Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

An Appraisal on Synthetic and Medicinal Aspects of Fused Pyrimidines as Anti Neoplastic Agents

Author(s): Isha Rani*, Navgeet Kaur, Anju Goyal and Manish Sharma

Volume 23, Issue 5, 2023

Published on: 16 September, 2022

Page: [525 - 561] Pages: 37

DOI: 10.2174/1871520622666220701113204

Price: $65

Abstract

Heterocyclic compounds are recognized to possess a high grade of structural diversity and a broad spectrum of therapeutic properties. About two-thirds of the New Chemical Entities approved by the FDA against cancer entail heterocyclic rings and are the foundation stone of medicinal chemistry. Pyrimidine being a major heterocyclic compound and a crucial base component of the genetic material, has emerged as the key structural component against cancer, the deadliest disease worldwide. Though many drugs are marketed against cancer, researchers are still investigating the more promising moieties against various malignancies due to the severity of this disease. In this review, an attempt has been made to assemble the reported literature of the previous five years on various synthetic procedures and the anti-cancer potential of various classes of fused pyrimidine analogs, which would help the researchers in designing new potent derivatives. Besides this, the review intends to focus on the comprehensive discussion on biological targets, modes of action, and structure-activity relationships of each class of fused pyrimidines as potential anticancer agents.

Keywords: Heterocyclic compounds, anti-cancer agents, pyrrolo pyrimidines, pyrazole pyrimidine, receptors, NCEs.

Graphical Abstract
[1]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[2]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[3]
Donnini, S.; Monti, M.; Castagnini, C.; Solito, R.; Botta, M.; Schenone, S.; Giachetti, A.; Ziche, M. Pyrazolo-pyrimidine-derived c-Src inhibitor reduces angiogenesis and survival of squamous carcinoma cells by suppressing vascular endothelial growth factor production and signaling. Int. J. Cancer, 2007, 120(5), 995-1004.
[http://dx.doi.org/10.1002/ijc.22410] [PMID: 17131343]
[4]
Bakr, R.B.; Abdelall, E.K.; Abdel-Hamid, M.K.; Kandeel, M.M. Design and synthesis of new EGFR-tyrosine kinase inhibitors containing pyrazolo [3, 4-d] pyrimidine cores as anticancer agents. Bull. Pharm. Sci., 2012, 35(1), 27-42.
[http://dx.doi.org/10.21608/bfsa.2012.64596]
[5]
He, H.Y.; Zhao, J.N.; Jia, R.; Zhao, Y.L.; Yang, S.Y.; Yu, L.T.; Yang, L. Novel pyrazolo[3,4-d]pyrimidine derivatives as potential antitumor agents: Exploratory synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Molecules, 2011, 16(12), 10685-10694.
[http://dx.doi.org/10.3390/molecules161210685] [PMID: 22186955]
[6]
Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093] [PMID: 27744184]
[7]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Fathalla, N.; Abdel-Megeid, F.M. Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines. Eur. J. Med. Chem., 2009, 44(8), 3285-3292.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.012] [PMID: 19285757]
[8]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Micky, J.A.; Abdel-Megeid, F.M. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem., 2008, 16(15), 7102-7106.
[http://dx.doi.org/10.1016/j.bmc.2008.06.054] [PMID: 18635363]
[9]
Prewitt, A.R.; Ghose, S.; Frump, A.L.; Datta, A.; Austin, E.D.; Kenworthy, A.K.; de Caestecker, M.P. Heterozygous null bone morphogenetic protein receptor type 2 mutations promote SRC kinase-dependent caveolar trafficking defects and endothelial dysfunction in pulmonary arterial hypertension. J. Biol. Chem., 2015, 290(2), 960-971.
[http://dx.doi.org/10.1074/jbc.M114.591057] [PMID: 25411245]
[10]
Siddiqui, A.B.; Trivedi, A.R.; Kataria, V.B.; Shah, V.H. 4,5-Dihydro-1H-pyrazolo[3,4-d]pyrimidine containing phenothiazines as antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(6), 1493-1495.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.012] [PMID: 24582983]
[11]
Mohamed, M.S.; Kamel, R.; El-hameed, A.; Rania, H.J.M.C.R. Evaluation of the anti-inflammatory activity of some pyrrolo [2, 3-d] pyrimidine derivatives. Med. Chem. Res., 2013, 22(5), 2244-2252.
[http://dx.doi.org/10.1007/s00044-012-0217-5]
[12]
Patil, P.T.; Warekar, P.P.; Patil, K.T.; Undare, S.S.; Jamale, D.; Vibhute, S.; Valekar, N.J.; Kolekar, G.B.; Deshmukh, M.B.; Anbhule, P.V. A simple and efficient one-pot novel synthesis of pyrazolo [3, 4-b][1, 8] naphthyridine and pyrazolo [3, 4-d] pyrimido [1, 2-a] pyrimidine derivatives as anti-inflammatory agents. Res. Chem. Intermed., 2018, 44(2), 1119-1130.
[http://dx.doi.org/10.1007/s11164-017-3155-5]
[13]
Xie, H.; Zeng, S.; He, Y.; Zhang, G.; Yu, P.; Zhong, G.; Xu, H.; Yang, L.; Wang, S.; Zhao, X.; Hu, W. Rapid generation of a novel DPP-4 inhibitor with long-acting properties: SAR study and PK/PD evaluation. Eur. J. Med. Chem., 2017, 141, 519-529.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.029] [PMID: 29078995]
[14]
Forouzesh, D.C.; Moran, G.R. Mammalian dihydropyrimidine dehydrogenase. Arch. Biochem. Biophys., 2021, 714, 109066.
[http://dx.doi.org/10.1016/j.abb.2021.109066] [PMID: 34717904]
[15]
Woo, G.H.; Snyder, J.K.; Wan, Z-K. Six-membered ring systems: Diazines Amsterdam and benzo derivatives. Progress in heterocyclic chemistry; Elsevier, 2002, pp. 279-309.
[16]
Richards, T.W. Chemical Addresses Delivered at the Second Decennial Celebration of Clark University. September, 1909; Clark University and the American Chemical Society, 1911.
[17]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[18]
Selvam, TP; James, CR; Dniandev, PV; Valzita, SK A mini review of pyrimidine and fused pyrimidine marketed drugs. Research in Pharmacy, 2015, 2(4)
[19]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[20]
Musumeci, F.; Sanna, M.; Greco, C.; Giacchello, I.; Fallacara, A.L.; Amato, R. Pyrrolo [2, 3-d] pyrimidines active as Btk inhibitors. Expert Opin. Ther. Pat., 2017, 27(12), 1305-1318.
[21]
Tong, L.; Song, P.; Jiang, K.; Xu, L.; Jin, T.; Wang, P.; Hu, X.; Fang, S.; Gao, A.; Zhou, Y.; Liu, T.; Li, J.; Hu, Y. Discovery of (R)-5-((5-(1-methyl-1H-pyrazol-4-yl)-4-(methylamino)pyrimidin-2-yl)amino)-3-(piperidin-3-yloxy)picolinonitrile, a novel CHK1 inhibitor for hematologic malignancies. Eur. J. Med. Chem., 2019, 173, 44-62.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.062] [PMID: 30986571]
[22]
Liao, B.; Peng, L.; Zhou, J.; Mo, H.; Zhao, J.; Yang, Z.; Guo, X.; Zhang, P.; Zhang, X.; Zhu, Z. Synthesis and activity evaluation of nasopharyngeal carcinoma inhibitors based on 6-(pyrimidin-4-yl)-1H-indazole. Chem. Biodivers., 2019, 16(5), e1800598.
[http://dx.doi.org/10.1002/cbdv.201800598] [PMID: 30788913]
[23]
Abdellatif, K.R.; Bakr, R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res., 2021, 30(1), 31-49.
[http://dx.doi.org/10.1007/s00044-020-02656-8]
[24]
Chauhan, M.; Kumar, R. Medicinal attributes of pyrazolo[3,4-d]pyrimidines: A review. Bioorg. Med. Chem., 2013, 21(18), 5657-5668.
[http://dx.doi.org/10.1016/j.bmc.2013.07.027] [PMID: 23932070]
[25]
Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; Willson, J.K.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670), 554.
[http://dx.doi.org/10.1126/science.1096502] [PMID: 15016963]
[26]
Edupuganti, R.; Wang, Q.; Tavares, C.D.; Chitjian, C.A.; Bachman, J.L.; Ren, P.; Anslyn, E.V.; Dalby, K.N. Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorg. Med. Chem., 2014, 22(17), 4910-4916.
[http://dx.doi.org/10.1016/j.bmc.2014.06.050] [PMID: 25047940]
[27]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[28]
Sen, B. Johnson, FM Regulation of SRC family kinases in human cancers; J. Signal Transduc 2011, 2011.
[http://dx.doi.org/10.1155/2011/865819]
[29]
Ogino, S.; Lochhead, P.; Giovannucci, E.; Meyerhardt, J.A.; Fuchs, C.S.; Chan, A.T. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: Power and promise of molecular pathological epidemiology. Oncogene, 2014, 33(23), 2949-2955.
[http://dx.doi.org/10.1038/onc.2013.244] [PMID: 23792451]
[30]
Vora, S.R.; Juric, D.; Kim, N.; Mino-Kenudson, M.; Huynh, T.; Costa, C.; Lockerman, E.L.; Pollack, S.F.; Liu, M.; Li, X.; Lehar, J.; Wiesmann, M.; Wartmann, M.; Chen, Y.; Cao, Z.A.; Pinzon-Ortiz, M.; Kim, S.; Schlegel, R.; Huang, A.; Engelman, J.A. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell, 2014, 26(1), 136-149.
[http://dx.doi.org/10.1016/j.ccr.2014.05.020] [PMID: 25002028]
[31]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[32]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[33]
Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48.
[http://dx.doi.org/10.1016/j.phrs.2015.10.021] [PMID: 26529477]
[34]
Maurer, G.; Tarkowski, B.; Baccarini, M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene, 2011, 30(32), 3477-3488.
[http://dx.doi.org/10.1038/onc.2011.160] [PMID: 21577205]
[35]
Ferrari, S.M.; La Motta, C.; Sartini, S.; Baldini, E.; Materazzi, G.; Politti, U.; Ruffilli, I.; Ulisse, S.; Miccoli, P.; Antonelli, A.; Fallahi, P. Pyrazolopyrimidine derivatives as antineoplastic agents: With a special focus on thyroid cancer. Mini Rev. Med. Chem., 2016, 16(2), 86-93.
[http://dx.doi.org/10.2174/1389557515666151016124208] [PMID: 26471970]
[36]
Ali, E.M.H.; Abdel-Maksoud, M.S.; Oh, C.H. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorg. Med. Chem., 2019, 27(7), 1159-1194.
[http://dx.doi.org/10.1016/j.bmc.2019.02.044] [PMID: 30826188]
[37]
Pathania, S.; Rawal, R.K. Pyrrolopyrimidines: An update on recent advancements in their medicinal attributes. Eur. J. Med. Chem., 2018, 157, 503-526.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.023] [PMID: 30114661]
[38]
Kuppast, B.; Fahmy, H. Thiazolo[4,5-d]pyrimidines as a privileged scaffold in drug discovery. Eur. J. Med. Chem., 2016, 113, 198-213.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.031] [PMID: 26942627]
[39]
Singh, P.K.; Silakari, O. Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET. Bioorg. Chem., 2018, 79, 163-170.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.001] [PMID: 29758406]
[40]
Eissa, A.A.M.; Aljamal, K.F.M.; Ibrahim, H.S.; Abdelrasheed Allam, H. Design and synthesis of novel pyridopyrimidine derivatives with anchoring non-coplanar aromatic extensions of EGFR inhibitory activity. Bioorg. Chem., 2021, 116, 105318.
[http://dx.doi.org/10.1016/j.bioorg.2021.105318] [PMID: 34488123]
[41]
Elattar, K.M. El-Mekabaty, A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J. Heterocycl. Chem., 2021, 58(2), 389-414.
[http://dx.doi.org/10.1002/jhet.4174]
[42]
Singla, P.; Luxami, V.; Paul, K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Advances, 2014, 4(24), 12422-12440.
[http://dx.doi.org/10.1039/c3ra46304d]
[43]
Patel, R.V.; Park, S.W. An evolving role of piperazine moieties in drug design and discovery. Mini Rev. Med. Chem., 2013, 13(11), 1579-1601.
[http://dx.doi.org/10.2174/13895575113139990073] [PMID: 23895191]
[44]
Rincy, V.; Namitha, K.; Aswathy, J. Binuja, SJJoPS An in silico study of novel morpholine derivatives for lung cancer, non-hodgkin’s lymphoma and metastasis melanoma. J. Pharm. Sci. Res. Pharm., 2019, 11(7), 2479-2484.
[46]
Abbas, N.; Matada, G.S.P.; Dhiwar, P.S.; Patel, S.; Devasahayam, G. Fused and substituted pyrimidine derivatives as profound anti-cancer agents. Anticancer. Agents Med. Chem., 2021, 21(7), 861-893.
[http://dx.doi.org/10.2174/1871520620666200721104431] [PMID: 32698738]
[47]
Davidson, J.D.; Feigelson, P. The inhibition of adenosine deaminase by 8-azaguanine in vitro. J. Biol. Chem., 1956, 223(1), 65-73.
[http://dx.doi.org/10.1016/S0021-9258(18)65117-8] [PMID: 13376577]
[48]
Musumeci, F.; Sanna, M.; Grossi, G.; Brullo, C.; Fallacara, A.L.; Schenone, S. Pyrrolo [2, 3-d] pyrimidines as kinase inhibitors. Curr. Med. Chem., 2017, 24(19), 2059-2085.
[http://dx.doi.org/10.2174/0929867324666170303162100] [PMID: 28266267]
[49]
De Coen, L.M.; Heugebaert, T.S.; García, D.; Stevens, C.V. Synthetic entries to and biological activity of pyrrolopyrimidines. Chem. Rev., 2016, 116(1), 80-139.
[http://dx.doi.org/10.1021/acs.chemrev.5b00483] [PMID: 26699634]
[50]
Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo[2,3-d]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.001] [PMID: 30248512]
[51]
Liu, Y.; Yin, Y.; Zhang, J.; Nomie, K.; Zhang, L.; Yang, D.; Wang, M.L.; Zhao, G. Discovery of 4-(Piperazin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine derivatives as Akt inhibitors. Arch. Pharm. (Weinheim), 2016, 349(5), 356-362.
[http://dx.doi.org/10.1002/ardp.201500427] [PMID: 26991997]
[52]
Rao, R.N.; Chanda, K. An assessment study of known pyrazolopyrimidines: Chemical methodology and cellular activity. Bioorg. Chem., 2020, 99, 103801.
[http://dx.doi.org/10.1016/j.bioorg.2020.103801] [PMID: 32278206]
[53]
Ismail, N.S.; Ali, E.M.; Ibrahim, D.A.; Serya, R.A.; Abou El Ella, D.A. Pyrazolo [3, 4-d] pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Fut. J. Pharm. Sci., 2016, 2(1), 20-30.
[http://dx.doi.org/10.1016/j.fjps.2016.02.002]
[54]
Ran, F.; Liu, Y.; Yu, S.; Guo, K.; Tang, W.; Chen, X.; Zhao, G. Design and synthesis of novel 1-substituted 3-(6-phenoxypyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine analogs as selective BTK inhibitors for the treatment of mantle cell lymphoma. Bioorg. Chem., 2020, 94, 103367.
[http://dx.doi.org/10.1016/j.bioorg.2019.103367] [PMID: 31685258]
[55]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[56]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.030] [PMID: 29753773]
[57]
Wang, C.; Liu, H.; Song, Z.; Ji, Y.; Xing, L.; Peng, X.; Wang, X.; Ai, J.; Geng, M.; Zhang, A. Synthesis and structure-activity relationship study of pyrazolo[3,4-d]pyrimidines as tyrosine kinase RET inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(11), 2544-2548.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.088] [PMID: 28404375]
[58]
Xie, H.; Lin, X.; Zhang, Y.; Tan, F.; Chi, B.; Peng, Z.; Dong, W.; An, D. Design, synthesis and biological evaluation of ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(21), 127459.
[http://dx.doi.org/10.1016/j.bmcl.2020.127459] [PMID: 32784087]
[59]
Yousif, M.N.; El-Sayed, W.A.; Abbas, H-A.S.; Awad, H.M.; Yousif, N.M. Anticancer activity of new substituted pyrimidines, their thioglycosides and thiazolopyrimidine derivatives. J. Pharm. Sci. Res. Pharm., 2017, 7(11), 21-32.
[60]
Abd Elhameed, A.A.; El-Gohary, N.S.; El-Bendary, E.R.; Shaaban, M.I.; Bayomi, S.M. Synthesis and biological screening of new thiazolo[4,5-d]pyrimidine and dithiazolo[3,2-a:5′,4′-e]Pyrimidinone derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Bioorg. Chem., 2018, 81, 299-310.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.013] [PMID: 30172111]
[61]
Hassan, G.S.; El-Messery, S.M.; Abbas, A. Synthesis and anticancer activity of new thiazolo[3,2-a]pyrimidines: DNA binding and molecular modeling study. Bioorg. Chem., 2017, 74, 41-52.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.008] [PMID: 28750204]
[62]
Keshari, A.K. Design synthesis and pharmacological screening of novel substituted thiazolo 3 2 a pyrimidine and thiazolo 2 3 b quinazoline derivatives. 2017. Available from https://shodhganga.inflibnet.ac.in/handle/10603/260617
[63]
Nemr, M.T.M. AboulMagd, A.M. New fused pyrimidine derivatives with anticancer activity: Synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecular modeling study. Bioorg. Chem., 2020, 103, 104134.
[http://dx.doi.org/10.1016/j.bioorg.2020.104134] [PMID: 32750610]
[64]
Nemr, M.T.M.; Sonousi, A.; Marzouk, A.A. Design, synthesis and antiproliferative evaluation of new tricyclic fused thiazolopyrimidines targeting topoisomerase II: Molecular docking and apoptosis inducing activity. Bioorg. Chem., 2020, 105, 104446.
[http://dx.doi.org/10.1016/j.bioorg.2020.104446] [PMID: 33171405]
[65]
Hafez, H.N.; El-Gazzar, A.B. Design and synthesis of 3-pyrazolyl-thiophene, thieno[2,3-d]pyrimidines as new bioactive and pharmacological activities. Bioorg. Med. Chem. Lett., 2008, 18(19), 5222-5227.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.071] [PMID: 18783947]
[66]
Liu, Z.; Wu, S.; Wang, Y.; Li, R.; Wang, J.; Wang, L.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur. J. Med. Chem., 2014, 87, 782-793.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.022] [PMID: 25440879]
[67]
Hafez, H.N.; Alsalamah, S.A.; El-Gazzar, A.B.A. Synthesis of thiophene and N-substituted thieno[3,2-d] pyrimidine derivatives as potent antitumor and antibacterial agents. Acta Pharm., 2017, 67(3), 275-292.
[http://dx.doi.org/10.1515/acph-2017-0028] [PMID: 28858838]
[68]
Amr, A.E.E.; Ibrahimd, A.A.; El-Shehry, M.F.; Hosni, H.M.; Fayed, A.A.; Elsayed, E.A. in vitro and in vivo anti-breast cancer activities of some newly synthesized 5-(thiophen-2-yl) thieno-[2, 3-d] pyrimidin-4-one candidates. Molecules, 2019, 24(12), 2255.
[http://dx.doi.org/10.3390/molecules24122255] [PMID: 31212962]
[69]
Salem, M.S.H.; Abdel Aziz, Y.M.; Elgawish, M.S.; Said, M.M.; Abouzid, K.A.M. Design, synthesis, biological evaluation and molecular modeling study of new thieno[2,3-d]pyrimidines with anti-proliferative activity on pancreatic cancer cell lines. Bioorg. Chem., 2020, 94, 103472.
[http://dx.doi.org/10.1016/j.bioorg.2019.103472] [PMID: 31813475]
[70]
Yang, X.; Deng, M.; Zhang, X.; Wang, Y.; Song, K.; Cong, R.; Meng, L.; Zhang, J. Design, synthesis, and biological evaluation of thieno[3,2-d]pyrimidine derivatives as potential simplified phosphatidylinositol 3-kinase alpha inhibitors. Chem. Biol. Drug Des., 2019, 94(6), 2013-2022.
[http://dx.doi.org/10.1111/cbdd.13425] [PMID: 30381889]
[71]
Hafez, H.N.; El-Gazzar, A.B.A. Synthesis and evaluation of antitumor activity of new 4-substituted thieno[3,2-d]pyrimidine and thienotriazolopyrimidine derivatives. Acta Pharm., 2017, 67(4), 527-542.
[http://dx.doi.org/10.1515/acph-2017-0039] [PMID: 29337675]
[72]
Hubert, AJJoHC A novel synthesis of a benzimidazo [1, 2-c] benzopyrimidine by photolysis of 4‐(benzotriazol‐1‐yl‐2‐ phenylquinazoline. J. Heterocycl. Chem., 1974, 11(5), 737-738.
[http://dx.doi.org/10.1002/jhet.5570110513]
[73]
Salerno, S.; García-Argáez, A.N.; Barresi, E.; Taliani, S.; Simorini, F.; La Motta, C.; Amendola, G.; Tomassi, S.; Cosconati, S.; Novellino, E.; Da Settimo, F.; Marini, A.M.; Via, L.D. New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors. Eur. J. Med. Chem., 2018, 150, 446-456.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.013] [PMID: 29547832]
[74]
Abdelhaleem, E.F.; Abdelhameid, M.K.; Kassab, A.E.; Kandeel, M.M. Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Eur. J. Med. Chem., 2018, 143, 1807-1825.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.075] [PMID: 29133058]
[75]
Ke, S.; Shi, L.; Zhang, Z.; Yang, Z. Steroidal[17,16-d]pyrimidines derived from dehydroepiandrosterone: A convenient synthesis, antiproliferation activity, structure-activity relationships, and role of heterocyclic moiety. Sci. Rep., 2017, 7(1), 44439.
[http://dx.doi.org/10.1038/srep44439] [PMID: 28290501]
[76]
Cortés-Percino, A.; Vega-Báez, J.L.; Romero-López, A.; Puerta, A.; Merino-Montiel, P.; Meza-Reyes, S.; Padrón, J.M.; Montiel-Smith, S. Synthesis and evaluation of pyrimidine steroids as antiproliferative agents. Molecules, 2019, 24(20), 3676.
[http://dx.doi.org/10.3390/molecules24203676] [PMID: 31614780]
[77]
Kumar, M.S. Aanandhi, MVJRJoP An insight into the therapeutic potential of pyridopyrimidines as anticancer agents. Res. J. Pharm. Technol., 2018, 11(3), 1259-1269.
[http://dx.doi.org/10.5958/0974-360X.2018.00235.4]
[78]
Elzahabi, H.S.A.; Nossier, E.S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 546-557.
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[79]
Wang, M.; Yang, J.; Yuan, M.; Xue, L.; Li, H.; Tian, C.; Wang, X.; Liu, J.; Zhang, Z. Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2-d]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase. Eur. J. Med. Chem., 2017, 128, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.033] [PMID: 28152430]
[80]
Khan, S.; Kale, M.; Siddiqui, F.; Nema, N. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digital Chin. Med., 2021, 4(2), 102-119.
[http://dx.doi.org/10.1016/j.dcmed.2021.06.004]
[81]
Shao, K.P.; Zhang, X.Y.; Chen, P.J.; Xue, D.Q.; He, P.; Ma, L.Y.; Zheng, J.X.; Zhang, Q.R.; Liu, H.M. Synthesis and biological evaluation of novel pyrimidine-benzimidazol hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(16), 3877-3881.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.050] [PMID: 25001482]
[82]
Sharma, A.; Luxami, V.; Paul, K. Synthesis, single crystal and antitumor activities of benzimidazole-quinazoline hybrids. Bioorg. Med. Chem. Lett., 2013, 23(11), 3288-3294.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.107] [PMID: 23611732]
[83]
Galal, S.A.; Khattab, M.; Shouman, S.A.; Ramadan, R.; Kandil, O.M.; Kandil, O.M.; Tabll, A.; El Abd, Y.S.; El-Shenawy, R.; Attia, Y.M.; El-Rashedy, A.A.; El Diwani, H.I. Part III: Novel checkpoint kinase 2 (Chk2) inhibitors; design, synthesis and biological evaluation of pyrimidine-benzimidazole conjugates. Eur. J. Med. Chem., 2018, 146, 687-708.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.072] [PMID: 29407991]
[84]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Inter. J. Med. Chem., 2014, 2014
[http://dx.doi.org/10.1155/2014/202784]
[85]
Zhang, Y.; Lv, H.; Luo, L.; Xu, Y.; Pan, Y.; Wang, Y.; Lin, H.; Xiong, J.; Guo, P.; Zhang, J.; Li, X.; Ye, F. Design, synthesis and pharmacological evaluation of N4,N6-disubstituted pyrimidine-4,6-diamine derivatives as potent EGFR inhibitors in non-small cell lung cancer. Eur. J. Med. Chem., 2018, 157, 1300-1325.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.031] [PMID: 30195240]
[86]
Long, L.; Luo, Y.; Hou, Z.J.; Ma, H.J.; Long, Z.J.; Tu, Z.C.; Huang, L.J.; Liu, Q.; Lu, G. Synthesis and biological evaluation of aurora kinases inhibitors based on N-trisubstituted pyrimidine scaffold. Eur. J. Med. Chem., 2018, 145, 805-812.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.082] [PMID: 29358147]
[87]
Zhang, J.Q.; Luo, Y.J.; Xiong, Y.S.; Yu, Y.; Tu, Z.C.; Long, Z.J.; Lai, X.J.; Chen, H.X.; Luo, Y.; Weng, J.; Lu, G. Design, synthesis, and biological evaluation of substituted pyrimidines as potential phosphatidylinositol 3-kinase (PI3K) inhibitors. J. Med. Chem., 2016, 59(15), 7268-7274.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00235] [PMID: 27427973]
[88]
Lv, N.; Sun, M.; Liu, C.; Li, J. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(19), 4578-4581.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.044] [PMID: 28888820]
[89]
Gokhale, N.; Dalimba, U.; Kumsi, M. Facile synthesis of indole-pyrimidine hybrids and evaluation of their anticancer and antimicrobial activity. J. Saudi Chem. Soc., 2017, 21(7), 761-775.
[http://dx.doi.org/10.1016/j.jscs.2015.09.003]
[90]
Hu, M.J.; Zhang, B.; Yang, H.K.; Liu, Y.; Chen, Y.R.; Ma, T.Z.; Lu, L.; You, W.W.; Zhao, P.L. Design, synthesis and molecular docking studies of novel indole–pyrimidine hybrids as tubulin polymerization inhibitors. Chem. Biol. Drug Des., 2015, 86(6), 1491-1500.
[http://dx.doi.org/10.1111/cbdd.12616] [PMID: 26177395]
[91]
Diao, P.C.; Li, Q.; Hu, M.J.; Ma, Y.F.; You, W.W.; Hong, K.H.; Zhao, P.L. Synthesis and biological evaluation of novel indole-pyrimidine hybrids bearing morpholine and thiomorpholine moieties. Eur. J. Med. Chem., 2017, 134, 110-118.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.011] [PMID: 28410492]
[92]
Petrova, O.V.; Budaev, A.B.; Sagitova, E.F.; Ushakov, I.A.; Sobenina, L.N.; Ivanov, A.V.; Trofimov, B.A. Pyrrole-aminopyrimidine ensembles: Cycloaddition of guanidine to acylethynylpyrroles. Molecules, 2021, 26(6), 1692.
[http://dx.doi.org/10.3390/molecules26061692] [PMID: 33803018]
[93]
Venturini Filho, E.; Pinheiro, E.M.; Pinheiro, S.; Greco, S.J. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron, 2021, 92, 132256.
[http://dx.doi.org/10.1016/j.tet.2021.132256]
[94]
Zhao, P.L.; Li, Y.H.; Yang, H.K.; Chen, P.; Zhang, B.; Sun, Q.; Li, Q.; You, W.W. Design, synthesis and antiproliferative activity of novel 5-nitropyrimidine-2,4-diamine derivatives bearing alkyl acetate moiety. Eur. J. Med. Chem., 2016, 118, 161-169.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.038] [PMID: 27128180]
[95]
Su, Y.; Li, R.; Ning, X.; Lin, Z.; Zhao, X.; Zhou, J.; Liu, J.; Jin, Y.; Yin, Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. Eur. J. Med. Chem., 2019, 177, 32-46.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.048] [PMID: 31129452]
[96]
Yang, F.; Yu, L.Z.; Diao, P.C.; Jian, X.E.; Zhou, M.F.; Jiang, C.S.; You, W.W.; Ma, W.F.; Zhao, P.L. Novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potent antitubulin agents: Design, multicomponent synthesis and antiproliferative activities. Bioorg. Chem., 2019, 92, 103260.
[http://dx.doi.org/10.1016/j.bioorg.2019.103260] [PMID: 31525523]
[97]
Renyu, Q.; Yuchao, L.; Kandegama, W.M.W.W.; Qiong, C.; Guangfu, Y. Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini Rev. Med. Chem., 2018, 18(9), 781-793.
[http://dx.doi.org/10.2174/1389557517666171101112850] [PMID: 29090667]
[98]
Salem, M.A.; Behalo, M.S.; Khidre, R.E. Recent trend in the chemistry of triazolopyrimidines and their applications. Mini Rev. Org. Chem., 2021, 18(8), 1134-1149.
[http://dx.doi.org/10.2174/1570193X18666210203155358]
[99]
Li, Z.H.; Ma, J.L.; Liu, G.Z.; Zhang, X.H.; Qin, T.T.; Ren, W.H.; Zhao, T.Q.; Chen, X.H.; Zhang, Z.Q. [1,2,3]Triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors. Eur. J. Med. Chem., 2020, 187, 111989.
[http://dx.doi.org/10.1016/j.ejmech.2019.111989] [PMID: 31881456]
[100]
Hassan, S.Y. Synthesis and biological activity of some new pyrazoline and pyrimidine derivatives. J. Braz. Chem. Soc., 2011, 22(7), 1286-1298.
[http://dx.doi.org/10.1590/S0103-50532011000700014]
[101]
Ahmed, N.M.; Youns, M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J. Enzyme Inhib. Med. Chem. Res., 2019, 34(1), 1110-1120.
[http://dx.doi.org/10.1080/14756366.2019.1612889]
[102]
Cao, J.J.; Hood, J.; Lohse, D.; Mak, C.C.; Mc Pherson, A.; Noronha, G. Bi-aryl meta-pyrimidine inhibitors of kinases; Google Patents, 45752814382, 2007.
[103]
Luo, G.; Chen, M.; Lyu, W.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, synthesis, biological evaluation and molecular docking studies of novel 3-aryl-4-anilino-2H-chromen-2-one derivatives targeting ERα as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(12), 2668-2673.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.029] [PMID: 28460819]
[104]
Portal, WI Combination of anti-cd20 antibody and pi3 kinase selective inhibitor. WO2014071125, 2022.
[105]
Portal WI. Amorphous umbralisib monotosylate. Patent No. WO2021009509, 2021. Available from:https://ipindiaservices.gov.in/ PublicSearch/PublicationSearch/Search. 26/12/2021.
[106]
India IP. Patent Search, Available from: https://ipindiaservices. gov.in/PublicSearch/PublicationSearch/Search 26/12/2021.
[107]
[108]
Hsing-pang, H. Fused bicyclic pyrimidine compounds as aurora kinase inhibitors. US 8,138,194 B2, 2012.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy