Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Use of CRISPR in Infection Control

Author(s): Isna S. Khan, Zainab Faiyaz and Asad U. Khan*

Volume 23, Issue 5, 2022

Published on: 23 August, 2022

Page: [299 - 309] Pages: 11

DOI: 10.2174/1389203723666220627152112

Price: $65

Abstract

One of the greatest threats to the global world is infectious diseases. The morbidity and fatality of infectious diseases cause 17 million deaths annually. The recent COVID-19 pandemic describes the uncertain potential of these diseases. Understanding the pathogenesis of infectious agents, including bacteria, viruses, fungi, etc. and the evolution of rapid diagnostic techniques and treatments has become a pressing priority to improve infectious disease outcomes worldwide. Clustered regularly interspaced short palindromic repeats (CRISPR) constitute the adaptive immune system of archaea and bacteria along with CRISPR-associated (Cas) proteins that recognize and destroy foreign DNA acting as molecular scissors. Since their discovery, CRISPR systems are classified into 6 types and 22 subtypes. Type II, V, and VI are used for diagnostic purposes. Utilizing the CRISPR-Cas system's capabilities will aid promote the development of novel and improved diagnostics as well as innovative delivery systems and the prevention and treatment of infectious diseases.

Keywords: CRISPR-Cas, infectious diseases, multi-drug resistance, diagnostics, therapeutics, antimicrobial resistance, CRISPR-Cas9.

Next »
Graphical Abstract
[1]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phospha-tase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/jb.169.12.5429-5433.1987] [PMID: 3316184]
[2]
Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 2018, 200(7), e00580-e17.
[http://dx.doi.org/10.1128/JB.00580-17] [PMID: 29358495]
[3]
Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[4]
Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R.; Pande, T.; En-dy, D.; La Russa, M.F.; Lewis, D.B.; Qi, L.S. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell, 2020, 181(4), 865-876.e12.
[http://dx.doi.org/10.1016/j.cell.2020.04.020] [PMID: 32353252]
[5]
Liu, X.; Hao, R.; Chen, S.; Guo, D.; Chen, Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved re-gions of the viral genome. J. Gen. Virol., 2015, 96(8), 2252-2261.
[http://dx.doi.org/10.1099/vir.0.000159] [PMID: 25904148]
[6]
Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol., 2005, 1(6), e60.
[http://dx.doi.org/10.1371/journal.pcbi.0010060] [PMID: 16292354]
[7]
Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokary-otes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mecha-nisms of action. Biol. Direct, 2006, 1(1), 7.
[http://dx.doi.org/10.1186/1745-6150-1-7] [PMID: 16545108]
[8]
Hille, F.; Richter, H.; Wong, S.P.; Bratovič, M.; Ressel, S.; Charpentier, E. The biology of CRISPR-Cas: Backward and forward. Cell, 2018, 172(6), 1239-1259.
[http://dx.doi.org/10.1016/j.cell.2017.11.032] [PMID: 29522745]
[9]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819), 1709-1712.
[http://dx.doi.org/10.1126/science.1138140]
[10]
Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K.; Zhang, F.; Koonin, E.V. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell, 2015, 60(3), 385-397.
[http://dx.doi.org/10.1016/j.molcel.2015.10.008] [PMID: 26593719]
[11]
Strich, J.R.; Chertow, D.S. CRISPR-Cas biology and its application to infectious diseases. J. Clin. Microbiol., 2019, 57(4), e01307-e01318.
[http://dx.doi.org/10.1128/JCM.01307-18] [PMID: 30429256]
[12]
Hille, F.; Charpentier, E. CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1707), 20150496.
[http://dx.doi.org/10.1098/rstb.2015.0496] [PMID: 27672148]
[13]
Wei, Y.; Terns, R.M.; Terns, M.P. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev., 2015, 29(4), 356-361.
[http://dx.doi.org/10.1101/gad.257550.114] [PMID: 25691466]
[14]
Jolany Vangah, K.C.B.H.H.A.S.A.A.G.; Jolany Vangah, S.; Katalani, S.; Boone, C.; Hajizade, H.A.; Sijercic, A.; Ahmadian, A.; Ahmadian, G. Biol. Proced. Online, 2020.
[15]
Garside, E.L.; Schellenberg, M.J.; Gesner, E.M.; Bonanno, J.B.; Sauder, J.M.; Burley, S.K.; Almo, S.C.; Mehta, G.; MacMillan, A.M. Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. RNA, 2012, 18(11), 2020-2028.
[http://dx.doi.org/10.1261/rna.033100.112] [PMID: 23006625]
[16]
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340), 602-607.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[17]
Charpentier, E.D.O.J.W.M. CrRNA Biogenesis BT - CRISPR-Cas Systems: RNA-Mediated Adaptive Immunity in Bacteria and Archaea; Springer, 2013.
[18]
Samai, P.; Pyenson, N.; Jiang, W.; Goldberg, G.W.; Hatoum-Aslan, A.; Marraffini, L.A. Co-transcriptional DNA and RNA cleavage during Type III CRISPR-Cas immunity. Cell, 2015, 161(5), 1164-1174.
[http://dx.doi.org/10.1016/j.cell.2015.04.027] [PMID: 25959775]
[19]
Staals, R.H.J.; Zhu, Y.; Taylor, D.W.; Kornfeld, J.E.; Sharma, K.; Barendregt, A.; Koehorst, J.J.; Vlot, M.; Neupane, N.; Varossieau, K.; Sakamoto, K.; Suzuki, T.; Dohmae, N.; Yokoyama, S.; Schaap, P.J.; Urlaub, H.; Heck, A.J.R.; Nogales, E.; Doudna, J.A.; Shinkai, A.; van der Oost, J. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell, 2014, 56(4), 518-530.
[http://dx.doi.org/10.1016/j.molcel.2014.10.005] [PMID: 25457165]
[20]
Chylinski, K.; Makarova, K.S.; Charpentier, E.; Koonin, E.V. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res., 2014, 42(10), 6091-6105.
[http://dx.doi.org/10.1093/nar/gku241] [PMID: 24728998]
[21]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143]
[22]
Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; Koonin, E.V.; Zhang, F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3), 759-771.
[http://dx.doi.org/10.1016/j.cell.2015.09.038] [PMID: 26422227]
[23]
Abudayyeh, O.; Jonathan, S.G.; Silvana, K.; Julia, J.; Ian, M.S.; David, B.T.C.; Sergey, S.; Kira, S.M.; Ekaterina, S.; Leonid, M.; Konstan-tin, S.; Aviv, R.; Eric, S.L.; Eugene, V.K.; Feng, Z. C2c2 is a single-component programmable RNA-Guided RNA-Targeting CRISPR effec-tor. Science, 1979, 353(6299), aaf5573.
[24]
East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.D.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 2016, 538(7624), 270-273.
[http://dx.doi.org/10.1038/nature19802] [PMID: 27669025]
[25]
Doerflinger, M.; Forsyth, W.; Ebert, G.; Pellegrini, M.; Herold, M.J. CRISPR/Cas9-The ultimate weapon to battle infectious diseases? Cell. Microbiol., 2017, 19(2), e12693.
[http://dx.doi.org/10.1111/cmi.12693] [PMID: 27860197]
[26]
Jiang, F.; Doudna, J.A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys., 2017, 46(1), 505-529.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
[27]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[28]
Shalem, O.; Sanjana, N.E.; Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet., 2015, 16(5), 299-311.
[http://dx.doi.org/10.1038/nrg3899] [PMID: 25854182]
[29]
Koike-Yusa, H.; Li, Y.; Tan, E-P. Velasco-Herrera, Mdel.C.; Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol., 2014, 32(3), 267-273.
[http://dx.doi.org/10.1038/nbt.2800] [PMID: 24535568]
[30]
Zhou, Y.; Zhu, S.; Cai, C.; Yuan, P.; Li, C.; Huang, Y.; Wei, W. High-throughput screening of a CRISPR/Cas9 library for functional ge-nomics in human cells. Nature, 2014, 509(7501), 487-491.
[http://dx.doi.org/10.1038/nature13166] [PMID: 24717434]
[31]
Müller, V.; Rajer, F.; Frykholm, K.; Nyberg, L.K.; Quaderi, S.; Fritzsche, J.; Kristiansson, E.; Ambjörnsson, T.; Sandegren, L.; Wester-lund, F. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci. Rep., 2016, 6(1), 37938.
[http://dx.doi.org/10.1038/srep37938] [PMID: 27905467]
[32]
Uppada, V.; Gokara, M.; Rasineni, G.K. Diagnosis and therapy with CRISPR advanced CRISPR based tools for point of care diagnostics and early therapies. Gene, 2018, 656, 22-29.
[http://dx.doi.org/10.1016/j.gene.2018.02.066] [PMID: 29496558]
[33]
Quan, J.; Langelier, C.; Kuchta, A.; Batson, J.; Teyssier, N.; Lyden, A.; Caldera, S.; McGeever, A.; Dimitrov, B.; King, R.; Wilheim, J.; Murphy, M.; Ares, L.P.; Travisano, K.A.; Sit, R.; Amato, R.; Mumbengegwi, D.R.; Smith, J.L.; Bennett, A.; Gosling, R.; Mourani, P.M.; Calfee, C.S.; Neff, N.F.; Chow, E.D.; Kim, P.S.; Greenhouse, B.; DeRisi, J.L.; Crawford, E.D. FLASH: A next-generation CRISPR diagnos-tic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res., 2019, 47(14), e83.
[http://dx.doi.org/10.1093/nar/gkz418] [PMID: 31114866]
[34]
Guk, K.; Keem, J.O.; Hwang, S.G.; Kim, H.; Kang, T.; Lim, E-K.; Jung, J. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens. Bioelectron., 2017, 95, 67-71.
[http://dx.doi.org/10.1016/j.bios.2017.04.016] [PMID: 28412663]
[35]
Yang, L.; Güell, M.; Niu, D.; George, H.; Lesha, E.; Grishin, D.; Aach, J.; Shrock, E.; Xu, W.; Poci, J.; Cortazio, R.; Wilkinson, R.A.; Fishman, J.A.; Church, G. Genome-Wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264), 1101-1104.
[http://dx.doi.org/10.1126/science.aad1191]
[36]
Chen, J.S.; Ma, E.; Harrington, L.B.; da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indis-criminate single-stranded DNase activity. Science, 2018, 360(6387), 436-439.
[http://dx.doi.org/10.1126/science.aar6245]
[37]
Niu, D.; Wei, H-J.; Lin, L.; George, H.; Wang, T.; Lee, I-H.; Zhao, H-Y.; Wang, Y.; Kan, Y.; Shrock, E.; Lesha, E.; Wang, G.; Luo, Y.; Qing, Y.; Jiao, D.; Zhao, H.; Zhou, X.; Wang, S.; Wei, H.; Güell, M.; Church, G.M.; Yang, L. Inactivation of porcine endogenous retrovi-rus in pigs using CRISPR-Cas9. Science, 2017, 357(6357), 1303-1307.
[http://dx.doi.org/10.1126/science.aan4187]
[38]
Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; Myhrvold, C.; Bhattacharyya, R.P.; Livny, J.; Regev, A.; Koonin, E. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336), 438-442.
[http://dx.doi.org/10.1126/science.aam9321]
[39]
Chertow, D.S. Next-Generation diagnostics with CRISPR. Science, 2018, 360(6387), 381-382.
[http://dx.doi.org/10.1126/science.aat4982]
[40]
Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; Garcia, K.F.; Barnes, K.G.; Chak, B.; Mondini, A.; Nogueira, M.L.; Isern, S.; Michael, S.F.; Lorenzana, I.; Yozwiak, N.L.; MacInnis, B.L.; Bosch, I.; Gehrke, L.; Zhang, F.; Sabeti, P.C. Field-Deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360(6387), 444-448.
[http://dx.doi.org/10.1126/science.aas8836]
[41]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C-Y.; Guevara, H.; Wadford, D.A.; Chen, J.S.; Chiu, C.Y. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol., 2020, 38(7), 870-874.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[42]
Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med., 2013, 368(8), 745-755.
[http://dx.doi.org/10.1056/NEJMra1200894] [PMID: 23425167]
[43]
Choudhary, E.; Thakur, P.; Pareek, M.; Agarwal, N. Gene silencing by CRISPR interference in mycobacteria. Nat. Commun., 2015, 6(1), 6267.
[http://dx.doi.org/10.1038/ncomms7267] [PMID: 25711368]
[44]
Singh, A.K.; Carette, X.; Potluri, L-P.; Sharp, J.D.; Xu, R.; Prisic, S.; Husson, R.N. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res., 2016, 44(18), e143.
[http://dx.doi.org/10.1093/nar/gkw625] [PMID: 27407107]
[45]
Sampson, T.R.; Napier, B.A.; Schroeder, M.R.; Louwen, R.; Zhao, J.; Chin, C-Y.; Ratner, H.K.; Llewellyn, A.C.; Jones, C.L.; Laroui, H.; Merlin, D.; Zhou, P.; Endtz, H.P.; Weiss, D.S. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and in-flammasome evasion. Proc. Natl. Acad. Sci. USA, 2014, 111(30), 11163-11168.
[http://dx.doi.org/10.1073/pnas.1323025111] [PMID: 25024199]
[46]
Sampson, T.R.; Saroj, S.D.; Llewellyn, A.C.; Tzeng, Y-L.; Weiss, D.S.A.A. CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 2013, 497(7448), 254-257.
[http://dx.doi.org/10.1038/nature12048] [PMID: 23584588]
[47]
Li, R.; Fang, L.; Tan, S.; Yu, M.; Li, X.; He, S.; Wei, Y.; Li, G.; Jiang, J.; Wu, M. Type I CRISPR-Cas targets endogenous genes and regu-lates virulence to evade mammalian host immunity. Cell Res., 2016, 26(12), 1273-1287.
[http://dx.doi.org/10.1038/cr.2016.135] [PMID: 27857054]
[48]
Virreira Winter, S.; Zychlinsky, A.; Bardoel, B.W. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci. Rep., 2016, 6(1), 24242.
[http://dx.doi.org/10.1038/srep24242] [PMID: 27066838]
[49]
Schiffer, J.T.; Aubert, M.; Weber, N.D.; Mintzer, E.; Stone, D.; Jerome, K.R. Targeted DNA mutagenesis for the cure of chronic viral infec-tions. J. Virol., 2012, 86(17), 8920-8936.
[http://dx.doi.org/10.1128/JVI.00052-12] [PMID: 22718830]
[50]
Ebert, G.; Pellegrini, M.; Hepatitis, B. Hepatitis B virus and inhibitor of apoptosis proteins - a vulnerable liaison. Cell Death Discov., 2016, 2(1), 16014.
[http://dx.doi.org/10.1038/cddiscovery.2016.14] [PMID: 27551508]
[51]
Binnie, A.; Fernandes, E.; Almeida-Lousada, H.; de Mello, R.A.; Castelo-Branco, P. CRISPR-based strategies in infectious disease diagno-sis and therapy. Infection, 2021, 49(3), 377-385.
[http://dx.doi.org/10.1007/s15010-020-01554-w] [PMID: 33393066]
[52]
Gantz, V.M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V.M.; Bier, E.; James, A.A. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA, 2015, 112(49), E6736-E6743.
[http://dx.doi.org/10.1073/pnas.1521077112] [PMID: 26598698]
[53]
Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Siniscalchi, C.; Katsanos, D.; Gribble, M.; Baker, D.; Marois, E.; Russell, S.; Burt, A.; Windbichler, N.; Crisanti, A.; Nolan, T.A. CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol., 2016, 34(1), 78-83.
[http://dx.doi.org/10.1038/nbt.3439] [PMID: 26641531]
[54]
Ghorbal, M.; Gorman, M.; Macpherson, C.R.; Martins, R.M.; Scherf, A.; Lopez-Rubio, J-J. Genome editing in the human malaria parasite plasmodium falciparum using the CRISPR-Cas9 system. Nat. Biotechnol., 2014, 32(8), 819-821.
[http://dx.doi.org/10.1038/nbt.2925] [PMID: 24880488]
[55]
Nødvig, C.S.; Nielsen, J.B.; Kogle, M.E.; Mortensen, U.H.A.A. CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One, 2015, 10(7), e0133085.
[http://dx.doi.org/10.1371/journal.pone.0133085] [PMID: 26177455]
[56]
Newport, M.J.; Goetghebuer, T.; Weiss, H.A.; Whittle, H.; Siegrist, C-A.; Marchant, A.; Group, M.R.C.G.T.S. Genetic regulation of immune responses to vaccines in early life. Genes Immun., 2004, 5(2), 122-129.
[http://dx.doi.org/10.1038/sj.gene.6364051] [PMID: 14737096]
[57]
Gilbert, S.C. T-cell-inducing vaccines - what’s the future. Immunology, 2012, 135(1), 19-26.
[http://dx.doi.org/10.1111/j.1365-2567.2011.03517.x] [PMID: 22044118]
[58]
Hartweger, H.; McGuire, A.T.; Horning, M.; Taylor, J.J.; Dosenovic, P.; Yost, D.; Gazumyan, A.; Seaman, M.S.; Stamatatos, L.; Jankovic, M.; Nussenzweig, M.C. HIV-Specific humoral immune responses by CRISPR/Cas9-Edited B cells. J. Exp. Med, 2019, 216(6), 1301-1310.
[http://dx.doi.org/10.1084/jem.20190287]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy