854] [PMID: 12130495]
[13]
Borregaard, N. Neutrophils, from marrow to microbes. Immunity, 2010, 33(5), 657-670.
[http://dx.doi.org/10.1016/j.immuni.2010.11.011] [PMID: 21094463]
[14]
Grassi, L.; Pourfarzad, F.; Ullrich, S.; Merkel, A.; Were, F.; Carrillo-de-Santa-Pau, E.; Yi, G.; Hiemstra, I.H.; Tool, A.T.J.; Mul, E.; Perner, J.; Janssen-Megens, E.; Berentsen, K.; Kerstens, H.; Habibi, E.; Gut, M.; Yaspo, M.L.; Linser, M.; Lowy, E.; Datta, A.; Clarke, L.; Flicek, P.; Vingron, M.; Roos, D.; van den Berg, T.K.; Heath, S.; Rico, D.; Frontini, M.; Kostadima, M.; Gut, I.; Valencia, A.; Ouwehand, W.H.; Stunnenberg, H.G.; Martens, J.H.A.; Kuijpers, T.W. Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Rep., 2018, 24(10), 2784-2794.
[http://dx.doi.org/10.1016/j.celrep.2018.08.018] [PMID: 30184510]
[15]
Liew, P.X.; Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev., 2019, 99(2), 1223-1248.
[http://dx.doi.org/10.1152/physrev.00012.2018] [PMID: 30758246]
[16]
Lapidot, T.; Kollet, O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia, 2002, 16(10), 1992-2003.
[http://dx.doi.org/10.1038/sj.leu.2402684] [PMID: 12357350]
[17]
Eash, K.J.; Greenbaum, A.M.; Gopalan, P.K.; Link, D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest., 2010, 120(7), 2423-2431.
[http://dx.doi.org/10.1172/JCI41649] [PMID: 20516641]
[18]
Christopher, M.J.; Liu, F.; Hilton, M.J.; Long, F.; Link, D.C. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood, 2009, 114(7), 1331-1339.
[http://dx.doi.org/10.1182/blood-2008-10-184754] [PMID: 19141863]
[19]
Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, 13(3), 159-175.
[http://dx.doi.org/10.1038/nri3399] [PMID: 23435331]
[20]
Németh, T.; Sperandio, M.; Mócsai, A. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug Discov., 2020, 19(4), 253-275.
[http://dx.doi.org/10.1038/s41573-019-0054-z] [PMID: 31969717]
[21]
Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med., 2018, 24(6), 711-720.
[http://dx.doi.org/10.1038/s41591-018-0064-0] [PMID: 29867229]
[22]
Christoffersson, G.; Vågesjö, E.; Vandooren, J.; Lidén, M.; Massena, S.; Reinert, R.B.; Brissova, M.; Powers, A.C.; Opdenakker, G.; Phillipson, M. VEGF-A recruits a proangiogenic MMP-9–delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood, 2012, 120(23), 4653-4662.
[http://dx.doi.org/10.1182/blood-2012-04-421040] [PMID: 22966168]
[23]
Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol., 2012, 30(1), 459-489.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074942] [PMID: 22224774]
[24]
Meijer, M.; Rijkers, G.T.; van Overveld, F.J. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev. Clin. Immunol., 2013, 9(11), 1055-1068.
[http://dx.doi.org/10.1586/1744666X.2013.851347] [PMID: 24168412]
[25]
Silvestre-Roig, C.; Braster, Q.; Wichapong, K.; Lee, E.Y.; Teulon, J.M.; Berrebeh, N.; Winter, J.; Adrover, J.M.; Santos, G.S.; Froese, A.; Lemnitzer, P.; Ortega-Gómez, A.; Chevre, R.; Marschner, J.; Schumski, A.; Winter, C.; Perez-Olivares, L.; Pan, C.; Paulin, N.; Schoufour, T.; Hartwig, H.; González-Ramos, S.; Kamp, F.; Megens, R.T.A.; Mowen, K.A.; Gunzer, M.; Maegdefessel, L.; Hackeng, T.; Lutgens, E.; Daemen, M.; von Blume, J.; Anders, H.J.; Nikolaev, V.O.; Pellequer, J.L.; Weber, C.; Hidalgo, A.; Nicolaes, G.A.F.; Wong, G.C.L.; Soehnlein, O. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, 569(7755), 236-240.
[http://dx.doi.org/10.1038/s41586-019-1167-6] [PMID: 31043745]
[26]
Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; Bassett, R.; Amuro, H.; Fukuhara, S.; Ito, T.; Liu, Y.J.; Gilliet, M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, 3(73)73ra19
[http://dx.doi.org/10.1126/scitranslmed.3001180] [PMID: 21389263]
[27]
Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; Gizinski, A.; Yalavarthi, S.; Knight, J.S.; Friday, S.; Li, S.; Patel, R.M.; Subramanian, V.; Thompson, P.; Chen, P.; Fox, D.A.; Pennathur, S.; Kaplan, M.J. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013, 5(178)178ra40
[http://dx.doi.org/10.1126/scitranslmed.3005580] [PMID: 23536012]
[28]
Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood, 2019, 133(20), 2159-2167.
[http://dx.doi.org/10.1182/blood-2018-11-844548] [PMID: 30898857]
[29]
Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, 11(8), 519-531.
[http://dx.doi.org/10.1038/nri3024] [PMID: 21785456]
[30]
Mestas, J.; Hughes, C.C.W. Of mice and not men: differences between mouse and human immunology. J. Immunol., 2004, 172(5), 2731-2738.
[http://dx.doi.org/10.4049/jimmunol.172.5.2731] [PMID: 14978070]
[31]
Dancey, J.T.; Deubelbeiss, K.A.; Harker, L.A.; Finch, C.A. Neutrophil kinetics in man. J. Clin. Invest., 1976, 58(3), 705-715.
[http://dx.doi.org/10.1172/JCI108517] [PMID: 956397]
[32]
Hidalgo, A.; Chilvers, E.R.; Summers, C.; Koenderman, L. The Neutrophil Life Cycle. Trends Immunol., 2019, 40(7), 584-597.
[http://dx.doi.org/10.1016/j.it.2019.04.013] [PMID: 31153737]
[33]
Pillay, J.; den Braber, I.; Vrisekoop, N.; Kwast, L.M.; de Boer, R.J.; Borghans, J.A.M.; Tesselaar, K.; Koenderman, L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, 116(4), 625-627.
[http://dx.doi.org/10.1182/blood-2010-01-259028] [PMID: 20410504]
[34]
Casanova-Acebes, M.; Pitaval, C.; Weiss, L.A.; Nombela-Arrieta, C.; Chèvre, R. A-González, N.; Kunisaki, Y.; Zhang, D.; van Rooijen, N.; Silberstein, L.E.; Weber, C.; Nagasawa, T.; Frenette, P.S.; Castrillo, A.; Hidalgo, A. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, 153(5), 1025-1035.
[http://dx.doi.org/10.1016/j.cell.2013.04.040] [PMID: 23706740]
[35]
Adrover, J.M.; del Fresno, C.; Crainiciuc, G.; Cuartero, M.I.; Casanova-Acebes, M.; Weiss, L.A.; Huerga-Encabo, H.; Silvestre-Roig, C.; Rossaint, J.; Cossío, I.; Lechuga-Vieco, A.V.; García-Prieto, J.; Gómez-Parrizas, M.; Quintana, J.A.; Ballesteros, I.; Martin-Salamanca, S.; Aroca-Crevillen, A.; Chong, S.Z.; Evrard, M.; Balabanian, K.; López, J.; Bidzhekov, K.; Bachelerie, F.; Abad-Santos, F.; Muñoz-Calleja, C.; Zarbock, A.; Soehnlein, O.; Weber, C.; Ng, L.G.; Lopez-Rodriguez, C.; Sancho, D.; Moro, M.A.; Ibáñez, B.; Hidalgo, A. A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50(2), 390-402.e10.
[http://dx.doi.org/10.1016/j.immuni.2019.01.002] [PMID: 30709741]
[36]
Eash, K.J.; Means, J.M.; White, D.W.; Link, D.C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, 113(19), 4711-4719.
[http://dx.doi.org/10.1182/blood-2008-09-177287] [PMID: 19264920]
[37]
Shi, J.; Gilbert, G.E.; Kokubo, Y.; Ohashi, T. Role of the liver in regulating numbers of circulating neutrophils. Blood, 2001, 98(4), 1226-1230.
[http://dx.doi.org/10.1182/blood.V98.4.1226] [PMID: 11493474]
[38]
Stark, M.A.; Huo, Y.; Burcin, T.L.; Morris, M.A.; Olson, T.S.; Ley, K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, 22(3), 285-294.
[http://dx.doi.org/10.1016/j.immuni.2005.01.011] [PMID: 15780986]
[39]
Bonaventura, A.; Liberale, L.; Carbone, F.; Vecchié, A.; Diaz-Cañestro, C.; Camici, G.; Montecucco, F.; Dallegri, F. The Pathophysiological Role of Neutrophil Extracellular Traps in Inflammatory Diseases. Thromb. Haemost., 2018, 118(1), 006-027.
[http://dx.doi.org/10.1160/TH17-09-0630] [PMID: 29304522]
[40]
Silvestre-Roig, C.; Hidalgo, A.; Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, 127(18), 2173-2181.
[http://dx.doi.org/10.1182/blood-2016-01-688887] [PMID: 27002116]
[41]
Garlichs, C.D.; Eskafi, S.; Cicha, I.; Schmeisser, A.; Walzog, B.; Raaz, D.; Stumpf, C.; Yilmaz, A.; Bremer, J.; Ludwig, J.; Daniel, W.G. Delay of neutrophil apoptosis in acute coronary syndromes. J. Leukoc. Biol., 2004, 75(5), 828-835.
[http://dx.doi.org/10.1189/jlb.0703358] [PMID: 14742636]
[42]
Laval, J.; Touhami, J.; Herzenberg, L.A.; Conrad, C.; Taylor, N.; Battini, J.L.; Sitbon, M.; Tirouvanziam, R. Metabolic adaptation of neutrophils in cystic fibrosis airways involves distinct shifts in nutrient transporter expression. J. Immunol., 2013, 190(12), 6043-6050.
[http://dx.doi.org/10.4049/jimmunol.1201755] [PMID: 23690474]
[43]
Colotta, F.; Re, F.; Polentarutti, N.; Sozzani, S.; Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 1992, 80(8), 2012-2020.
[http://dx.doi.org/10.1182/blood.V80.8.2012.2012] [PMID: 1382715]
[44]
Ecker, S.; Chen, L.; Pancaldi, V.; Bagger, F.O.; Fernández, J.M.; Carrillo de Santa Pau, E.; Juan, D.; Mann, A.L.; Watt, S.; Casale, F.P.; Sidiropoulos, N.; Rapin, N.; Merkel, A.; Stunnenberg, H.G.; Stegle, O.; Frontini, M.; Downes, K.; Pastinen, T.; Kuijpers, T.W.; Rico, D.; Valencia, A.; Beck, S.; Soranzo, N.; Paul, D.S. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol., 2017, 18(1), 18.
[http://dx.doi.org/10.1186/s13059-017-1156-8] [PMID: 28126036]
[45]
Naranbhai, V.; Fairfax, B.P.; Makino, S.; Humburg, P.; Wong, D.; Ng, E.; Hill, A.V.S.; Knight, J.C. Genomic modulators of gene expression in human neutrophils. Nat. Commun., 2015, 6(1), 7545.
[http://dx.doi.org/10.1038/ncomms8545] [PMID: 26151758]
[46]
Cowland, J.B.; Borregaard, N. Granulopoiesis and granules of human neutrophils. Immunol. Rev., 2016, 273(1), 11-28.
[http://dx.doi.org/10.1111/imr.12440] [PMID: 27558325]
[47]
Silvestre-Roig, C.; Fridlender, Z.G.; Glogauer, M.; Scapini, P. Neutrophil Diversity in Health and Disease. Trends Immunol., 2019, 40(7), 565-583.
[http://dx.doi.org/10.1016/j.it.2019.04.012] [PMID: 31160207]
[48]
Wang, X.; Qiu, L.; Li, Z.; Wang, X.Y.; Yi, H. Understanding the Multifaceted Role of Neutrophils in Cancer and Autoimmune Diseases. Front. Immunol., 2018, 9, 2456.
[http://dx.doi.org/10.3389/fimmu.2018.02456] [PMID: 30473691]
[49]
Massena, S.; Christoffersson, G.; Vågesjö, E.; Seignez, C.; Gustafsson, K.; Binet, F.; Herrera, H.C.; Giraud, A.; Lomei, J.; Weström, S.; Shibuya, M.; Claesson-Welsh, L.; Gerwins, P.; Welsh, M.; Kreuger, J.; Phillipson, M. Identification and characterization of VEGF-A–responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood, 2015, 126(17), 2016-2026.
[http://dx.doi.org/10.1182/blood-2015-03-631572] [PMID: 26286848]
[50]
Evrard, M.; Kwok, I.W.H.; Chong, S.Z.; Teng, K.W.W.; Becht, E.; Chen, J.; Sieow, J.L.; Penny, H.L.; Ching, G.C.; Devi, S.; Adrover, J.M.; Li, J.L.Y.; Liong, K.H.; Tan, L.; Poon, Z.; Foo, S.; Chua, J.W.; Su, I.H.; Balabanian, K.; Bachelerie, F.; Biswas, S.K.; Larbi, A.; Hwang, W.Y.K.; Madan, V.; Koeffler, H.P.; Wong, S.C.; Newell, E.W.; Hidalgo, A.; Ginhoux, F.; Ng, L.G. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity, 2018, 48(2), 364-379.e8.
[http://dx.doi.org/10.1016/j.immuni.2018.02.002] [PMID: 29466759]
[51]
Margraf, A.; Ley, K.; Zarbock, A. Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns. Trends Immunol., 2019, 40(7), 613-634.
[http://dx.doi.org/10.1016/j.it.2019.04.010] [PMID: 31175062]
[52]
Briggs, J.A.; Weinreb, C.; Wagner, D.E.; Megason, S.; Peshkin, L.; Kirschner, M.W.; Klein, A.M. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science, 2018, 360(6392)eaar5780
[http://dx.doi.org/10.1126/science.aar5780] [PMID: 29700227]
[53]
Grieshaber-Bouyer, R.; Radtke, F.A.; Cunin, P.; Stifano, G.; Levescot, A.; Vijaykumar, B.; Nelson-Maney, N.; Blaustein, R.B.; Monach, P.A.; Nigrovic, P.A. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun., 2021, 12(1), 2856.
[http://dx.doi.org/10.1038/s41467-021-22973-9] [PMID: 34001893]
[54]
Xie, X.; Shi, Q.; Wu, P.; Zhang, X.; Kambara, H.; Su, J.; Yu, H.; Park, S.Y.; Guo, R.; Ren, Q.; Zhang, S.; Xu, Y.; Silberstein, L.E.; Cheng, T.; Ma, F.; Li, C.; Luo, H.R. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol., 2020, 21(9), 1119-1133.
[http://dx.doi.org/10.1038/s41590-020-0736-z] [PMID: 32719519]
[55]
Zilionis, R.; Engblom, C.; Pfirschke, C.; Savova, V.; Zemmour, D.; Saatcioglu, H.D.; Krishnan, I.; Maroni, G.; Meyerovitz, C.V.; Kerwin, C.M.; Choi, S.; Richards, W.G.; De Rienzo, A.; Tenen, D.G.; Bueno, R.; Levantini, E.; Pittet, M.J.; Klein, A.M. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity, 2019, 50(5), 1317-1334.e10.
[http://dx.doi.org/10.1016/j.immuni.2019.03.009] [PMID: 30979687]
[56]
Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3), 183-194.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[57]
Ma, Y.; Yabluchanskiy, A.; Iyer, R.P.; Cannon, P.L.; Flynn, E.R.; Jung, M.; Henry, J.; Cates, C.A.; Deleon-Pennell, K.Y.; Lindsey, M.L. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res., 2016, 110(1), 51-61.
[http://dx.doi.org/10.1093/cvr/cvw024] [PMID: 26825554]
[58]
Neely, C.J.; Kartchner, L.B.; Mendoza, A.E.; Linz, B.M.; Frelinger, J.A.; Wolfgang, M.C.; Maile, R.; Cairns, B.A. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12- neutrophil polarization. PLoS One, 2014, 9(1)e85623
[http://dx.doi.org/10.1371/journal.pone.0085623] [PMID: 24454904]
[59]
Hou, Y.; Yang, D.; Zhang, Q.; Wang, X.; Yang, J.; Wu, C. Pseudoginsenoside-F11 ameliorates ischemic neuron injury by regulating the polarization of neutrophils and macrophages in vitro. Int. Immunopharmacol., 2020, 85106564
[http://dx.doi.org/10.1016/j.intimp.2020.106564] [PMID: 32447220]
[60]
Buck, B.H.; Liebeskind, D.S.; Saver, J.L.; Bang, O.Y.; Yun, S.W.; Starkman, S.; Ali, L.K.; Kim, D.; Villablanca, J.P.; Salamon, N.; Razinia, T.; Ovbiagele, B. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke, 2008, 39(2), 355-360.
[http://dx.doi.org/10.1161/STROKEAHA.107.490128] [PMID: 18162626]
[61]
Denes, A.; McColl, B.W.; Leow-Dyke, S.F.; Chapman, K.Z.; Humphreys, N.E.; Grencis, R.K.; Allan, S.M.; Rothwell, N.J. Experimental stroke-induced changes in the bone marrow reveal complex regulation of leukocyte responses. J. Cereb. Blood Flow Metab., 2011, 31(4), 1036-1050.
[http://dx.doi.org/10.1038/jcbfm.2010.198] [PMID: 21045863]
[62]
Cai, W.; Liu, S.; Hu, M.; Huang, F.; Zhu, Q.; Qiu, W.; Hu, X.; Colello, J.; Zheng, S.G.; Lu, Z. Functional dynamics of neutrophils after ischemic stroke. Transl. Stroke Res., 2020, 11(1), 108-121.
[http://dx.doi.org/10.1007/s12975-019-00694-y] [PMID: 30847778]
[63]
Liu, Q.; Sorooshyari, S.K. Quantitative and correlational analysis of brain and spleen immune cellular responses following cerebral ischemia. Front. Immunol., 2021, 12617032
[http://dx.doi.org/10.3389/fimmu.2021.617032] [PMID: 34194419]
[64]
Meisel, C.; Schwab, J.M.; Prass, K.; Meisel, A.; Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci., 2005, 6(10), 775-786.
[http://dx.doi.org/10.1038/nrn1765] [PMID: 16163382]
[65]
Mracsko, E.; Liesz, A.; Karcher, S.; Zorn, M.; Bari, F.; Veltkamp, R. Differential effects of sympathetic nervous system and hypothalamic–pituitary–adrenal axis on systemic immune cells after severe experimental stroke. Brain Behav. Immun., 2014, 41, 200-209.
[http://dx.doi.org/10.1016/j.bbi.2014.05.015] [PMID: 24886966]
[66]
Zhang, J-H.; Zhang, J.H. Role of the sympathetic nervous system and spleen in experimental stroke-induced immunodepression. Med. Sci. Monit., 2014, 20, 2489-2496.
[http://dx.doi.org/10.12659/MSM.890844] [PMID: 25434807]
[67]
Courties, G.; Herisson, F.; Sager, H.B.; Heidt, T.; Ye, Y.; Wei, Y.; Sun, Y.; Severe, N.; Dutta, P.; Scharff, J.; Scadden, D.T.; Weissleder, R.; Swirski, F.K.; Moskowitz, M.A.; Nahrendorf, M. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ. Res., 2015, 116(3), 407-417.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305207] [PMID: 25362208]
[68]
Pennypacker, K.R.; Offner, H. The role of the spleen in ischemic stroke. J. Cereb. Blood Flow Metab., 2015, 35(2), 186-187.
[http://dx.doi.org/10.1038/jcbfm.2014.212] [PMID: 25465042]
[69]
Sippel, T.R.; Shimizu, T.; Strnad, F.; Traystman, R.J.; Herson, P.S.; Waziri, A. Arginase I release from activated neutrophils induces peripheral immunosuppression in a murine model of stroke. J. Cereb. Blood Flow Metab., 2015, 35(10), 1657-1663.
[http://dx.doi.org/10.1038/jcbfm.2015.103] [PMID: 25966956]
[70]
Losy, J.; Zaremba, J.; Skrobański, P. CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. Folia Neuropathol., 2005, 43(2), 97-102.
[PMID: 16012911]
[71]
Zaremba, J.; Skrobański, P.; Losy, J. The level of chemokine CXCL5 in the cerebrospinal fluid is increased during the first 24 hours of ischaemic stroke and correlates with the size of early brain damage. Folia Morphol. (Warsz), 2006, 65(1), 1-5.
[PMID: 16783727]
[72]
Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, 464(7285), 104-107.
[http://dx.doi.org/10.1038/nature08780] [PMID: 20203610]
[73]
Shichita, T.; Hasegawa, E.; Kimura, A.; Morita, R.; Sakaguchi, R.; Takada, I.; Sekiya, T.; Ooboshi, H.; Kitazono, T.; Yanagawa, T.; Ishii, T.; Takahashi, H.; Mori, S.; Nishibori, M.; Kuroda, K.; Akira, S.; Miyake, K.; Yoshimura, A. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med., 2012, 18(6), 911-917.
[http://dx.doi.org/10.1038/nm.2749] [PMID: 22610280]
[74]
Kuboyama, K.; Harada, H.; Tozaki-Saitoh, H.; Tsuda, M.; Ushijima, K.; Inoue, K. Astrocytic P2Y 1 receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. J. Cereb. Blood Flow Metab., 2011, 31(9), 1930-1941.
[http://dx.doi.org/10.1038/jcbfm.2011.49] [PMID: 21487414]
[75]
Denes, A.; Vidyasagar, R.; Feng, J.; Narvainen, J.; McColl, B.W.; Kauppinen, R.A.; Allan, S.M. Proliferating resident microglia after focal cerebral ischaemia in mice. J. Cereb. Blood Flow Metab., 2007, 27(12), 1941-1953.
[http://dx.doi.org/10.1038/sj.jcbfm.9600495] [PMID: 17440490]
[76]
Kong, L.L.; Hu, J.F.; Zhang, W.; Yuan, Y.H.; Ma, K.L.; Han, N.; Chen, N.H. Expression of chemokine-like factor 1 after focal cerebral ischemia in the rat. Neurosci. Lett., 2011, 505(1), 14-18.
[http://dx.doi.org/10.1016/j.neulet.2011.09.031] [PMID: 21964493]
[77]
Scholz, M.; Cinatl, J.; Schädel-Höpfner, M.; Windolf, J. Neutrophils and the blood–brain barrier dysfunction after trauma. Med. Res. Rev., 2007, 27(3), 401-416.
[http://dx.doi.org/10.1002/med.20064] [PMID: 16758487]
[78]
Liu, Q.; Li, Z.; Gao, J.L.; Wan, W.; Ganesan, S.; McDermott, D.H.; Murphy, P.M. CXCR4 antagonist AMD3100 redistributes leukocytes from primary immune organs to secondary immune organs, lung, and blood in mice. Eur. J. Immunol., 2015, 45(6), 1855-1867.
[http://dx.doi.org/10.1002/eji.201445245] [PMID: 25801950]
[79]
Offner, H.; Subramanian, S.; Parker, S.M.; Wang, C.; Afentoulis, M.E.; Lewis, A.; Vandenbark, A.A.; Hurn, P.D. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J. Immunol., 2006, 176(11), 6523-6531.
[http://dx.doi.org/10.4049/jimmunol.176.11.6523] [PMID: 16709809]
[80]
Vahidy, F.S.; Parsha, K.N.; Rahbar, M.H.; Lee, M.; Bui, T.T.; Nguyen, C.; Barreto, A.D.; Bambhroliya, A.B.; Sahota, P.; Yang, B.; Aronowski, J.; Savitz, S.I. Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2016, 36(6), 1012-1021.
[http://dx.doi.org/10.1177/0271678X15607880] [PMID: 26661179]
[81]
Liu, Q.; Johnson, E.M.; Lam, R.K.; Wang, Q.; Bo, Ye H.; Wilson, E.N.; Minhas, P.S.; Liu, L.; Swarovski, M.S.; Tran, S.; Wang, J.; Mehta, S.S.; Yang, X.; Rabinowitz, J.D.; Yang, S.S.; Shamloo, M.; Mueller, C.; James, M.L.; Andreasson, K.I. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat. Immunol., 2019, 20(8), 1023-1034.
[http://dx.doi.org/10.1038/s41590-019-0421-2] [PMID: 31263278]
[82]
Cugurra, A.; Mamuladze, T.; Rustenhoven, J.; Dykstra, T.; Beroshvili, G.; Greenberg, Z.J.; Baker, W.; Papadopoulos, Z.; Drieu, A.; Blackburn, S.; Kanamori, M.; Brioschi, S.; Herz, J.; Schuettpelz, L.G.; Colonna, M.; Smirnov, I.; Kipnis, J. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science, 2021, 373(6553)eabf7844
[http://dx.doi.org/10.1126/science.abf7844] [PMID: 34083447]
[83]
Cai, R.; Pan, C.; Ghasemigharagoz, A.; Todorov, M.I.; Förstera, B.; Zhao, S.; Bhatia, H.S.; Parra-Damas, A.; Mrowka, L.; Theodorou, D.; Rempfler, M.; Xavier, A.L.R.; Kress, B.T.; Benakis, C.; Steinke, H.; Liebscher, S.; Bechmann, I.; Liesz, A.; Menze, B.; Kerschensteiner, M.; Nedergaard, M.; Ertürk, A. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci., 2019, 22(2), 317-327.
[http://dx.doi.org/10.1038/s41593-018-0301-3] [PMID: 30598527]
[84]
Herisson, F.; Frodermann, V.; Courties, G.; Rohde, D.; Sun, Y.; Vandoorne, K.; Wojtkiewicz, G.R.; Masson, G.S.; Vinegoni, C.; Kim, J.; Kim, D.E.; Weissleder, R.; Swirski, F.K.; Moskowitz, M.A.; Nahrendorf, M. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci., 2018, 21(9), 1209-1217.
[http://dx.doi.org/10.1038/s41593-018-0213-2] [PMID: 30150661]
[85]
Jickling, G.C.; Liu, D.; Ander, B.P.; Stamova, B.; Zhan, X.; Sharp, F.R. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J. Cereb. Blood Flow Metab., 2015, 35(6), 888-901.
[http://dx.doi.org/10.1038/jcbfm.2015.45] [PMID: 25806703]
[86]
Cui, L.; Zhang, Y.; Chen, Z.; Su, Y.; Liu, Y.; Boltze, J. Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction. CNS Neurosci. Ther., 2020, 26(8), 829-836.
[http://dx.doi.org/10.1111/cns.13381] [PMID: 32374521]
[87]
Lin, S.K.; Chen, P.Y.; Chen, G.C.; Hsu, P.J.; Hsiao, C.L.; Yang, F.Y.; Liu, C.Y.; Tsou, A. Association of a high neutrophil-to-lymphocyte ratio with hyperdense artery sign and unfavorable short-term outcomes in patients with acute ischemic stroke. J. Inflamm. Res., 2021, 14, 313-324.
[http://dx.doi.org/10.2147/JIR.S293825] [PMID: 33574692]
[88]
Pektezel, M.Y.; Yilmaz, E.; Arsava, E.M.; Topcuoglu, M.A. Neutrophil-to-lymphocyte ratio and response to intravenous thrombolysis in patients with acute ischemic stroke. J. Stroke Cerebrovasc. Dis., 2019, 28(7), 1853-1859.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.04.014] [PMID: 31072698]
[89]
Nam, K.W.; Kim, T.J.; Lee, J.S.; Kwon, H.M.; Lee, Y.S.; Ko, S.B.; Yoon, B.W. High neutrophil-to-lymphocyte ratio predicts stroke-associated pneumonia. Stroke, 2018, 49(8), 1886-1892.
[http://dx.doi.org/10.1161/STROKEAHA.118.021228] [PMID: 29967014]
[90]
Kotfis, K.; Bott-Olejnik, M.; Szylińska, A.; Rotter, I. Could neutrophil-to-lymphocyte ratio (NLR) serve as a potential marker for delirium prediction in patients with acute ischemic stroke? A Prospective observational study. J. Clin. Med., 2019, 8(7), 1075.
[http://dx.doi.org/10.3390/jcm8071075] [PMID: 31336587]
[91]
Goyal, N.; Tsivgoulis, G.; Chang, J.J.; Malhotra, K.; Pandhi, A.; Ishfaq, M.F.; Alsbrook, D.; Arthur, A.S.; Elijovich, L.; Alexandrov, A.V. Admission neutrophil-to-lymphocyte ratio as a prognostic biomarker of outcomes in large vessel occlusion strokes. Stroke, 2018, 49(8), 1985-1987.
[http://dx.doi.org/10.1161/STROKEAHA.118.021477] [PMID: 30002151]
[92]
Aly, M.; Abdalla, R.N.; Batra, A.; Shaibani, A.; Hurley, M.C.; Jahromi, B.S.; Potts, M.B.; Ansari, S.A. Follow-up neutrophil-lymphocyte ratio after stroke thrombectomy is an independent biomarker of clinical outcome. J. Neurointerv. Surg., 2021, 13(7), 609-613.
[http://dx.doi.org/10.1136/neurintsurg-2020-016342] [PMID: 32763917]
[93]
Mo, X.; Li, T.; Ji, G.; Lu, W.; Hu, Z. Peripheral polymorphonuclear leukocyte activation as a systemic inflammatory response in ischemic stroke. Neurol. Sci., 2013, 34(9), 1509-1516.
[http://dx.doi.org/10.1007/s10072-013-1447-0] [PMID: 23619532]
[94]
Dimasi, D.; Sun, W.Y.; Bonder, C.S. Neutrophil interactions with the vascular endothelium. Int. Immunopharmacol., 2013, 17(4), 1167-1175.
[http://dx.doi.org/10.1016/j.intimp.2013.05.034] [PMID: 23863858]
[95]
Lakhan, S.E.; Kirchgessner, A.; Hofer, M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J. Transl. Med., 2009, 7(1), 97.
[http://dx.doi.org/10.1186/1479-5876-7-97] [PMID: 19919699]
[96]
Kansas, G.S. Selectins and their ligands: current concepts and controversies. Blood, 1996, 88(9), 3259-3287.
[http://dx.doi.org/10.1182/blood.V88.9.3259.bloodjournal8893259] [PMID: 8896391]
[97]
Neumann, J.; Riek-Burchardt, M.; Herz, J.; Doeppner, T.R.; König, R.; Hütten, H.; Etemire, E.; Männ, L.; Klingberg, A.; Fischer, T.; Görtler, M.W.; Heinze, H.J.; Reichardt, P.; Schraven, B.; Hermann, D.M.; Reymann, K.G.; Gunzer, M. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol., 2015, 129(2), 259-277.
[http://dx.doi.org/10.1007/s00401-014-1355-2] [PMID: 25391494]
[98]
Anrather, J.; Iadecola, C. Inflammation and Stroke: An Overview. Neurotherapeutics, 2016, 13(4), 661-670.
[http://dx.doi.org/10.1007/s13311-016-0483-x] [PMID: 27730544]
[99]
Sreeramkumar, V.; Adrover, J.M.; Ballesteros, I.; Cuartero, M.I.; Rossaint, J.; Bilbao, I.; Nácher, M.; Pitaval, C.; Radovanovic, I.; Fukui, Y.; McEver, R.P.; Filippi, M.D.; Lizasoain, I.; Ruiz-Cabello, J.; Zarbock, A.; Moro, M.A.; Hidalgo, A. Neutrophils scan for activated platelets to initiate inflammation. Science, 2014, 346(6214), 1234-1238.
[http://dx.doi.org/10.1126/science.1256478] [PMID: 25477463]
[100]
Schuhmann, M.K.; Guthmann, J.; Stoll, G.; Nieswandt, B.; Kraft, P.; Kleinschnitz, C. Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke. J. Neuroinflammation, 2017, 14(1), 18.
[http://dx.doi.org/10.1186/s12974-017-0792-y] [PMID: 28109273]
[101]
Simon, D.I.; Chen, Z.; Xu, H.; Li, C.Q.; Dong, J.; McIntire, L.V.; Ballantyne, C.M.; Zhang, L.; Furman, M.I.; Berndt, M.C.; López, J.A. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Exp. Med., 2000, 192(2), 193-204.
[http://dx.doi.org/10.1084/jem.192.2.193] [PMID: 10899906]
[102]
Stamatovic, S.M.; Phillips, C.M.; Keep, R.F.; Andjelkovic, A.V. A novel approach to treatment of thromboembolic stroke in mice: Redirecting neutrophils toward a peripherally implanted CXCL1-soaked sponge. Exp. Neurol., 2020, 330113336
[http://dx.doi.org/10.1016/j.expneurol.2020.113336] [PMID: 32360283]
[103]
Hol, J.; Wilhelmsen, L.; Haraldsen, G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J. Leukoc. Biol., 2010, 87(3), 501-508.
[http://dx.doi.org/10.1189/jlb.0809532] [PMID: 20007247]
[104]
Enzmann, G.; Mysiorek, C.; Gorina, R.; Cheng, Y.J.; Ghavampour, S.; Hannocks, M.J.; Prinz, V.; Dirnagl, U.; Endres, M.; Prinz, M.; Beschorner, R.; Harter, P.N.; Mittelbronn, M.; Engelhardt, B.; Sorokin, L. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol., 2013, 125(3), 395-412.
[http://dx.doi.org/10.1007/s00401-012-1076-3] [PMID: 23269317]
[105]
Perez-de-Puig, I.; Miró-Mur, F.; Ferrer-Ferrer, M.; Gelpi, E.; Pedragosa, J.; Justicia, C.; Urra, X.; Chamorro, A.; Planas, A.M. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol., 2015, 129(2), 239-257.
[http://dx.doi.org/10.1007/s00401-014-1381-0] [PMID: 25548073]
[106]
Price, C.J.S.; Menon, D.K.; Peters, A.M.; Ballinger, J.R.; Barber, R.W.; Balan, K.K.; Lynch, A.; Xuereb, J.H.; Fryer, T.; Guadagno, J.V.; Warburton, E.A. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke, 2004, 35(7), 1659-1664.
[http://dx.doi.org/10.1161/01.STR.0000130592.71028.92] [PMID: 15155970]
[107]
Li, Y.; Zhong, W.; Jiang, Z.; Tang, X. New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res. Bull., 2019, 144, 46-57.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.006] [PMID: 30448453]
[108]
Shi, Y.; Zhang, L.; Pu, H.; Mao, L.; Hu, X.; Jiang, X.; Xu, N.; Stetler, R.A.; Zhang, F.; Liu, X.; Leak, R.K.; Keep, R.F.; Ji, X.; Chen, J. Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat. Commun., 2016, 7(1), 10523.
[http://dx.doi.org/10.1038/ncomms10523] [PMID: 26813496]
[109]
Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol., 2018, 163-164, 144-171.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.001] [PMID: 28987927]
[110]
Khatri, R.; McKinney, A.M.; Swenson, B.; Janardhan, V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology, 2012, 79(131)(Suppl. 1), S52-S57.
[http://dx.doi.org/10.1212/WNL.0b013e3182697e70] [PMID: 23008413]
[111]
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol., 2018, 315(3), C343-C356.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[112]
Krizbai, I.A.; Bauer, H.; Bresgen, N.; Eckl, P.M.; Farkas, A.; Szatmári, E.; Traweger, A.; Wejksza, K.; Bauer, H.C. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell. Mol. Neurobiol., 2005, 25(1), 129-139.
[http://dx.doi.org/10.1007/s10571-004-1378-7] [PMID: 15962510]
[113]
Kang, L.; Yu, H.; Yang, X.; Zhu, Y.; Bai, X.; Wang, R.; Cao, Y.; Xu, H.; Luo, H.; Lu, L.; Shi, M.J.; Tian, Y.; Fan, W.; Zhao, B.Q. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun., 2020, 11(1), 2488.
[http://dx.doi.org/10.1038/s41467-020-16191-y] [PMID: 32427863]
[114]
Jolivel, V.; Bicker, F.; Binamé, F.; Ploen, R.; Keller, S.; Gollan, R.; Jurek, B.; Birkenstock, J.; Poisa-Beiro, L.; Bruttger, J.; Opitz, V.; Thal, S.C.; Waisman, A.; Bäuerle, T.; Schäfer, M.K.; Zipp, F.; Schmidt, M.H.H. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol., 2015, 129(2), 279-295.
[http://dx.doi.org/10.1007/s00401-014-1372-1] [PMID: 25500713]
[115]
Gülke, E.; Gelderblom, M.; Magnus, T. Danger signals in stroke and their role on microglia activation after ischemia. Ther. Adv. Neurol. Disord., 2018, 11.
[http://dx.doi.org/10.1177/1756286418774254] [PMID: 29854002]
[116]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[117]
Kangwantas, K.; Pinteaux, E.; Penny, J. The extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro. J. Neuroinflammation, 2016, 13(1), 25.
[http://dx.doi.org/10.1186/s12974-016-0495-9] [PMID: 26832174]
[118]
Chen, A.Q.; Fang, Z.; Chen, X.L.; Yang, S.; Zhou, Y.F.; Mao, L.; Xia, Y.P.; Jin, H.J.; Li, Y.N.; You, M.F.; Wang, X.X.; Lei, H.; He, Q.W.; Hu, B. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis., 2019, 10(7), 487.
[http://dx.doi.org/10.1038/s41419-019-1716-9] [PMID: 31221990]
[119]
Qiu, Y.; Zhang, C.; Chen, A.; Wang, H.; Zhou, Y.; Li, Y.; Hu, B. Immune cells in the BBB disruption after acute ischemic stroke: Targets for immune therapy? Front. Immunol., 2021, 12678744
[http://dx.doi.org/10.3389/fimmu.2021.678744] [PMID: 34248961]
[120]
Liddelow, S.A.; Barres, B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 2017, 46(6), 957-967.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[121]
Wang, G.; Weng, Y.C.; Chiang, I.C.; Huang, Y.T.; Liao, Y.C.; Chen, Y.C.; Kao, C.Y.; Liu, Y.L.; Lee, T.H.; Chou, W.H. Neutralization of lipocalin-2 diminishes stroke-reperfusion injury. Int. J. Mol. Sci., 2020, 21(17), 6253.
[http://dx.doi.org/10.3390/ijms21176253] [PMID: 32872405]
[122]
Patabendige, A.; Singh, A.; Jenkins, S.; Sen, J.; Chen, R. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int. J. Mol. Sci., 2021, 22(8), 4280.
[http://dx.doi.org/10.3390/ijms22084280] [PMID: 33924191]
[123]
Fernández-Klett, F.; Priller, J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J. Cereb. Blood Flow Metab., 2015, 35(6), 883-887.
[http://dx.doi.org/10.1038/jcbfm.2015.60] [PMID: 25853910]
[124]
Jickling, G.C.; Dziedzic, T. Neutrophil count is related to stroke outcome following endovascular therapy. Neurology, 2019, 93(5), 194-195.
[http://dx.doi.org/10.1212/WNL.0000000000007851] [PMID: 31239357]
[125]
Beuker, C.; Strecker, J.K.; Rawal, R.; Schmidt-Pogoda, A.; Ruck, T.; Wiendl, H.; Klotz, L.; Schäbitz, W.R.; Sommer, C.J.; Minnerup, H.; Meuth, S.G.; Minnerup, J. Immune cell infiltration into the brain after ischemic stroke in humans compared to mice and rats: A systematic review and meta-analysis. Transl. Stroke Res., 2021, 12(6), 976-990.
[http://dx.doi.org/10.1007/s12975-021-00887-4] [PMID: 33496918]
[126]
Carbone, F.; Bonaventura, A.; Montecucco, F. Neutrophil-related oxidants drive heart and brain remodeling after ischemia/reperfusion injury. Front. Physiol., 2020, 10, 1587.
[http://dx.doi.org/10.3389/fphys.2019.01587] [PMID: 32116732]
[127]
Ohms, M.; Möller, S.; Laskay, T. An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro. Front. Immunol., 2020, 11, 532.
[http://dx.doi.org/10.3389/fimmu.2020.00532] [PMID: 32411122]
[128]
Mihaila, A.C.; Ciortan, L.; Macarie, R.D.; Vadana, M.; Cecoltan, S.; Preda, M.B.; Hudita, A.; Gan, A.M.; Jakobsson, G.; Tucureanu, M.M.; Barbu, E.; Balanescu, S.; Simionescu, M.; Schiopu, A.; Butoi, E. Transcriptional profiling and functional analysis of N1/N2 neutrophils reveal an immunomodulatory effect of S100A9-blockade on the pro-inflammatory N1 subpopulation. Front. Immunol., 2021, 12708770
[http://dx.doi.org/10.3389/fimmu.2021.708770] [PMID: 34447377]
[129]
Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol., 2015, 6, 524-551.
[http://dx.doi.org/10.1016/j.redox.2015.08.020] [PMID: 26484802]
[130]
Chen, H.; He, Y.; Chen, S.; Qi, S.; Shen, J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol. Res., 2020, 158104877
[http://dx.doi.org/10.1016/j.phrs.2020.104877] [PMID: 32407958]
[131]
Garcia-Bonilla, L.; Moore, J.M.; Racchumi, G.; Zhou, P.; Butler, J.M.; Iadecola, C.; Anrather, J. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J. Immunol., 2014, 193(5), 2531-2537.
[http://dx.doi.org/10.4049/jimmunol.1400918] [PMID: 25038255]
[132]
Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov., 2007, 6(8), 662-680.
[http://dx.doi.org/10.1038/nrd2222] [PMID: 17667957]
[133]
Chen, X.; Chen, H.; Xu, M.; Shen, J. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol. Sin., 2013, 34(1), 67-77.
[http://dx.doi.org/10.1038/aps.2012.82] [PMID: 22842734]
[134]
Gu, Y.; Zheng, G.; Xu, M.; Li, Y.; Chen, X.; Zhu, W.; Tong, Y.; Chung, S.K.; Liu, K.J.; Shen, J. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J. Neurochem., 2012, 120(1), 147-156.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07542.x] [PMID: 22007835]
[135]
Hakkim, A.; Fuchs, T.A.; Martinez, N.E.; Hess, S.; Prinz, H.; Zychlinsky, A.; Waldmann, H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol., 2011, 7(2), 75-77.
[http://dx.doi.org/10.1038/nchembio.496] [PMID: 21170021]
[136]
Shaul, M.E.; Levy, L.; Sun, J.; Mishalian, I.; Singhal, S.; Kapoor, V.; Horng, W.; Fridlender, G.; Albelda, S.M.; Fridlender, Z.G. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: A transcriptomics analysis of pro- vs. antitumor TANs. OncoImmunology, 2016, 5(11)e1232221
[http://dx.doi.org/10.1080/2162402X.2016.1232221] [PMID: 27999744]
[137]
Prince, L.R.; Whyte, M.K.; Sabroe, I.; Parker, L.C. The role of TLRs in neutrophil activation. Curr. Opin. Pharmacol., 2011, 11(4), 397-403.
[http://dx.doi.org/10.1016/j.coph.2011.06.007] [PMID: 21741310]
[138]
Bakele, M.; Joos, M.; Burdi, S.; Allgaier, N.; Pöschel, S.; Fehrenbacher, B.; Schaller, M.; Marcos, V.; Kümmerle-Deschner, J.; Rieber, N.; Borregaard, N.; Yazdi, A.; Hector, A.; Hartl, D. Localization and functionality of the inflammasome in neutrophils. J. Biol. Chem., 2014, 289(8), 5320-5329.
[http://dx.doi.org/10.1074/jbc.M113.505636] [PMID: 24398679]
[139]
Cai, W.; Wang, J.; Hu, M.; Chen, X.; Lu, Z.; Bellanti, J.A.; Zheng, S.G. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J. Neuroinflammation, 2019, 16(1), 175.
[http://dx.doi.org/10.1186/s12974-019-1557-6] [PMID: 31472680]
[140]
Luheshi, N.M.; Kovács, K.J.; Lopez-Castejon, G.; Brough, D.; Denes, A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J. Neuroinflammation, 2011, 8(1), 186.
[http://dx.doi.org/10.1186/1742-2094-8-186] [PMID: 22206506]
[141]
Wang, Q.; Tang, X.; Yenari, M. The inflammatory response in stroke. J. Neuroimmunol., 2007, 184(1-2), 53-68.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.014] [PMID: 17188755]
[142]
Ceulemans, A.G.; Zgavc, T.; Kooijman, R.; Hachimi-Idrissi, S.; Sarre, S.; Michotte, Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J. Neuroinflammation, 2010, 7(1), 74.
[http://dx.doi.org/10.1186/1742-2094-7-74] [PMID: 21040547]
[143]
Thornton, P.; McColl, B.W.; Cooper, L.; Rothwell, N.J.; Allan, S.M. Interleukin-1 drives cerebrovascular inflammation via MAP kinase-independent pathways. Curr. Neurovasc. Res., 2010, 7(4), 330-340.
[http://dx.doi.org/10.2174/156720210793180800] [PMID: 20854249]
[144]
Singh, N.; Hopkins, S.J.; Hulme, S.; Galea, J.P.; Hoadley, M.; Vail, A.; Hutchinson, P.J.; Grainger, S.; Rothwell, N.J.; King, A.T.; Tyrrell, P.J. The effect of intravenous interleukin-1 receptor antagonist on inflammatory mediators in cerebrospinal fluid after subarachnoid haemorrhage: a phase II randomised controlled trial. J. Neuroinflammation, 2014, 11(1), 1.
[http://dx.doi.org/10.1186/1742-2094-11-1] [PMID: 24383930]
[145]
Orion, D.; Schwammenthal, Y.; Reshef, T.; Schwartz, R.; Tsabari, R.; Merzeliak, O.; Chapman, J.; Mekori, Y.A.; Tanne, D. Interleukin-6 and soluble intercellular adhesion molecule-1 in acute brain ischaemia. Eur. J. Neurol., 2008, 15(4), 323-328.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02066.x] [PMID: 18312408]
[146]
Bolton, S.J.; Anthony, D.C.; Perry, V.H. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience, 1998, 86(4), 1245-1257.
[http://dx.doi.org/10.1016/S0306-4522(98)00058-X] [PMID: 9697130]
[147]
Guo, Z.; Yu, S.; Chen, X.; Zheng, P.; Hu, T.; Duan, Z.; Liu, X.; Liu, Q.; Ye, R.; Zhu, W.; Liu, X. Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: Involvement of neutrophil recruitment. Brain Res. Bull., 2018, 137, 229-240.
[http://dx.doi.org/10.1016/j.brainresbull.2017.12.009] [PMID: 29258866]
[148]
Simi, A.; Tsakiri, N.; Wang, P.; Rothwell, N.J. Interleukin-1 and inflammatory neurodegeneration. Biochem. Soc. Trans., 2007, 35(5), 1122-1126.
[http://dx.doi.org/10.1042/BST0351122] [PMID: 17956293]
[149]
Zou, J.Y.; Crews, F.T. TNFα potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NFκB inhibition. Brain Res., 2005, 1034(1-2), 11-24.
[http://dx.doi.org/10.1016/j.brainres.2004.11.014] [PMID: 15713255]
[150]
Breckwoldt, M.O.; Chen, J.W.; Stangenberg, L.; Aikawa, E.; Rodriguez, E.; Qiu, S.; Moskowitz, M.A.; Weissleder, R. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc. Natl. Acad. Sci. USA, 2008, 105(47), 18584-18589.
[http://dx.doi.org/10.1073/pnas.0803945105] [PMID: 19011099]
[151]
Matsuo, Y.; Onodera, H.; Shiga, Y.; Nakamura, M.; Ninomiya, M.; Kihara, T.; Kogure, K. Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke, 1994, 25(7), 1469-1475.
[http://dx.doi.org/10.1161/01.STR.25.7.1469] [PMID: 8023364]
[152]
Chen, S.; Chen, H.; Du, Q.; Shen, J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol., 2020, 11, 433.
[http://dx.doi.org/10.3389/fphys.2020.00433] [PMID: 32508671]
[153]
Üllen, A.; Singewald, E.; Konya, V.; Fauler, G.; Reicher, H.; Nusshold, C.; Hammer, A.; Kratky, D.; Heinemann, A.; Holzer, P.; Malle, E.; Sattler, W. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo. PLoS One, 2013, 8(5)e64034
[http://dx.doi.org/10.1371/journal.pone.0064034] [PMID: 23691142]
[154]
Xu, J.; Xie, Z.; Reece, R.; Pimental, D.; Zou, M.H. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2688-2695.
[http://dx.doi.org/10.1161/01.ATV.0000249394.94588.82] [PMID: 17023679]
[155]
Suzuki, M.; Asako, H.; Kubes, P.; Jennings, S.; Grisham, M.B.; Granger, D.N. Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc. Res., 1991, 42(2), 125-138.
[http://dx.doi.org/10.1016/0026-2862(91)90081-L] [PMID: 1658575]
[156]
El Kebir, D.; József, L.; Pan, W.; Filep, J.G. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation. Circ. Res., 2008, 103(4), 352-359.
[http://dx.doi.org/10.1161/01.RES.0000326772.76822.7a] [PMID: 18617697]
[157]
Nussbaum, C.; Klinke, A.; Adam, M.; Baldus, S.; Sperandio, M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid. Redox Signal., 2013, 18(6), 692-713.
[http://dx.doi.org/10.1089/ars.2012.4783] [PMID: 22823200]
[158]
Stowe, A.M.; Adair-Kirk, T.L.; Gonzales, E.R.; Perez, R.S.; Shah, A.R.; Park, T.S.; Gidday, J.M. Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiol. Dis., 2009, 35(1), 82-90.
[http://dx.doi.org/10.1016/j.nbd.2009.04.006] [PMID: 19393318]
[159]
Yamaguchi, Y.; Matsumura, F.; Wang, F.S.; Akizuki, E.; Liang, J.; Matsuda, T.; Okabe, K.; Ohshiro, H.; Horiuchi, T.; Yamada, S.; Mori, K.; Ogawa, M. Neutrophil elastase enhances intercellular adhesion molecule-1 expression. Transplantation, 1998, 65(12), 1622-1628.
[http://dx.doi.org/10.1097/00007890-199806270-00014] [PMID: 9665080]
[160]
Voisin, M.B.; Leoni, G.; Woodfin, A.; Loumagne, L.; Patel, N.S.A.; Di Paola, R.; Cuzzocrea, S.; Thiemermann, C.; Perretti, M.; Nourshargh, S. Neutrophil elastase plays a non redundant role in remodeling the venular basement membrane and neutrophil diapedesis post ischemia/reperfusion injury. J. Pathol., 2019, 248(1), 88-102.
[http://dx.doi.org/10.1002/path.5234] [PMID: 30632166]
[161]
Vandooren, J.; Van Damme, J.; Opdenakker, G. On the Structure and functions of gelatinase B/Matrix metalloproteinase-9 in neuroinflammation. Prog. Brain Res. , 2014; p. 214, 193-206.
[http://dx.doi.org/10.1016/B978-0-444-63486-3.00009-8] [PMID: 25410359]
[162]
Rivera, S.; Khrestchatisky, M.; Kaczmarek, L.; Rosenberg, G.A.; Jaworski, D.M. Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J. Neurosci., 2010, 30(46), 15337-15357.
[http://dx.doi.org/10.1523/JNEUROSCI.3467-10.2010] [PMID: 21084591]
[163]
Rosell, A.; Lo, E. Multiphasic roles for matrix metalloproteinases after stroke. Curr. Opin. Pharmacol., 2008, 8(1), 82-89.
[http://dx.doi.org/10.1016/j.coph.2007.12.001] [PMID: 18226583]
[164]
Clark, A.W.; Krekoski, C.A.; Bou, S.S.; Chapman, K.R.; Edwards, D.R. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci. Lett., 1997, 238(1-2), 53-56.
[http://dx.doi.org/10.1016/S0304-3940(97)00859-8] [PMID: 9464653]
[165]
Park, K.P.; Rosell, A.; Foerch, C.; Xing, C.; Kim, W.J.; Lee, S.; Opdenakker, G.; Furie, K.L.; Lo, E.H. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke, 2009, 40(8), 2836-2842.
[http://dx.doi.org/10.1161/STROKEAHA.109.554824] [PMID: 19556529]
[166]
Turner, R.J.; Sharp, F.R. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke. Front. Cell. Neurosci., 2016, 10, 56.
[http://dx.doi.org/10.3389/fncel.2016.00056] [PMID: 26973468]
[167]
Fujimoto, M.; Takagi, Y.; Aoki, T.; Hayase, M.; Marumo, T.; Gomi, M.; Nishimura, M.; Kataoka, H.; Hashimoto, N.; Nozaki, K. Tissue inhibitor of metalloproteinases protect blood-brain barrier disruption in focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2008, 28(10), 1674-1685.
[http://dx.doi.org/10.1038/jcbfm.2008.59] [PMID: 18560439]
[168]
Jourquin, J.; Tremblay, E.; Décanis, N.; Charton, G.; Hanessian, S.; Chollet, A.M.; Le Diguardher, T.; Khrestchatisky, M.; Rivera, S. Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur. J. Neurosci., 2003, 18(6), 1507-1517.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02876.x] [PMID: 14511330]
[169]
Pires, R.H.; Felix, S.B.; Delcea, M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale, 2016, 8(29), 14193-14202.
[http://dx.doi.org/10.1039/C6NR03416K] [PMID: 27387552]
[170]
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663), 1532-1535.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[171]
Sorvillo, N.; Cherpokova, D.; Martinod, K.; Wagner, D.D. Extracellular DNA NET-works with dire consequences for health. Circ. Res., 2019, 125(4), 470-488.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.314581] [PMID: 31518165]
[172]
Lood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.; Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med., 2016, 22(2), 146-153.
[http://dx.doi.org/10.1038/nm.4027] [PMID: 26779811]
[173]
Remijsen, Q.; Berghe, T.V.; Wirawan, E.; Asselbergh, B.; Parthoens, E.; De Rycke, R.; Noppen, S.; Delforge, M.; Willems, J.; Vandenabeele, P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res., 2011, 21(2), 290-304.
[http://dx.doi.org/10.1038/cr.2010.150] [PMID: 21060338]
[174]
Kim, S.W.; Davaanyam, D.; Seol, S.I.; Lee, H.K.; Lee, H.; Lee, J.K. Adenosine triphosphate accumulated following cerebral ischemia induces neutrophil extracellular trap formation. Int. J. Mol. Sci., 2020, 21(20), 7668.
[http://dx.doi.org/10.3390/ijms21207668] [PMID: 33081303]
[175]
Kim, S.W.; Lee, H.; Lee, H.K.; Kim, I.D.; Lee, J.K. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun., 2019, 7(1), 94.
[http://dx.doi.org/10.1186/s40478-019-0747-x] [PMID: 31177989]
[176]
Liu, L.; Mao, Y.; Xu, B.; Zhang, X.; Fang, C.; Ma, Y.; Men, K.; Qi, X.; Yi, T.; Wei, Y.; Wei, X. Induction of neutrophil extracellular traps during tissue injury: Involvement of STING and Toll like receptor 9 pathways. Cell Prolif., 2019, 52(3)e12579
[http://dx.doi.org/10.1111/cpr.12579] [PMID: 30851061]
[177]
Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol., 2010, 191(3), 677-691.
[http://dx.doi.org/10.1083/jcb.201006052] [PMID: 20974816]
[178]
Wang, Y.; Li, M.; Stadler, S.; Correll, S.; Li, P.; Wang, D.; Hayama, R.; Leonelli, L.; Han, H.; Grigoryev, S.A.; Allis, C.D.; Coonrod, S.A. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol., 2009, 184(2), 205-213.
[http://dx.doi.org/10.1083/jcb.200806072] [PMID: 19153223]
[179]
Zheng, W.; Warner, R.; Ruggeri, R.; Su, C.; Cortes, C.; Skoura, A.; Ward, J.; Ahn, K.; Kalgutkar, A.; Sun, D.; Maurer, T.S.; Bonin, P.D.; Okerberg, C.; Bobrowski, W.; Kawabe, T.; Zhang, Y.; Coskran, T.; Bell, S.; Kapoor, B.; Johnson, K.; Buckbinder, L. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J. Pharmacol. Exp. Ther., 2015, 353(2), 288-298.
[http://dx.doi.org/10.1124/jpet.114.221788] [PMID: 25698787]
[180]
Essig, F.; Kollikowski, A.M.; Pham, M.; Solymosi, L.; Stoll, G.; Haeusler, K.G.; Kraft, P.; Schuhmann, M.K. Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke. Int. J. Mol. Sci., 2020, 21(19), 7387.
[http://dx.doi.org/10.3390/ijms21197387] [PMID: 33036337]
[181]
Ge, L.; Zhou, X.; Ji, W.J.; Lu, R.Y.; Zhang, Y.; Zhang, Y.D.; Ma, Y.Q.; Zhao, J.H.; Li, Y.M. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am. J. Physiol. Heart Circ. Physiol., 2015, 308(5), H500-H509.
[http://dx.doi.org/10.1152/ajpheart.00381.2014] [PMID: 25527775]
[182]
Laridan, E.; Denorme, F.; Desender, L.; François, O.; Andersson, T.; Deckmyn, H.; Vanhoorelbeke, K.; De Meyer, S.F. Neutrophil extracellular traps in ischemic stroke thrombi. Ann. Neurol., 2017, 82(2), 223-232.
[http://dx.doi.org/10.1002/ana.24993] [PMID: 28696508]
[183]
Xu, J.; Zhang, X.; Monestier, M.; Esmon, N.L.; Esmon, C.T. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol., 2011, 187(5), 2626-2631.
[http://dx.doi.org/10.4049/jimmunol.1003930] [PMID: 21784973]
[184]
Fuchs, T.A.; Bhandari, A.A.; Wagner, D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood, 2011, 118(13), 3708-3714.
[http://dx.doi.org/10.1182/blood-2011-01-332676] [PMID: 21700775]
[185]
von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; Byrne, R.A.; Laitinen, I.; Walch, A.; Brill, A.; Pfeiler, S.; Manukyan, D.; Braun, S.; Lange, P.; Riegger, J.; Ware, J.; Eckart, A.; Haidari, S.; Rudelius, M.; Schulz, C.; Echtler, K.; Brinkmann, V.; Schwaiger, M.; Preissner, K.T.; Wagner, D.D.; Mackman, N.; Engelmann, B.; Massberg, S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med., 2012, 209(4), 819-835.
[http://dx.doi.org/10.1084/jem.20112322] [PMID: 22451716]
[186]
Ruhnau, J.; Schulze, J.; Dressel, A.; Vogelgesang, A. Thrombosis, Neuroinflammation, and Poststroke Infection: The Multifaceted Role of Neutrophils in Stroke. J. Immunol. Res., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/5140679] [PMID: 28331857]
[187]
Maugeri, N.; Campana, L.; Gavina, M.; Covino, C.; De Metrio, M.; Panciroli, C.; Maiuri, L.; Maseri, A.; D’Angelo, A.; Bianchi, M.E.; Rovere-Querini, P.; Manfredi, A.A. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost., 2014, 12(12), 2074-2088.
[http://dx.doi.org/10.1111/jth.12710] [PMID: 25163512]
[188]
Yipp, B.G.; Petri, B.; Salina, D.; Jenne, C.N.; Scott, B.N.V.; Zbytnuik, L.D.; Pittman, K.; Asaduzzaman, M.; Wu, K.; Meijndert, H.C.; Malawista, S.E.; de Boisfleury Chevance, A.; Zhang, K.; Conly, J.; Kubes, P. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med., 2012, 18(9), 1386-1393.
[http://dx.doi.org/10.1038/nm.2847] [PMID: 22922410]
[189]
Mishalian, I.; Bayuh, R.; Levy, L.; Zolotarov, L.; Michaeli, J.; Fridlender, Z.G. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol. Immunother., 2013, 62(11), 1745-1756.
[http://dx.doi.org/10.1007/s00262-013-1476-9] [PMID: 24092389]
[190]
García-Culebras, A.; Durán-Laforet, V.; Peña-Martínez, C.; Moraga, A.; Ballesteros, I.; Cuartero, M.I.; de la Parra, J.; Palma-Tortosa, S.; Hidalgo, A.; Corbí, A.L.; Moro, M.A.; Lizasoain, I. Role of TLR4 (toll-like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke, 2019, 50(10), 2922-2932.
[http://dx.doi.org/10.1161/STROKEAHA.119.025085] [PMID: 31451099]
[191]
Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: A multifaceted enzyme important in health and disease. Physiol. Rev., 2018, 98(2), 641-665.
[http://dx.doi.org/10.1152/physrev.00037.2016] [PMID: 29412048]
[192]
Caldwell, R.B.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.W. Arginase: an old enzyme with new tricks. Trends Pharmacol. Sci., 2015, 36(6), 395-405.
[http://dx.doi.org/10.1016/j.tips.2015.03.006] [PMID: 25930708]
[193]
Lee, J.; Ryu, H.; Ferrante, R.J.; Morris, S.M., Jr; Ratan, R.R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4843-4848.
[http://dx.doi.org/10.1073/pnas.0735876100] [PMID: 12655043]
[194]
Ma, T.C.; Campana, A.; Lange, P.S.; Lee, H.H.; Banerjee, K.; Bryson, J.B.; Mahishi, L.; Alam, S.; Giger, R.J.; Barnes, S.; Morris, S.M., Jr; Willis, D.E.; Twiss, J.L.; Filbin, M.T.; Ratan, R.R. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J. Neurosci., 2010, 30(2), 739-748.
[http://dx.doi.org/10.1523/JNEUROSCI.5266-09.2010] [PMID: 20071539]
[195]
Fouda, A.Y.; Xu, Z.; Shosha, E.; Lemtalsi, T.; Chen, J.; Toque, H.A.; Tritz, R.; Cui, X.; Stansfield, B.K.; Huo, Y.; Rodriguez, P.C.; Smith, S.B.; Caldwell, R.W.; Narayanan, S.P.; Caldwell, R.B. Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses. Cell Death Dis., 2018, 9(10), 1001.
[http://dx.doi.org/10.1038/s41419-018-1051-6] [PMID: 30254218]
[196]
Garcia, J.M.; Stillings, S.A.; Leclerc, J.L.; Phillips, H.; Edwards, N.J.; Robicsek, S.A.; Hoh, B.L.; Blackburn, S.; Doré, S. Role of Interleukin-10 in Acute Brain Injuries. Front. Neurol., 2017, 8, 244.
[http://dx.doi.org/10.3389/fneur.2017.00244] [PMID: 28659854]
[197]
Grilli, M.; Barbieri, I.; Basudev, H.; Brusa, R.; Casati, C.; Lozza, G.; Ongini, E. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur. J. Neurosci., 2000, 12(7), 2265-2272.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00090.x] [PMID: 10947805]
[198]
Sharma, S.; Yang, B.; Xi, X.; Grotta, J.C.; Aronowski, J.; Savitz, S.I. IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res., 2011, 1373, 189-194.
[http://dx.doi.org/10.1016/j.brainres.2010.11.096] [PMID: 21138740]
[199]
Bazzoni, F.; Tamassia, N.; Rossato, M.; Cassatella, M.A. Understanding the molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory response: Lessons from neutrophils. Eur. J. Immunol., 2010, 40(9), 2360-2368.
[http://dx.doi.org/10.1002/eji.200940294] [PMID: 20549669]
[200]
Pérez-de Puig, I.; Miró, F.; Salas-Perdomo, A.; Bonfill-Teixidor, E.; Ferrer-Ferrer, M.; Márquez-Kisinousky, L.; Planas, A.M. IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion. J. Cereb. Blood Flow Metab., 2013, 33(12), 1955-1966.
[http://dx.doi.org/10.1038/jcbfm.2013.155] [PMID: 24022622]
[201]
Xie, G.; Myint, P.K.; Zaman, M.J.S.; Li, Y.; Zhao, L.; Shi, P.; Ren, F.; Wu, Y. Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population. PLoS One, 2013, 8(9)e74126
[http://dx.doi.org/10.1371/journal.pone.0074126] [PMID: 24040186]
[202]
Doll, D.; Barr, T.L.; Simpkins, J.W. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis., 2014, 5(5), 294-306.
[http://dx.doi.org/10.14336/ad.2014.0500294] [PMID: 25276489]
[203]
Zhu, H.; Gui, Q.; Hui, X.; Wang, X.; Jiang, J.; Ding, L.; Sun, X.; Wang, Y.; Chen, H. TGF-β1/Smad3 signaling pathway suppresses cell apoptosis in cerebral ischemic stroke rats. Med. Sci. Monit., 2017, 23, 366-376.
[http://dx.doi.org/10.12659/MSM.899195] [PMID: 28110342]
[204]
Wang, S.; Yin, J.; Ge, M.; Dai, Z.; Li, Y.; Si, J.; Ma, K.; Li, L.; Yao, S. Transforming growth-beta 1 contributes to isoflurane postconditioning against cerebral ischemia–reperfusion injury by regulating the c-Jun N-terminal kinase signaling pathway. Biomed. Pharmacother., 2016, 78, 280-290.
[http://dx.doi.org/10.1016/j.biopha.2016.01.030] [PMID: 26898453]
[205]
Krieglstein, K.; Zheng, F.; Unsicker, K.; Alzheimer, C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci., 2011, 34(8), 421-429.
[http://dx.doi.org/10.1016/j.tins.2011.06.002] [PMID: 21742388]
[206]
Ma, M.; Ma, Y.; Yi, X.; Guo, R.; Zhu, W.; Fan, X.; Xu, G.; Frey, W.H., II; Liu, X. Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci., 2008, 9(1), 117.
[http://dx.doi.org/10.1186/1471-2202-9-117] [PMID: 19077183]
[207]
Zhang, Y.; Yu, P.; Liu, H.; Yao, H.; Yao, S.; Yuan, S.-Y.; Zhang, J.-C. Hyperforin improves post-stroke social isolation-induced exaggeration of PSD and PSA via TGF-β. Int. J. Mol. Med., 2019, 43(1), 413-425.
[http://dx.doi.org/10.3892/ijmm.2018.3971] [PMID: 30387813]
[208]
Li, T.; Pang, S.; Yu, Y.; Wu, X.; Guo, J.; Zhang, S. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain, 2013, 136(12), 3578-3588.
[http://dx.doi.org/10.1093/brain/awt287] [PMID: 24154617]
[209]
Neumann, J.; Sauerzweig, S.; Rönicke, R.; Gunzer, F.; Dinkel, K.; Ullrich, O.; Gunzer, M.; Reymann, K.G. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J. Neurosci., 2008, 28(23), 5965-5975.
[http://dx.doi.org/10.1523/JNEUROSCI.0060-08.2008] [PMID: 18524901]
[210]
Steiger, S.; Harper, J.L. Neutrophil cannibalism triggers transforming growth factor β1 production and self regulation of neutrophil inflammatory function in monosodium urate monohydrate crystal-induced inflammation in mice. Arthritis Rheum., 2013, 65(3), 815-823.
[http://dx.doi.org/10.1002/art.37822] [PMID: 23280587]
[211]
Kanazawa, M.; Hatakeyama, M.; Ninomiya, I. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen. Res., 2020, 15(1), 16-19.
[http://dx.doi.org/10.4103/1673-5374.264442] [PMID: 31535636]
[212]
Wang, X.; Xuan, W.; Zhu, Z.Y.; Li, Y.; Zhu, H.; Zhu, L.; Fu, D.Y.; Yang, L.Q.; Li, P.Y.; Yu, W.F. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci. Ther., 2018, 24(12), 1100-1114.
[http://dx.doi.org/10.1111/cns.13077] [PMID: 30350341]
[213]
Balkaya, M.; Cho, S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol. Dis., 2019, 126, 36-46.
[http://dx.doi.org/10.1016/j.nbd.2018.08.009] [PMID: 30118755]
[214]
Jin, K.; Mao, X.O.; Greenberg, D.A. Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J. Neurobiol., 2006, 66(3), 236-242.
[http://dx.doi.org/10.1002/neu.20215] [PMID: 16329123]
[215]
Wang, Y.; Jin, K.; Mao, X.O.; Xie, L.; Banwait, S.; Marti, H.H.; Greenberg, D.A. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J. Neurosci. Res., 2007, 85(4), 740-747.
[http://dx.doi.org/10.1002/jnr.21169] [PMID: 17243175]
[216]
Teng, H.; Zhang, Z.G.; Wang, L.; Zhang, R.L.; Zhang, L.; Morris, D.; Gregg, S.R.; Wu, Z.; Jiang, A.; Lu, M.; Zlokovic, B.V.; Chopp, M. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J. Cereb. Blood Flow Metab., 2008, 28(4), 764-771.
[http://dx.doi.org/10.1038/sj.jcbfm.9600573] [PMID: 17971789]
[217]
Kitagawa, K.; Matsumoto, M.; Mabuchi, T.; Yagita, Y.; Ohtsuki, T.; Hori, M.; Yanagihara, T. Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. J. Cereb. Blood Flow Metab., 1998, 18(12), 1336-1345.
[http://dx.doi.org/10.1097/00004647-199812000-00008] [PMID: 9850146]
[218]
Jones, K.A.; Maltby, S.; Plank, M.W.; Kluge, M.; Nilsson, M.; Foster, P.S.; Walker, F.R. Peripheral immune cells infiltrate into sites of secondary neurodegeneration after ischemic stroke. Brain Behav. Immun., 2018, 67, 299-307.
[http://dx.doi.org/10.1016/j.bbi.2017.09.006] [PMID: 28911981]
[219]
El Amki, M.; Glück, C.; Binder, N.; Middleham, W.; Wyss, M.T.; Weiss, T.; Meister, H.; Luft, A.; Weller, M.; Weber, B.; Wegener, S. Neutrophils obstructing brain capillaries are a major cause of no-reflow in ischemic stroke. Cell Rep., 2020, 33(2)108260
[http://dx.doi.org/10.1016/j.celrep.2020.108260] [PMID: 33053341]
[220]
Shaw, S.K.; Owolabi, S.A.; Bagley, J.; Morin, N.; Cheng, E.; LeBlanc, B.W.; Kim, M.; Harty, P.; Waxman, S.G.; Saab, C.Y. Activated polymorphonuclear cells promote injury and excitability of dorsal root ganglia neurons. Exp. Neurol., 2008, 210(2), 286-294.
[http://dx.doi.org/10.1016/j.expneurol.2007.11.024] [PMID: 18201702]
[221]
Mai, N.; Prifti, V.; Kim, M.; Halterman, M.W. Characterization of neutrophil-neuronal co-cultures to investigate mechanisms of post-ischemic immune-mediated neurotoxicity. J. Neurosci. Methods, 2020, 341108782
[http://dx.doi.org/10.1016/j.jneumeth.2020.108782] [PMID: 32445795]
[222]
Allen, C.; Thornton, P.; Denes, A.; McColl, B.W.; Pierozynski, A.; Monestier, M.; Pinteaux, E.; Rothwell, N.J.; Allan, S.M. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol., 2012, 189(1), 381-392.
[http://dx.doi.org/10.4049/jimmunol.1200409] [PMID: 22661091]
[223]
Nguyen, H.X.; O’Barr, T.J.; Anderson, A.J. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α. J. Neurochem., 2007, 102(3), 900-912.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04643.x] [PMID: 17561941]
[224]
Kwon, K.J.; Cho, K.S.; Kim, J.N.; Kim, M.K.; Lee, E.J.; Kim, S.Y.; Jeon, S.J.; Kim, K.C.; Han, J.E.; Kang, Y.S.; Kim, S.; Kim, H.Y.; Han, S.H.; Bahn, G.; Choi, J.; Shin, C.Y. Proteinase 3 induces oxidative stress-mediated neuronal death in rat primary cortical neuron. Neurosci. Lett., 2013, 548, 67-72.
[http://dx.doi.org/10.1016/j.neulet.2013.05.060] [PMID: 23748041]
[225]
Cao, J.; Dong, L.; Luo, J.; Zeng, F.; Hong, Z.; Liu, Y.; Zhao, Y.; Xia, Z.; Zuo, D.; Xu, L.; Tao, T. Supplemental N-3 polyunsaturated fatty acids limit A1-specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice. Oxid. Med. Cell. Longev., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/5524705] [PMID: 34211624]
[226]
Wenzel, T.J.; Bajwa, E.; Klegeris, A. Cytochrome c can be released into extracellular space and modulate functions of human astrocytes in a toll-like receptor 4-dependent manner. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(11)129400
[http://dx.doi.org/10.1016/j.bbagen.2019.07.009] [PMID: 31344401]
[227]
Soto-Díaz, K.; Juda, M.B.; Blackmore, S.; Walsh, C.; Steelman, A.J. TAK1 inhibition in mouse astrocyte cultures ameliorates cytokine induced chemokine production and neutrophil migration. J. Neurochem., 2020, 152(6), 697-709.
[http://dx.doi.org/10.1111/jnc.14930] [PMID: 31782806]
[228]
Moreno-Flores, M.T.; Bovolenta, P.; Nieto-Sampedro, M. Polymorphonuclear leukocytes in brain parenchyma after injury and their interaction with purified astrocytes in culture. Glia, 1993, 7(2), 146-157.
[http://dx.doi.org/10.1002/glia.440070204] [PMID: 7679369]
[229]
Xie, L.; Poteet, E.C.; Li, W.; Scott, A.E.; Liu, R.; Wen, Y.; Ghorpade, A.; Simpkins, J.W.; Yang, S.H. Modulation of polymorphonuclear neutrophil functions by astrocytes. J. Neuroinflammation, 2010, 7(1), 53.
[http://dx.doi.org/10.1186/1742-2094-7-53] [PMID: 20828397]
[230]
Rakers, C.; Schleif, M.; Blank, N.; Matušková, H.; Ulas, T.; Händler, K.; Torres, S.V.; Schumacher, T.; Tai, K.; Schultze, J.L.; Jackson, W.S.; Petzold, G.C. Stroke target identification guided by astrocyte transcriptome analysis. Glia, 2019, 67(4), 619-633.
[http://dx.doi.org/10.1002/glia.23544] [PMID: 30585358]
[231]
Morizawa, Y.M.; Hirayama, Y.; Ohno, N.; Shibata, S.; Shigetomi, E.; Sui, Y.; Nabekura, J.; Sato, K.; Okajima, F.; Takebayashi, H.; Okano, H.; Koizumi, S. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, 8(1), 28.
[http://dx.doi.org/10.1038/s41467-017-00037-1] [PMID: 28642575]
[232]
Shinozaki, Y.; Shibata, K.; Yoshida, K.; Shigetomi, E.; Gachet, C.; Ikenaka, K.; Tanaka, K.F.; Koizumi, S. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep., 2017, 19(6), 1151-1164.
[http://dx.doi.org/10.1016/j.celrep.2017.04.047] [PMID: 28494865]
[233]
Xiong, X.Y.; Liu, L.; Yang, Q.W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol., 2016, 142, 23-44.
[http://dx.doi.org/10.1016/j.pneurobio.2016.05.001] [PMID: 27166859]
[234]
Kim, Y.R.; Kim, Y.M.; Lee, J.; Park, J.; Lee, J.E.; Hyun, Y.M. Neutrophils return to bloodstream through the brain blood vessel after crosstalk with microglia during LPS-induced neuroinflammation. Front. Cell Dev. Biol., 2020, 8613733
[http://dx.doi.org/10.3389/fcell.2020.613733] [PMID: 33364241]
[235]
Neumann, J.; Henneberg, S.; von Kenne, S.; Nolte, N.; Müller, A.J.; Schraven, B.; Görtler, M.W.; Reymann, K.G.; Gunzer, M.; Riek-Burchardt, M. Beware the intruder: Real time observation of infiltrated neutrophils and neutrophil—Microglia interaction during stroke in vivo. PLoS One, 2018, 13(3)e0193970
[http://dx.doi.org/10.1371/journal.pone.0193970] [PMID: 29543836]
[236]
Masuda, T.; Croom, D.; Hida, H.; Kirov, S.A. Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia, 2011, 59(11), 1744-1753.
[http://dx.doi.org/10.1002/glia.21220] [PMID: 21800362]
[237]
Otxoa-de-Amezaga, A.; Miró-Mur, F.; Pedragosa, J.; Gallizioli, M.; Justicia, C.; Gaja-Capdevila, N.; Ruíz-Jaen, F.; Salas-Perdomo, A.; Bosch, A.; Calvo, M.; Márquez-Kisinousky, L.; Denes, A.; Gunzer, M.; Planas, A.M. Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol., 2019, 137(2), 321-341.
[http://dx.doi.org/10.1007/s00401-018-1954-4] [PMID: 30580383]
[238]
Egashira, Y.; Suzuki, Y.; Azuma, Y.; Takagi, T.; Mishiro, K.; Sugitani, S.; Tsuruma, K.; Shimazawa, M.; Yoshimura, S.; Kashimata, M.; Iwama, T.; Hara, H. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J. Neuroinflammation, 2013, 10, 884.
[http://dx.doi.org/10.1186/1742-2094-10-105]
[239]
Horinokita, I.; Hayashi, H.; Oteki, R.; Mizumura, R.; Yamaguchi, T.; Usui, A.; Yuan, B.; Takagi, N. Involvement of progranulin and granulin expression in inflammatory responses after cerebral ischemia. Int. J. Mol. Sci., 2019, 20(20), 5210.
[http://dx.doi.org/10.3390/ijms20205210] [PMID: 31640144]
[240]
Kim, E.; Cho, S. Microglia and monocyte-derived macrophages in stroke. Neurotherapeutics, 2016, 13(4), 702-718.
[http://dx.doi.org/10.1007/s13311-016-0463-1] [PMID: 27485238]
[241]
Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol., 2015, 11(1), 56-64.
[http://dx.doi.org/10.1038/nrneurol.2014.207] [PMID: 25385337]
[242]
Esposito, E.; Hayakawa, K.; Ahn, B.J.; Chan, S.J.; Xing, C.; Liang, A.C.; Kim, K.W.; Arai, K.; Lo, E.H. Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J. Neurochem., 2018, 146(2), 160-172.
[http://dx.doi.org/10.1111/jnc.14337] [PMID: 29570780]
[243]
Gelderblom, M.; Leypoldt, F.; Steinbach, K.; Behrens, D.; Choe, C.U.; Siler, D.A.; Arumugam, T.V.; Orthey, E.; Gerloff, C.; Tolosa, E.; Magnus, T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 2009, 40(5), 1849-1857.
[http://dx.doi.org/10.1161/STROKEAHA.108.534503] [PMID: 19265055]
[244]
Viviani, G.L.; Dallegri, F.; Quercioli, A.; Veneselli, E.; Mach, F.; Mirabelli-Badenier, M.; Braunersreuther, V.; Montecucco, F. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb. Haemost., 2011, 105(3), 409-420.
[http://dx.doi.org/10.1160/TH10-10-0662] [PMID: 21174009]
[245]
Taekema-Roelvink, M.J.; Kooten, C.V.; Kooij, S.V.D.; Heemskerk, E.; Daha, M.R. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J. Am. Soc. Nephrol., 2001, 12(5), 932-940.
[http://dx.doi.org/10.1681/ASN.V125932] [PMID: 11316851]
[246]
Youn, J.I.; Kumar, V.; Collazo, M.; Nefedova, Y.; Condamine, T.; Cheng, P.; Villagra, A.; Antonia, S.; McCaffrey, J.C.; Fishman, M.; Sarnaik, A.; Horna, P.; Sotomayor, E.; Gabrilovich, D.I. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat. Immunol., 2013, 14(3), 211-220.
[http://dx.doi.org/10.1038/ni.2526] [PMID: 23354483]
[247]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[248]
Greenlee-Wacker, M.C. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol. Rev., 2016, 273(1), 357-370.
[http://dx.doi.org/10.1111/imr.12453] [PMID: 27558346]
[249]
Jin, W.N.; Gonzales, R.; Feng, Y.; Wood, K.; Chai, Z.; Dong, J.F.; La Cava, A.; Shi, F.D.; Liu, Q. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke, 2018, 49(6), 1471-1478.
[http://dx.doi.org/10.1161/STROKEAHA.118.020203] [PMID: 29695462]
[250]
Lei, T.Y.; Ye, Y.Z.; Zhu, X.Q.; Smerin, D.; Gu, L.J.; Xiong, X.X.; Zhang, H.F.; Jian, Z.H. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J. Neuroinflammation, 2021, 18(1), 25.
[http://dx.doi.org/10.1186/s12974-020-02057-z] [PMID: 33461586]
[251]
Cramer, J.V.; Benakis, C.; Liesz, A. T cells in the post-ischemic brain: Troopers or paramedics? J. Neuroimmunol., 2019, 326, 33-37.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.006] [PMID: 30468953]
[252]
Pelletier, M.; Maggi, L.; Micheletti, A.; Lazzeri, E.; Tamassia, N.; Costantini, C.; Cosmi, L.; Lunardi, C.; Annunziato, F.; Romagnani, S.; Cassatella, M.A. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, 2010, 115(2), 335-343.
[http://dx.doi.org/10.1182/blood-2009-04-216085] [PMID: 19890092]
[253]
Barros, J.F.; Waclawiak, I.; Pecli, C.; Borges, P.A.; Georgii, J.L.; Ramos-Junior, E.S.; Canetti, C.; Courau, T.; Klatzmann, D.; Kunkel, S.L.; Penido, C.; Canto, F.B.; Benjamim, C.F. Role of chemokine receptor CCR4 and regulatory T cells in wound healing of diabetic mice. J. Invest. Dermatol., 2019, 139(5), 1161-1170.
[http://dx.doi.org/10.1016/j.jid.2018.10.039] [PMID: 30465800]
[254]
Scapini, P.; Cassatella, M.A. Social networking of human neutrophils within the immune system. Blood, 2014, 124(5), 710-719.
[http://dx.doi.org/10.1182/blood-2014-03-453217] [PMID: 24923297]
[255]
Gelderblom, M.; Weymar, A.; Bernreuther, C.; Velden, J.; Arunachalam, P.; Steinbach, K.; Orthey, E.; Arumugam, T.V.; Leypoldt, F.; Simova, O.; Thom, V.; Friese, M.A.; Prinz, I.; Hölscher, C.; Glatzel, M.; Korn, T.; Gerloff, C.; Tolosa, E.; Magnus, T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood, 2012, 120(18), 3793-3802.
[http://dx.doi.org/10.1182/blood-2012-02-412726] [PMID: 22976954]
[256]
Pelletier, M.; Micheletti, A.; Cassatella, M.A. Modulation of human neutrophil survival and antigen expression by activated CD4 + and CD8 + T cells. J. Leukoc. Biol., 2010, 88(6), 1163-1170.
[http://dx.doi.org/10.1189/jlb.0310172] [PMID: 20686115]
[257]
Rosales, C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol., 2020, 108(1), 377-396.
[http://dx.doi.org/10.1002/JLB.4MIR0220-574RR] [PMID: 32202340]
[258]
Rodriguez, P.C.; Quiceno, D.G.; Ochoa, A.C. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood, 2007, 109(4), 1568-1573.
[http://dx.doi.org/10.1182/blood-2006-06-031856] [PMID: 17023580]
[259]
Stubbe, T.; Ebner, F.; Richter, D.; Engel, O.R.; Klehmet, J.; Royl, G.; Meisel, A.; Nitsch, R.; Meisel, C.; Brandt, C. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J. Cereb. Blood Flow Metab., 2013, 33(1), 37-47.
[http://dx.doi.org/10.1038/jcbfm.2012.128] [PMID: 22968321]
[260]
Liesz, A.; Kleinschnitz, C.; Regulatory, T. Cells in Post-stroke Immune Homeostasis. Transl. Stroke Res., 2016, 7(4), 313-321.
[http://dx.doi.org/10.1007/s12975-016-0465-7] [PMID: 27030356]
[261]
Li, P.; Wang, L.; Zhou, Y.; Gan, Y.; Zhu, W.; Xia, Y.; Jiang, X.; Watkins, S.; Vazquez, A.; Thomson, A.W.; Chen, J.; Yu, W.; Hu, X. C C chemokine receptor type 5 (CCR5) mediated docking of transferred tregs protects against early blood brain barrier disruption after stroke. J. Am. Heart Assoc., 2017, 6(8)e006387
[http://dx.doi.org/10.1161/JAHA.117.006387] [PMID: 28768648]
[262]
Chen, C.; Ai, Q.D.; Chu, S.F.; Zhang, Z.; Chen, N.H. NK cells in cerebral ischemia. Biomed. Pharmacother., 2019, 109, 547-554.
[http://dx.doi.org/10.1016/j.biopha.2018.10.103] [PMID: 30399590]
[263]
Mócsai, A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J. Exp. Med., 2013, 210(7), 1283-1299.
[http://dx.doi.org/10.1084/jem.20122220] [PMID: 23825232]
[264]
Jensen, K.N.; Omarsdottir, S.Y.; Reinhardsdottir, M.S.; Hardardottir, I.; Freysdottir, J. Docosahexaenoic acid modulates nk cell effects on neutrophils and their crosstalk. Front. Immunol., 2020, 11570380
[http://dx.doi.org/10.3389/fimmu.2020.570380] [PMID: 33123143]
[265]
Costantini, C.; Cassatella, M.A. The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J. Leukoc. Biol., 2011, 89(2), 221-233.
[http://dx.doi.org/10.1189/jlb.0510250] [PMID: 20682626]
[266]
Bodhankar, S.; Chen, Y.; Vandenbark, A.A.; Murphy, S.J.; Offner, H. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab. Brain Dis., 2013, 28(3), 375-386.
[http://dx.doi.org/10.1007/s11011-013-9413-3] [PMID: 23640015]
[267]
Puga, I.; Cols, M.; Barra, C.M.; He, B.; Cassis, L.; Gentile, M.; Comerma, L.; Chorny, A.; Shan, M.; Xu, W.; Magri, G.; Knowles, D.M.; Tam, W.; Chiu, A.; Bussel, J.B.; Serrano, S.; Lorente, J.A.; Bellosillo, B.; Lloreta, J.; Juanpere, N.; Alameda, F.; Baró, T.; de Heredia, C.D.; Torán, N.; Català, A.; Torrebadell, M.; Fortuny, C.; Cusí, V.; Carreras, C.; Diaz, G.A.; Blander, J.M.; Farber, C.M.; Silvestri, G.; Cunningham-Rundles, C.; Calvillo, M.; Dufour, C.; Notarangelo, L.D.; Lougaris, V.; Plebani, A.; Casanova, J.L.; Ganal, S.C.; Diefenbach, A.; Aróstegui, J.I.; Juan, M.; Yagüe, J.; Mahlaoui, N.; Donadieu, J.; Chen, K.; Cerutti, A. B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol., 2012, 13(2), 170-180.
[http://dx.doi.org/10.1038/ni.2194] [PMID: 22197976]
[268]
Costa, S.; Bevilacqua, D.; Cassatella, M.A.; Scapini, P. Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology, 2019, 156(1), 23-32.
[http://dx.doi.org/10.1111/imm.13005] [PMID: 30259972]
[269]
Scapini, P.; Bazzoni, F.; Cassatella, M.A. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol. Lett., 2008, 116(1), 1-6.
[http://dx.doi.org/10.1016/j.imlet.2007.11.009] [PMID: 18155301]
[270]
Felger, J.C.; Abe, T.; Kaunzner, U.W.; Gottfried-Blackmore, A.; Gal-Toth, J.; McEwen, B.S.; Iadecola, C.; Bulloch, K. Brain dendritic cells in ischemic stroke: Time course, activation state, and origin. Brain Behav. Immun., 2010, 24(5), 724-737.
[http://dx.doi.org/10.1016/j.bbi.2009.11.002] [PMID: 19914372]
[271]
Charmoy, M.; Brunner-Agten, S.; Aebischer, D.; Auderset, F.; Launois, P.; Milon, G.; Proudfoot, A.E.I.; Tacchini-Cottier, F. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog., 2010, 6(2)e1000755
[http://dx.doi.org/10.1371/journal.ppat.1000755] [PMID: 20140197]
[272]
Bennouna, S.; Denkers, E.Y. Microbial antigen triggers rapid mobilization of TNF-alpha to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-alpha production. J. Immunol., 2005, 174(8), 4845-4851.
[http://dx.doi.org/10.4049/jimmunol.174.8.4845] [PMID: 15814711]
[273]
Odobasic, D.; Kitching, A.R.; Yang, Y.; O’Sullivan, K.M.; Muljadi, R.C.M.; Edgtton, K.L.; Tan, D.S.Y.; Summers, S.A.; Morand, E.F.; Holdsworth, S.R. Neutrophil myeloperoxidase regulates T-cell−driven tissue inflammation in mice by inhibiting dendritic cell function. Blood, 2013, 121(20), 4195-4204.
[http://dx.doi.org/10.1182/blood-2012-09-456483] [PMID: 23509155]
[274]
Breedveld, A.; Groot Kormelink, T.; van Egmond, M.; de Jong, E.C. Granulocytes as modulators of dendritic cell function. J. Leukoc. Biol., 2017, 102(4), 1003-1016.
[http://dx.doi.org/10.1189/jlb.4MR0217-048RR] [PMID: 28642280]
[275]
Parackova, Z.; Zentsova, I.; Vrabcova, P.; Klocperk, A.; Sumnik, Z.; Pruhova, S.; Petruzelkova, L.; Hasler, R.; Sediva, A. Neutrophil extracellular trap induced dendritic cell activation leads to Th1 polarization in type 1 diabetes. Front. Immunol., 2020, 11, 661.
[http://dx.doi.org/10.3389/fimmu.2020.00661] [PMID: 32346380]
[276]
Nicholls, A.J.; Wen, S.W.; Hall, P.; Hickey, M.J.; Wong, C.H.Y. Activation of the sympathetic nervous system modulates neutrophil function. J. Leukoc. Biol., 2018, 103(2), 295-309.
[http://dx.doi.org/10.1002/JLB.3MA0517-194RR] [PMID: 29345350]
[277]
Tajalli-Nezhad, S.; Karimian, M.; Beyer, C.; Atlasi, M.A.; Azami Tameh, A. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell. Mol. Life Sci., 2019, 76(3), 523-537.
[http://dx.doi.org/10.1007/s00018-018-2953-2] [PMID: 30377701]
[278]
Fadakar, K.; Dadkhahfar, S.; Esmaeili, A.; Rezaei, N. The role of Toll-like receptors (TLRs) in stroke. Rev. Neurosci., 2014, 25(5), 699-712.
[http://dx.doi.org/10.1515/revneuro-2013-0069] [PMID: 24807166]
[279]
Wang, G.; Joel, M.D.M.; Yuan, J.; Wang, J.; Cai, X.; Ocansey, D.K.W.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease by inhibiting ERK phosphorylation in neutrophils. Inflammopharmacology, 2020, 28(2), 603-616.
[http://dx.doi.org/10.1007/s10787-019-00683-5] [PMID: 31938969]
[280]
Martinelli, S.; Urosevic, M.; Daryadel, A.; Oberholzer, P.A.; Baumann, C.; Fey, M.F.; Dummer, R.; Simon, H.U.; Yousefi, S. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J. Biol. Chem., 2004, 279(42), 44123-44132.
[http://dx.doi.org/10.1074/jbc.M405883200] [PMID: 15302890]
[281]
Liang, Y.B.; Tang, H.; Chen, Z.B.; Zeng, L.J.; Wu, J.G.; Yang, W.; Li, Z.Y.; Ma, Z.F. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol. Med. Rep., 2017, 16(5), 6405-6411.
[http://dx.doi.org/10.3892/mmr.2017.7384] [PMID: 28901399]
[282]
Bouhlel, M.A.; Derudas, B.; Rigamonti, E.; Dièvart, R.; Brozek, J.; Haulon, S.; Zawadzki, C.; Jude, B.; Torpier, G.; Marx, N.; Staels, B.; Chinetti-Gbaguidi, G. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab., 2007, 6(2), 137-143.
[http://dx.doi.org/10.1016/j.cmet.2007.06.010] [PMID: 17681149]
[283]
Na, S.Y.; Kang, B.Y.; Chung, S.W.; Han, S.J.; Ma, X.; Trinchieri, G. Im, S.Y.; Lee, J.W.; Kim, T.S. Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB. J. Biol. Chem., 1999, 274(12), 7674-7680.
[http://dx.doi.org/10.1074/jbc.274.12.7674] [PMID: 10075655]
[284]
Certo, M.; Endo, Y.; Ohta, K.; Sakurada, S.; Bagetta, G.; Amantea, D. Activation of RXR/PPARγ underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol. Res., 2015, 102, 298-307.
[http://dx.doi.org/10.1016/j.phrs.2015.10.009] [PMID: 26546745]
[285]
Zhao, H.; Li, G.; Wang, R.; Tao, Z.; Ma, Q.; Zhang, S.; Han, Z.; Yan, F.; Li, F.; Liu, P.; Ma, S.; Ji, X.; Luo, Y. Silencing of microRNA 494 inhibits the neurotoxic Th1 shift via regulating HDAC2 STAT4 cascade in ischaemic stroke. Br. J. Pharmacol., 2020, 177(1), 128-144.
[http://dx.doi.org/10.1111/bph.14852] [PMID: 31465536]
[286]
Li, F.; Zhao, H.; Li, G.; Zhang, S.; Wang, R.; Tao, Z.; Zheng, Y.; Han, Z.; Liu, P.; Ma, Q.; Luo, Y. Intravenous antagomiR 494 lessens brain infiltrating neutrophils by increasing HDAC2 mediated repression of multiple MMPs in experimental stroke. FASEB J., 2020, 34(5), 6934-6949.
[http://dx.doi.org/10.1096/fj.201903127R] [PMID: 32239566]
[287]
Uhl, B.; Vadlau, Y.; Zuchtriegel, G.; Nekolla, K.; Sharaf, K.; Gaertner, F.; Massberg, S.; Krombach, F.; Reichel, C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood, 2016, 128(19), 2327-2337.
[http://dx.doi.org/10.1182/blood-2016-05-718999] [PMID: 27609642]
[288]
Moraga, A.; Pradillo, J.M.; García-Culebras, A.; Palma-Tortosa, S.; Ballesteros, I.; Hernández-Jiménez, M.; Moro, M.A.; Lizasoain, I. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. J. Neuroinflammation, 2015, 12(1), 87.
[http://dx.doi.org/10.1186/s12974-015-0314-8] [PMID: 25958332]
[289]
Zhang, D.; Chen, G.; Manwani, D.; Mortha, A.; Xu, C.; Faith, J.J.; Burk, R.D.; Kunisaki, Y.; Jang, J.E.; Scheiermann, C.; Merad, M.; Frenette, P.S. Neutrophil ageing is regulated by the microbiome. Nature, 2015, 525(7570), 528-532.
[http://dx.doi.org/10.1038/nature15367] [PMID: 26374999]
[290]
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[291]
Easton, A.S. Neutrophils and stroke – Can neutrophils mitigate disease in the central nervous system? Int. Immunopharmacol., 2013, 17(4), 1218-1225.
[http://dx.doi.org/10.1016/j.intimp.2013.06.015] [PMID: 23827753]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy