Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Landscape Determinants of Infectivity and Insights into Vaccine Development and Effectiveness - Novel Coronavirus

Author(s): Saba Hasan*, Manish Dwivedi, Sutanu Mukhopadhyay and Nandini Gupta

Volume 20, Issue 2, 2023

Published on: 30 June, 2022

Page: [119 - 143] Pages: 25

DOI: 10.2174/1570180819666220628105636

Price: $65

Abstract

Novel technology has led to advanced approaches and understandings of viral biology, and the advent in previous years has raised the possibility of determination of mechanisms of viral replication and infection, trans-species adaption, and disease. The outbreak of Coronavirus 2019 (COVID-19) has become a global life-threatening concern recently. The war against COVID19 has now reached the most critical point, whereby it has caused worldwide social and economic disruption. Unfortunately, limited knowledge persists among the community regarding the biology of SARS-CoV-2 infection. The present review will summarize the basic life cycle and replication of the well-studied coronaviruses, identifying the unique characteristics of coronavirus biology and highlighting critical points where research has made significant advances that might represent targets for antivirals or vaccines. Areas where rapid progress has been made in SARS-CoV research have been highlighted. Additionally, an overview of the efforts dedicated to an effective vaccine for this novel coronavirus, particularly different generations of vaccines, which has crippled the world, has also been discussed. Areas of concern for research in coronavirus replication, genetics, and pathogenesis have been explained as well. Speedy evaluation of multiple approaches to elicit protective immunity and safety is essential to curtail unwanted immune potentiation, which plays an important role in the pathogenesis of this virus. Hope is to provide a glimpse into the current efforts, and the progress is made with reference to Coronaviruses and how the community can work together to prevent and control coronavirus infection now and in the future.

Keywords: SARS-CoV, COVID-19, spike glycoprotein, RT-PCR, pandemic, coronavirus.

Next »
Graphical Abstract
[1]
Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; Wang, T.T.; Schwartz, R.E.; Lim, J.K.; Albrecht, R.A.; tenOever, B.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5), 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[2]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[3]
Knobler, S.; Mahmoud, A.; Lemon, S.; Mack, A.; Sivitz, L.; Oberholtzer, K. Learning from SARS: Preparing for the next disease outbreak Workshop Summary; National Academies Press (US): Washington (DC), 2004.
[http://dx.doi.org/10.17226/10915] [PMID: 22553895]
[4]
Holmes, K.V.; Williams, R.K. Background paper: Functions of coronavirus glycoproteins. Coronaviruses and their diseases;; Cavanagh, D.E.; Brown, T.D.K., Eds.; Plenum Press: New York, 1990, pp. 5-8.
[http://dx.doi.org/10.1007/978-1-4684-5823-7_2]
[5]
Qu, G.; Li, X.; Hu, L.; Jiang, G. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environ. Sci. Technol., 2020, 54(7), 3730-3732.
[http://dx.doi.org/10.1021/acs.est.0c01102] [PMID: 32202420]
[6]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[7]
Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; Berger, A.; Burguière, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[8]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[9]
Dhama, K.; Pawaiya, R.V.S.; Chakraborty, S.; Tiwari, R.; Saminathan, M.; Verma, A.K. Coronavirus infection in equines: A review. Asian J. Anim. Vet. Adv., 2014, 9(3), 164-176.
[http://dx.doi.org/10.3923/ajava.2014.164.176]
[10]
Bonilla, P.J.; Gorbalenya, A.E.; Weiss, S.R. Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: Heterogeneity among MHV strains. Virology, 1994, 198(2), 736-740.
[http://dx.doi.org/10.1006/viro.1994.1088] [PMID: 8291254]
[11]
Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; Rollin, P.E.; Dowell, S.F.; Ling, A.E.; Humphrey, C.D.; Shieh, W.J.; Guarner, J.; Paddock, C.D.; Rota, P.; Fields, B.; DeRisi, J.; Yang, J.Y.; Cox, N.; Hughes, J.M.; LeDuc, J.W.; Bellini, W.J.; Anderson, L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1953-1966.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[12]
Lee, H.J.; Shieh, C.K.; Gorbalenya, A.E.; Koonin, E.V.; La Monica, N.; Tuler, J.; Bagdzhadzhyan, A.; Lai, M.M. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology, 1991, 180(2), 567-582.
[http://dx.doi.org/10.1016/0042-6822(91)90071-I] [PMID: 1846489]
[13]
Coronavirinae in ViralZone. Available from: https://viralzone.expasy.org/785 (Accessed on January 28, 2019).
[14]
Hachim, A.; Kavian, N.; Cohen, C.A.; Chin, A.W.H.; Chu, D.K.W.; Mok, C.K.P.; Tsang, O.T.Y.; Yeung, Y.C.; Perera, A.P.M.; Poon, L.M.; Peiris, M.J.S.; Valkenburg, S.A. Beyond the Spike: Identification of viral targets of the antibody responses to SARS-CoV-2 in COVID-19 patients. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.30.20085670]
[15]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[16]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, 477 function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 183(6), 1735.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[17]
Zhang, C.; Zheng, W.; Huang, X.; Bell, E.W.; Zhou, X.; Zhang, Y. Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J. Proteome Res., 2020, 19(4), 1351-1360.
[http://dx.doi.org/10.1021/acs.jproteome.0c00129] [PMID: 32200634]
[18]
Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections-more than just the common cold. JAMA, 2020, 323(8), 707-708.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[19]
Huibin Lv, N.C.W.; Tsang, O.T.Y.; Perera, A.P.M.; Leung, W.S.; Ray, T.Y.; Jacky, M.C.C.; Garrick, K.Y.; Thomas, S.H.C.; Yiquan, W.; Chris, Y.C.C.; Yihan, L.; Wilson, W.N.; Jincun, Z.; Poon, L.M.; Malik Peiris, J.S.; Wilson, I.A.; Chris, K.P.; Perera, A. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep., 2020, 31(9), 107725.
[http://dx.doi.org/10.1016/j.celrep.2020.107725] [PMID: 33500101]
[20]
Ralph, R.; Lew, J.; Zeng, T.; Francis, M.; Xue, B.; Roux, M.; Ostadgavahi, A.T.; Rubino, S.; Dawe, N.J.; Al-Ahdal, M.N.; Kelvin, D.J.; Richardson, C.D.; Kindrachuk, J.; Falzarano, D.; Kelvin, A.A. 2019-nCoV (Wuhan virus), a novel Coronavirus: Human-to-human transmission, travel-related cases, and vaccine readiness. J. Infect. Dev. Ctries., 2019, 14(1), 3-17.
[http://dx.doi.org/10.3855/jidc.12425] [PMID: 32088679]
[21]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[22]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[23]
Sexton, N.R.; Smith, E.C.; Blanc, H.; Vignuzzi, M.; Peersen, O.B.; Denison, M.R. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J. Virol., 2016, 90(16), 7415-7428.
[http://dx.doi.org/10.1128/JVI.00080-16] [PMID: 27279608]
[24]
Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); WHO: Geneva, Switzerland, 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
[25]
Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023.
[http://dx.doi.org/10.1093/nsr/nwaa036] [PMID: 34676127]
[26]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[27]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[28]
Lim, Y.X.; Ng, Y.L.; Tam, J.P.; Liu, D.X. Human coronaviruses: A review of virus-host interactions. Diseases, 2016, 4(3), 26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[29]
Neuman, B.W.; Kiss, G.; Kunding, A.H.; Bhella, D.; Baksh, M.F.; Connelly, S.; Droese, B.; Klaus, J.P.; Makino, S.; Sawicki, S.G.; Siddell, S.G.; Stamou, D.G.; Wilson, I.A.; Kuhn, P.; Buchmeier, M.J. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol., 2011, 174(1), 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[30]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[31]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[32]
Lvov, D.K.; Alkhovsky, S.V.; Kolobukhina, L.V.; Burtseva, E.I. Etiology of epidemic outbreaks COVID-19 on Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): Lessons of SARS-CoV outbreak. Vopr. Virusol., 2020, 65(1), 6-15.
[http://dx.doi.org/10.36233/0507-4088-2020-65-1-6-15] [PMID: 32496715]
[33]
Lu, R.; Wang, Y.; Wang, W.; Nie, K.; Zhao, Y.; Su, J.; Deng, Y.; Zhou, W.; Li, Y.; Wang, H.; Wang, W.; Ke, C.; Ma, X.; Wu, G.; Tan, W. Complete genome sequence of Middle East respiratory syndrome coronavirus (MERS-CoV) from the first imported MERS-CoV case in China. Genome Announc., 2015, 3(4), e00818-e00815.
[http://dx.doi.org/10.1128/genomeA.00818-15] [PMID: 26272560]
[34]
Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Peñaranda, S.; Bankamp, B.; Maher, K.; Chen, M.H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J.L.; Chen, Q.; Wang, D.; Erdman, D.D.; Peret, T.C.; Burns, C.; Ksiazek, T.G.; Rollin, P.E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Günther, S.; Osterhaus, A.D.; Drosten, C.; Pallansch, M.A.; Anderson, L.J.; Bellini, W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300(5624), 1394-1399.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[35]
Tong, T.R. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect. Disord. Drug Targets, 2009, 9(2), 223-245.
[http://dx.doi.org/10.2174/187152609787847659] [PMID: 19275708]
[36]
Dveksler, G.S.; Pensiero, M.N.; Cardellichio, C.B.; Williams, R.K.; Jiang, G.S.; Holmes, K.V.; Dieffenbach, C.W. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol., 1991, 65(12), 6881-6891.
[http://dx.doi.org/10.1128/jvi.65.12.6881-6891.1991] [PMID: 1719235]
[37]
Yeager, C.L.; Ashmun, R.A.; Williams, R.K.; Cardellichio, C.B.; Shapiro, L.H.; Look, A.T.; Holmes, K.V. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992, 357(6377), 420-422.
[http://dx.doi.org/10.1038/357420a0] [PMID: 1350662]
[38]
Gallagher, T.M. A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor. J. Virol., 1997, 71(4), 3129-3137.
[http://dx.doi.org/10.1128/jvi.71.4.3129-3137.1997] [PMID: 9060676]
[39]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[40]
Denison, M.R.; Spaan, W.J.; van der Meer, Y.; Gibson, C.A.; Sims, A.C.; Prentice, E.; Lu, X.T. The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J. Virol., 1999, 73(8), 6862-6871.
[http://dx.doi.org/10.1128/JVI.73.8.6862-6871.1999] [PMID: 10400784]
[41]
Gosert, R.; Kanjanahaluethai, A.; Egger, D.; Bienz, K.; Baker, S.C. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol., 2002, 76(8), 3697-3708.
[http://dx.doi.org/10.1128/JVI.76.8.3697-3708.2002] [PMID: 11907209]
[42]
Shi, S.T.; Schiller, J.J.; Kanjanahaluethai, A.; Baker, S.C.; Oh, J.W.; Lai, M.M. Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. J. Virol., 1999, 73(7), 5957-5969.
[http://dx.doi.org/10.1128/JVI.73.7.5957-5969.1999] [PMID: 10364348]
[43]
van der Meer, Y.; Snijder, E.J.; Dobbe, J.C.; Schleich, S.; Denison, M.R.; Spaan, W.J.; Locker, J.K. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol., 1999, 73(9), 7641-7657.
[http://dx.doi.org/10.1128/JVI.73.9.7641-7657.1999] [PMID: 10438855]
[44]
de Vries, A.A.F.; Horzinek, M.C.; Rottier, P.J.M.; de Groot, R.J. The genome organization of the nidovirales: Similarities and differences between arteri-, toro-, and coronaviruses. Semin. Virol., 1997, 8(1), 33-47.
[http://dx.doi.org/10.1006/smvy.1997.0104] [PMID: 32288441]
[45]
Klumperman, J.; Locker, J.K.; Meijer, A.; Horzinek, M.C.; Geuze, H.J.; Rottier, P.J. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol., 1994, 68(10), 6523-6534.
[http://dx.doi.org/10.1128/jvi.68.10.6523-6534.1994] [PMID: 8083990]
[46]
Krijnse-Locker, J.; Ericsson, M.; Rottier, P.J.; Griffiths, G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol., 1994, 124(1-2), 55-70.
[http://dx.doi.org/10.1083/jcb.124.1.55] [PMID: 8294506]
[47]
Rottier, P.J.; Rose, J.K. Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J. Virol., 1987, 61(6), 2042-2045.
[http://dx.doi.org/10.1128/jvi.61.6.2042-2045.1987] [PMID: 3033331]
[48]
Bost, A.G.; Carnahan, R.H.; Lu, X.T.; Denison, M.R. Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J. Virol., 2000, 74(7), 3379-3387.
[http://dx.doi.org/10.1128/JVI.74.7.3379-3387.2000] [PMID: 10708455]
[49]
Opstelten, D.J.; Raamsman, M.J.; Wolfs, K.; Horzinek, M.C.; Rottier, P.J. Envelope glycoprotein interactions in coronavirus assembly. J. Cell Biol., 1995, 131(2), 339-349.
[http://dx.doi.org/10.1083/jcb.131.2.339] [PMID: 7593163]
[50]
Salanueva, I.J.; Carrascosa, J.L.; Risco, C. Structural maturation of the transmissible gastroenteritis coronavirus. J. Virol., 1999, 73(10), 7952-7964.
[http://dx.doi.org/10.1128/JVI.73.10.7952-7964.1999] [PMID: 10482542]
[51]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020, 39(8), e2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[52]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[53]
Shamsi, A.; Mohammad, T.; Anwar, S.; AlAjmi, M.F.; Hussain, A.; Rehman, M.T.; Islam, A.; Hassan, M.I. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Biosci. Rep., 2020, 40, BSR20201256.
[http://dx.doi.org/10.1042/BSR20201256] [PMID: 32441299]
[54]
Graham, R.L.; Sparks, J.S.; Eckerle, L.D.; Sims, A.C.; Denison, M.R. SARS Coronavirus replicase proteins in pathogenesis. Virus Res., 2008, 133(1), 88-100.
[http://dx.doi.org/10.1016/j.virusres.2007.02.017] [PMID: 17397959]
[55]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[56]
Totura, A.L.; Bavari, S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin. Drug Discov., 2019, 14(4), 397-412.
[http://dx.doi.org/10.1080/17460441.2019.1581171] [PMID: 30849247]
[57]
Suzuki, T.; Otake, Y.; Uchimoto, S.; Hasebe, A.; Goto, Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses, 2020, 12(2), 183.
[http://dx.doi.org/10.3390/v12020183] [PMID: 32041103]
[58]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[59]
Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brünink, S.; Schneider, J.; Ehmann, R.; Zwirglmaier, K.; Drosten, C.; Wendtner, C. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809), 465-469.
[http://dx.doi.org/10.1038/s41586-020-2196-x] [PMID: 32235945]
[60]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[61]
tenOever, B.R. The evolution of antiviral defense systems. Cell Host Microbe, 2016, 19(2), 142-149.
[http://dx.doi.org/10.1016/j.chom.2016.01.006] [PMID: 26867173]
[62]
Janeway, C.A., Jr; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol., 2002, 20(1), 197-216.
[http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359] [PMID: 11861602]
[63]
Hur, S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol., 2019, 37(1), 349-375.
[http://dx.doi.org/10.1146/annurev-immunol-042718-041356] [PMID: 30673536]
[64]
Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and distinct functions of type I and type III interferons. Immunity, 2019, 50(4), 907-923.
[http://dx.doi.org/10.1016/j.immuni.2019.03.025] [PMID: 30995506]
[65]
Proudfoot, A.E. Chemokine receptors: Multifaceted therapeutic targets. Nat. Rev. Immunol., 2002, 2(2), 106-115.
[http://dx.doi.org/10.1038/nri722] [PMID: 11910892]
[66]
Sokol, C.L.; Luster, A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol., 2015, 7(5), 7.
[http://dx.doi.org/10.1101/cshperspect.a016303] [PMID: 25635046]
[67]
Lauring, A.S.; Hodcroft, E.B. Genetic variants of SARS-CoV-2—what do they mean? JAMA, 2021, 325(6), 529-531.
[http://dx.doi.org/10.1001/jama.2020.27124] [PMID: 33404586]
[68]
Centers for Disease Control and Prevention (CDC). SARS-CoV-2 variant classifications and definitions. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
[69]
Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Cohen, C. Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa. Medrxiv, 2021.
[70]
Christie, B. Covid-19: Early studies give hope omicron is milder than other variants. BMJ, 2021, 375, n3144.
[http://dx.doi.org/10.1136/bmj.n3144] [PMID: 34949600]
[71]
McMahan, K.; Giffin, V.; Tostanoski, L.; Chung, B.; Siamatu, M.; Suthar, M. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters. Med. (NY), 2022, 3(4), 262-268.
[http://dx.doi.org/10.1016/j.medj.2022.03.004] [PMID: 35313451]
[72]
Thakur, V.; Ratho, K.R. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J. Med. Virol., 2021, 94(5), 1821-1824.
[http://dx.doi.org/10.1002/jmv.27541] [PMID: 34936120]
[73]
Chen, J.; Wang, R.; Gilby, N.B.; Wei, G-W. Omicron (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance; ArXiv, 2021.
[74]
Wang, R.; Chen, J.; Wei, G-W. Mechanisms of SARS-CoV-2 evolution revealing vaccine-resistant mutations in Europe and America. J. Phys. Chem. Lett., 2021, 12, 11850-11857.
[http://dx.doi.org/10.1021/acs.jpclett.1c03380]
[75]
Shah, M.; Woo, H.G. Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies. Front. Immunol., 2022, 12, 830527.
[http://dx.doi.org/10.3389/fimmu.2021.830527] [PMID: 35140714]
[76]
Burki, T.K. Omicron variant and booster COVID-19 vaccines. Lancet Respir. Med., 2022, 10(2), e17.
[http://dx.doi.org/10.1016/S2213-2600(21)00559-2] [PMID: 34929158]
[77]
Eroglu, B.; Nuwarda, R.F.; Ramzan, I.; Kayser, V. A narrative review of COVID-19 vaccines. Vaccines (Basel), 2021, 10(1), 62.
[http://dx.doi.org/10.3390/vaccines10010062] [PMID: 35062723]
[78]
World Health Organization. Coronavirus disease (COVID-2019) situation 464 reports., 2020. Available from: https://www.who.int/emergencies/diseases/novel465 coronavirus-2019/situation-reports
[79]
Dogan, M.; Kozhaya, L.; Placek, L. SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Commun. Biol., 2021, 4, 129.
[http://dx.doi.org/10.1038/s42003-021-01649-6] [PMID: 33514825]
[80]
Thevarajan, I.; Nguyen, T.H.O.; Koutsakos, M.; Druce, J.; Caly, L.; van de Sandt, C.E.; Jia, X.; Nicholson, S.; Catton, M.; Cowie, B.; Tong, S.Y.C.; Lewin, S.R.; Kedzierska, K. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med., 2020, 26(4), 453-455.
[http://dx.doi.org/10.1038/s41591-020-0819-2] [PMID: 32284614]
[81]
Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H. Establishment and validation of 526 a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect., 2020, 9(1), 680-686.
[82]
Amanat, A.; Stadlbauer, D.; Strohmeier, S.; Nguyen, T.; Chromikova, V.; McMahon, M.; Jiang, K.; Asthagiri-Arunkumar, G.; Jurczyszak, D.; Polanco, J.; Bermudez-Gonzalez, M.; Kleiner, G.; Aydillo, T.; Miorin, L.; Fierer, D.; Lugo, A.; Kojic, E.M.; Stoever, J.; Liu, S.T.H.; Cunningham-Rundles, C.; Felgner, P.L.; Moran, T.; Garcia-Sastre, A.; Caplivski, D.; Cheng, A.; Kedzierska, K.; Vapalahti, O.; Hepojoki, J.M.; Simon, V.; Krammer, F. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med., 2020, 26(7), 1033-1036.
[http://dx.doi.org/10.1038/s41591-020-0913-5] [PMID: 32398876]
[83]
Iqbal, H. The importance of cell-mediated immunity in COVID-19 - An opinion. Med. Hypotheses, 2020, 143, 110152.
[http://dx.doi.org/10.1016/j.mehy.2020.110152] [PMID: 32759017]
[84]
Pan, Y.; Li, X.; Yang, G.; Fan, J.; Tang, Y.; Zhao, J. Serological 537 immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID538 19 patients. MedRxiv, 2020, 81(1), e28-e32.
[85]
Christine Dahlke, J.H.; Kobbe, R.; Santer, R.; Koch, T.; Fathi, A.; Ly, M.L.; Schmiedel, S.; Seeberger, P.H. ID-UKE COVID-19 study group. 541 Marylyn M. Addo, Felix F. Loeffler. Distinct early IgA profile may determine severity 542 of COVID-19 symptoms: An immunological case series. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.14.20059733]
[86]
Wang, H.; Wu, X.; Liang, T.; Zhang, X.; Wang, D.; Teng, F.; Dai, J.; Duan, H.; Guo, S.; Li, Y.; Yu, X. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution. ACS Cent. Sci., 2020, 6(12), 2238-2249.
[http://dx.doi.org/10.1021/acscentsci.0c00742] [PMID: 33372199]
[87]
Coronavirus Disease. (COVID-19); U.S. Food and Drug Administration., 2019. Available from: http://www.fda.gov/emergency-preparedness-andresponse/mcm-issues/coronavirus-disease-2019-covid-19
[88]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[89]
Sheridan, C. Coronavirus and the race to distribute reliable diagnostics. Nat. Biotechnol., 2020, 38, 382-384.
[http://dx.doi.org/10.1038/d41587-020-000022]
[90]
Miller, S.; Chiu, C.; Rodino, K.G.; Miller, M.B. Point-counterpoint: Should we be performing metagenomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J. Clin. Microbiol., 2020, 58(3), e01739-19.
[http://dx.doi.org/10.1128/JCM.01739-19] [PMID: 31619533]
[91]
Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and potential. Biotechniques, 1999, 26(1), 112-122, 124-125.
[http://dx.doi.org/10.2144/99261rv01] [PMID: 9894600]
[92]
Kageyama, T.; Kojima, S.; Shinohara, M.; Uchida, K.; Fukushi, S.; Hoshino, F.B.; Takeda, N.; Katayama, K. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol., 2003, 41(4), 1548-1557.
[http://dx.doi.org/10.1128/JCM.41.4.1548-1557.2003] [PMID: 12682144]
[93]
Corman, V.; Bleicker, T.; Brünink, S.; Zambon, M. Diagnostic Detection of Wuhan Coronavirus 2019 by Real-Time RT-PCR; World Health Organization: Geneva, 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf.
[94]
State Food and Drug Administration emergency approval of new coronavirus detection products. China National Medical Products Administration, Available from: http://www.nmpa.gov.cn/WS04/CL2056/375802. html.
[95]
Afzal, A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J. Adv. Res., 2020, 26, 149-159.
[http://dx.doi.org/10.1016/j.jare.2020.08.002] [PMID: 32837738]
[96]
Laboratory Testing for Coronavirus Disease. (COVID-19) in Suspected Human Cases; World Health Organization: Geneva, 2019.
[97]
Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis., 2020, 20(4), 411-412.
[http://dx.doi.org/10.1016/S1473-3099(20)30113-4] [PMID: 32105638]
[98]
Yang, Y.; Yang, M.; Shen, C.; Wang, F.; Yuan, J.; Li, J.; Zhang, M.; Wang, Z.; Xing, L.; Wei, J. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.11.20021493]
[99]
Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020, 296, E32-E40.
[http://dx.doi.org/10.1148/radiol.2020200642] [PMID: 32101510]
[100]
Lvov, D.K.; Alkhovsky, S.V. Source of the COVID-19 pandemic: Ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Vopr. Virusol., 2020, 65(2), 62-70.
[http://dx.doi.org/10.36233/0507-4088-2020-65-2-62-70] [PMID: 32515561]
[101]
Yang, W.; Yan, F. Patients with RT-PCR-confirmed COVID-19 and normal chest CT. Radiology, 2020, 295(2), E3.
[http://dx.doi.org/10.1148/radiol.2020200702] [PMID: 32142398]
[102]
Whiting, P.; Singatullina, N.; Rosser, J.H. Computed tomography of the chest: I. basic principles. BJA Education, 2015, 15(6), 299-304.
[http://dx.doi.org/10.1093/bjaceaccp/mku063]
[103]
Lee, E.Y.P.; Ng, M-Y.; Khong, P-L. COVID-19 pneumonia: What has CT taught us? Lancet Infect. Dis., 2020, 20(4), 384-385.
[http://dx.doi.org/10.1016/S1473-3099(20)30134-1] [PMID: 32105641]
[104]
Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) 2020 pneumonia. Radiology, 2020, 295(3), 715-772.
[http://dx.doi.org/10.1148/radiol.2020200370] [PMID: 32053470]
[105]
Guan, W-J.; Ni, Z-Y.; Hu, Y.; Liang, W-H.; Ou, C-Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C-L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[106]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[107]
Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing. Radiology, 2020, 296(2), E41-E45.
[http://dx.doi.org/10.1148/radiol.2020200343] [PMID: 32049601]
[108]
Zhang, W.; Du, R-H.; Li, B.; Zheng, X-S.; Yang, X-L.; Hu, B.; Wang, Y-Y.; Xiao, G-F.; Yan, B.; Shi, Z-L.; Zhou, P. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect., 2020, 9(1), 386-389.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[109]
Xiang, J.; Yan, M. Evaluation of enzyme-linked immunoassay and colloidal gold- immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.27.20028787]
[110]
Cai, X.; Chen, J. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of corona virus disease 2019 (COVID-19). J. Infect. Dis., 2020 May 8;, jiaa243.
[http://dx.doi.org/10.1101/2020.02.22.20026617]
[111]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schafer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[112]
Li, G.; Clercq, E.D. Therapeutic options for the 2019 novel coronavirus (2019nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[113]
The efficacy of lopinavir plus ritonavir and arbidol against novel coronavirus infection (ELACOI). Available from: https://clinicaltrials.gov/ct2/show/NCT04252885
[114]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; Muller, M. A.; Drosten, C.; Pohlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[115]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[116]
Mifsud, E.J.; Hayden, F.G.; Hurt, A.C. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res., 2019, 169, 104545.
[http://dx.doi.org/10.1016/j.antiviral.2019.104545] [PMID: 31247246]
[117]
Maxmen, A. More than 80 clinical trials launch to test coronavirus treatments. Nature, 2020, 578(7795), 347-348.
[http://dx.doi.org/10.1038/d41586-020-00444-3] [PMID: 32071447]
[118]
Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol., 2020, 38(1), 10-18.
[http://dx.doi.org/10.12932/AP-200220-0773] [PMID: 32134278]
[119]
WHO R&D Blueprint. COVID-19 vaccines: Knowledge gaps and research priorities - WHO ad hoc consultation; , 2021. Available from: https://www.who.int/publications/m/item/covid-19-vaccines-knowledge-gaps-and-research-priorities---who-ad-hoc-consultation
[120]
Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med., 2021, 27, 1205-1211.
[http://dx.doi.org/10.1038/s41591-021-01377-8] [PMID: 34002089]
[121]
Forni, G.; Mantovani, A.; Moretta, L.; Rezza, G. Vaccines. Accademia Nazionale dei Lincei, 2018. Available from: https://www.lincei.it/it/article/i-va
[122]
WHO. Global COVID-19 Vaccination - Strategic Vision for 2022 - Technical Document., 2021. Available from: https://cdn.who.int/media/docs/default-source/immunization/sage/covid/global-covid-19-vaccination-strategic-vision-for-2022_sage-yellow-book.pdf
[123]
Cohen, J. Leader of U.S. vaccine push says, he’ll quit if politics trumps science. Science, 2020.
[http://dx.doi.org/10.1126/science.abe6380]
[124]
Anon. Countries where COVID-19 has spread., 2020. Available from: https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/ (Accessed on July 31, 2020).
[125]
Anon. COVID-19 Treatment and Vaccine Tracker., 2020. Available from: https://airtable.com/shrSAi6t5WFwqo3GM/tblEzPQS5fnc0FHYR/
[126]
Immunity and safety of Covid-19 synthetic minigene vaccine. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04276896
[127]
Le, T.T.; Andreadakis, Z.; Kumar, A.; Román, G.R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[128]
Safety and immunity of covid-19 aAPC vaccine. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04299724
[129]
A study of a candidate COVID-19 vaccine (COV001). 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04
[130]
van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; Feldmann, F.; Allen, E.R.; Sharpe, H.; Schulz, J.; Holbrook, M.; Okumura, A.; Meade-White, K.; Pérez-Pérez, L.; Bissett, C.; Gilbride, C.; Williamson, B.N.; Rosenke, R.; Long, D.; Ishwarbhai, A.; Kailath, R.; Rose, L.; Morris, S.; Powers, C.; Lovaglio, J.; Hanley, P.W.; Scott, D.; Saturday, G.; de Wit, E.; Gilbert, S.C.; Munster, V.J. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586, 578-582.
[http://dx.doi.org/10.1101/2020.05.13.093195] [PMID: 32511340]
[131]
Sinovac gets regulatory approval to assess Covid-19 vaccine. 2020. Available from: https://www.clinicaltrialsarena. com/news/sinovac-covid-19-vaccine-trial-approval/
[132]
Sinovac reports positive data from Phase I/II trials of CoronaVac. 2020. Available from: https://www.clinicaltrialsarena.com/news/sinovac-coronavac-data/
[133]
An open study of the safety, tolerability and immunogenicity of the drug "Gam-COVID-Vac" vaccine against COVID-19. NCT04436471, 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04436471?term=vaccine&cond=covid-19&draw=4
[134]
An open study of the safety, tolerability and immunogenicity of "Gam- COVID-Vac Lyo" vaccine against COVID-19. 2020. Available from: https://clinicaltrials.gov/c t2/show/NCT04437875 [Cited: June 22, 2020.].
[136]
UW-Madison. FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine., 2020. Available from: https://www.businesswire. com/news/home/20200402005666/en/UW%E2%80%93Madison-FluGen-
[137]
Campbell, M. Current efforts in COVID-19 vaccine development., 2020. Available from: https://www.technologynetworks.com/biopharma/articles/current-efforts-in-covid-19-
[138]
Vaxart announces positive pre-clinical data for its oral COVID-19 vaccine program. 2020. Available from: https://investors.vaxart.com/news-releases/news-release-details/vaxart-announces-
[139]
Safety, tolerability and immunogenicity of INO-4800 for COVID-19 in healthy volunteers. 2020. Available from: s.gov/ct2/show/NCT04336410?term=inovio&cond=covid-19&draw=2&rank=1
[140]
BROOK. Applied DNA Sciences Subsidiary, LineaRx, and Takis Biotech Collaborate for Development of a Linear DNA Vaccine Candidate Against Wuhan Coronavirus 2019-nCoV. Applied DNA Sciences., 2019. Available from: https://adnas.com/coronoavirus-applied-dna-linearx-takis-biotech-vaccine/
[141]
Zydus Cadila looks to expedite Covid-19 vaccine development. 2020. Available from: ceutical-technology.com/news/zydus-cadila-covid-19-vaccine/
[142]
Safety and immunogenicity study of 2019-nCoV vaccine (mRNA-1273) for prophylaxis of SARS-CoV-2 infection (COVID-19). 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04283461?term=vacci
[143]
Anon. Draft landscape of COVID-19 candidate vaccines., 2020. Available from: https://www.who.int/publicatio ns/m/item/draft-landscape-of-covid-19-candidate-vaccines [Cited: June 23, 2020].
[144]
Clinical trial to assess the safety of a coronavirus vaccine in healthy men and women. 2020. Available from: http://www.isrctn.com/ISRCTN17072692 [Cited: June 22, 2020].
[145]
Anon. A trial investigating the safety and effects of four BNT162 vaccines against COVID-2019 in healthy adults., 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04380701
[146]
Anon. Evaluation of the safety and immunogenicity of a SARSCoV-2 rS (COVID-19) nanoparticle vaccine with/without matrix-M adjuvant. 2020. Available from: https://clinicaltrials.go [Cited: June 15, 2020].
[147]
Anon; COVID-19 vaccine development program. Medigaco Inc. A randomized, double-blind, placebo parallel-controlled phase I/II clinical trial for inactivated Novel Coronavirus Pneumonia vaccine (Vero cells). 2020. Available from: https://www.medicago.com/en/covid-19-programs/ Available from: http://www.chictr.org.cn/showprojen.aspx?proj=52227
[148]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[149]
Wang, N.; Shang, J.; Jiang, S.; Du, L. Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol., 2020, 11, 298.
[http://dx.doi.org/10.3389/fmicb.2020.00298] [PMID: 32265848]
[150]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. 2020. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[151]
Coleman, C.M.; Liu, Y.V.; Mu, H.; Taylor, J.K.; Massare, M.; Flyer, D.C.; Smith, G.E.; Frieman, M.B.; Frieman, M.B. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine, 2014, 32(26), 3169-3174.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.016] [PMID: 24736006]
[152]
Tu, Y.-F.; Chien, C.-S.; Yarmishyn, A.A.; Lin, Y.-Y.; Luo, Y.-H.; Lin, Y.-Y.; Lai, W.-Y.; Yang, D.-M.; Chou, S.-J.; Yang, Y.-P.; Wang, M.-L.; Chiou, S.-H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[153]
Lee, J. These 23 companies are working on coronavirus treatments or vaccines — here’s where things stand. Market watch, 2020.
[154]
Kim, E.; Erdos, G.; Huang, S.; Kenniston, T.W.; Balmert, S.C.; Carey, C.D.; Raj, V.S.; Epperly, M.W.; Klimstra, W.B.; Haagmans, B.L.; Korkmaz, E.; Falo, L.D., Jr; Gambotto, A. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 2020, 55, 102743.
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[155]
Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines, 2014, 2(3), 624-641.
[http://dx.doi.org/10.3390/vaccines2030624] [PMID: 26344749]
[156]
Callaway, Ewen The race for coronavirus vaccines: A graphical guide. Nature, 2020, 580(7805), 576-577.
[http://dx.doi.org/10.1038/d41586-020-01221-y]
[157]
Zhu, F-C.; Li, Y-H.; Guan, X-H.; Hou, L-H.; Wang, W-J.; Li, J-X.; Wu, S-P.; Wang, B-S.; Wang, Z.; Wang, L.; Jia, S-Y.; Jiang, H-D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J-B.; Xu, S-B.; Xu, J-J. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395(10240), 1845-1854.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3]
[158]
Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114]
[159]
Voltron Therapeutics, Inc.. Enters into sponsored research agreement with the vaccine & immunotherapy center at the Massachusetts general hospital to develop potential COVID-19 vaccine., 2020. Available from: https://www.prnewswire.com/news-releases/voltron-therapeutics-inc-enters-into-sponsored-research-agreement-with-the-vaccine--immunotherapy-center-at-the-massachusetts-general-hospital-to-develop-potential-covid-19-vaccine-301034225.htmlhttps://www.prnewswire.com/
[160]
ICMR begins phase-II of plasma therapy trials. The Times of India, 2020. Available from: https://timesofindia.indiatimes.com/india/icmr-begins-phase-ii-of-plasma-therapy-trials/articleshowprint/75590021.cms

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy