Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Rationally-designed Chitosan-based Polymeric Nanomaterials According to Intrinsic Characteristics for Cancer Therapy and Theranostics: A Review

Author(s): Fangying Yu, Yun Zhu, Xuwei Shang, Hong Yuan and Fuqiang Hu*

Volume 30, Issue 12, 2023

Published on: 27 September, 2022

Page: [1368 - 1385] Pages: 18

DOI: 10.2174/0929867329666220620164429

Price: $65

conference banner
Abstract

Chitosan, the only naturally occurring polycationic polysaccharide derived from chitin, has long case been implicated in the designs of nanosystems for diverse biomedical and pharmaceutical applications owing to its exclusive biodegradability, biocompatibility, cationic property, and functional groups. Particularly, some intrinsic characteristics of chitosan equip it with high potential for facile preparation, flexible functionalization, and modification, which circumvent the defects of chitosan and account for extensive attempts in cancer therapy and theranostic. In this review, we first give a classifiable explanation of strategies in fabricating rationally-designed chitosan-based polymeric nanomaterials for cancer therapy, which are categorized by the physical, chemical, and biological intrinsic characteristics of chitosan, respectively. Specifically, examples harnessing the cationic charge of chitosan are clarified, and the accompanied pH-responsive ability functions frequently are also mentioned. Besides, strategies toward the modification of functional groups (amino and hydroxyl groups) in repeated glycosidic units of chitosan and their additional roles are also discussed here. Lastly, the biological superiority of chitosan as an adjuvant or a ligand for glycoprotein and the application of chitosan- based polymeric nanomaterials in theranostic are summarized. Altogether, this review provides a comprehensive overview of recent advances in chitosan-based polymeric nanomaterials for cancer therapy and theranostics from a brand new perspective.

Keywords: Chitosan-based polymeric nanomaterials, polysaccharide, intrinsic characteristics, rational design criteria, cancer therapy, theranostics.

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[2]
Lima, B.V.; Oliveira, M.J.; Barbosa, M.A.; Gonçalves, R.M.; Castro, F. Immunomodulatory potential of chitosan-based materials for cancer therapy: A systematic review of in vitro, in vivo and clinical studies. Biomater. Sci., 2021, 9(9), 3209-3227.
[http://dx.doi.org/10.1039/D0BM01984D] [PMID: 33949372]
[3]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[4]
Peng, P.; Yang, K.; Tong, G.; Ma, L. Polysaccharide nanoparticles for targeted cancer therapies. Curr. Drug Metab., 2018, 19(9), 781-792.
[http://dx.doi.org/10.2174/1389200219666180511153403] [PMID: 29749308]
[5]
Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. (Indore), 2016, 4(3), 411-427.
[PMID: 27819009]
[6]
Grumezescu, A.M. Nanobiomaterials in medical imaging : Applications of nanobiomaterials; Elsevier / WA: Amsterdam; Boston, 2016.
[7]
Cheung, R.C.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[8]
Zhao, X.; Wei, Z.; Zhao, Z.; Miao, Y.; Qiu, Y.; Yang, W.; Jia, X.; Liu, Z.; Hou, H. Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery. ACS Appl. Mater. Interfaces, 2018, 10(7), 6608-6617.
[http://dx.doi.org/10.1021/acsami.7b16910] [PMID: 29368916]
[9]
Key, J.; Park, K. Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy. Int. J. Mol. Sci., 2017, 18(3), E594.
[http://dx.doi.org/10.3390/ijms18030594] [PMID: 28282891]
[10]
Morille, M.; Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J.P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials, 2008, 29(24-25), 3477-3496.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.036] [PMID: 18499247]
[11]
Jiang, G.B.; Quan, D.; Liao, K.; Wang, H. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol. Pharm., 2006, 3(2), 152-160.
[http://dx.doi.org/10.1021/mp050010c] [PMID: 16579644]
[12]
Le-Vinh, B.; Le, N.N.; Nazir, I.; Matuszczak, B.; Bernkop-Schnürch, A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int. J. Biol. Macromol., 2019, 133, 647-655.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.081] [PMID: 30986465]
[13]
Cheng, L.C.; Jiang, Y.; Xie, Y.; Qiu, L.L.; Yang, Q.; Lu, H.Y. Novel amphiphilic folic acid-cholesterol-chitosan micelles for paclitaxel delivery. Oncotarget, 2017, 8(2), 3315-3326.
[http://dx.doi.org/10.18632/oncotarget.13757] [PMID: 27926514]
[14]
Bateman, A.C. Molecules in cancer immunotherapy: Benefits and side effects. J. Clin. Pathol., 2019, 72(1), 20-24.
[http://dx.doi.org/10.1136/jclinpath-2018-205370] [PMID: 30275101]
[15]
Yang, F.; Shi, K.; Jia, Y.P.; Hao, Y.; Peng, J.R.; Qian, Z.Y. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol. Sin., 2020, 41(7), 911-927.
[http://dx.doi.org/10.1038/s41401-020-0372-z] [PMID: 32123302]
[16]
Bueter, C.L.; Lee, C.K.; Rathinam, V.A.K.; Healy, G.J.; Taron, C.H.; Specht, C.A.; Levitz, S.M. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J. Biol. Chem., 2011, 286(41), 35447-35455.
[http://dx.doi.org/10.1074/jbc.M111.274936] [PMID: 21862582]
[17]
Carroll, E.C.; Jin, L.; Mori, A.; Muñoz-Wolf, N.; Oleszycka, E.; Moran, H.B.T.; Mansouri, S.; McEntee, C.P.; Lambe, E.; Agger, E.M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K.A.; Bowie, A.G.; Lavelle, E.C. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 2016, 44(3), 597-608.
[http://dx.doi.org/10.1016/j.immuni.2016.02.004] [PMID: 26944200]
[18]
Ebara, M. Biomaterials nanoarchitectonics, 2016,
[19]
Shahbazi, R.; Ozpolat, B.; Ulubayram, K. Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine (Lond.), 2016, 11(10), 1287-1308.
[http://dx.doi.org/10.2217/nnm-2016-0035] [PMID: 27102380]
[20]
Fathi, M.; Majidi, S.; Zangabad, P.S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med. Res. Rev., 2018, 38(6), 2110-2136.
[http://dx.doi.org/10.1002/med.21506] [PMID: 29846948]
[21]
Ishii, T.; Okahata, Y.; Sato, T. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim. Biophys. Acta, 2001, 1514(1), 51-64.
[http://dx.doi.org/10.1016/S0005-2736(01)00362-5] [PMID: 11513804]
[22]
Sato, T.; Nakata, M.; Yang, Z.; Torizuka, Y.; Kishimoto, S.; Ishihara, M. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency. J. Gene Med., 2017, 19(8)
[http://dx.doi.org/10.1002/jgm.2968] [PMID: 28667693]
[23]
Wen, L.J.; Wen, C.L.; Zhang, F.T.; Wang, K.; Yuan, H.; Hu, F.Q. siRNA and chemotherapeutic molecules entrapped into a redox-responsive platform for targeted synergistic combination therapy of glioma. Nanomed-Nanotechnol, 2020, 28, 102218.
[24]
Gulfam, M.; Chung, B.G. Development of pH-responsive chitosan-coated mesoporous silica nanoparticles. Macromol. Res., 2014, 22(4), 412-417.
[http://dx.doi.org/10.1007/s13233-014-2063-4]
[25]
Giarra, S.; Zappavigna, S.; Campani, V.; Abate, M.; Cossu, A.M.; Leonetti, C.; Porru, M.; Mayol, L.; Caraglia, M.; De Rosa, G. Chitosan-based polyelectrolyte complexes for doxorubicin and zoledronic acid combined therapy to overcome multidrug resistance. Pharmaceutics, 2018, 10(4), E180.
[http://dx.doi.org/10.3390/pharmaceutics10040180] [PMID: 30304840]
[26]
Mahmood, M.A.; Madni, A.; Rehman, M.; Rahim, M.A.; Jabar, A. Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: Fabrication, post-formulation and acute oral toxicity evaluation. Int. J. Nanomedicine, 2019, 14, 10035-10046.
[http://dx.doi.org/10.2147/IJN.S232350] [PMID: 31908458]
[27]
Du, Y.Z.; Ying, X.Y.; Wang, L.; Zhai, Y.; Yuan, H.; Yu, R.S.; Hu, F.Q. Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Int. J. Pharm., 2010, 392(1-2), 164-169.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.050] [PMID: 20362652]
[28]
Saeed, R.M.; Dmour, I.; Taha, M.O. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front. Bioeng. Biotechnol., 2020, 8, 4.
[http://dx.doi.org/10.3389/fbioe.2020.00004] [PMID: 32039190]
[29]
Jiang, G.B.; Quan, D.P.; Liao, K.R.; Wang, H.H. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydr. Polym., 2006, 66(4), 514-520.
[http://dx.doi.org/10.1016/j.carbpol.2006.04.008]
[30]
Muddineti, O.S.; Kumari, P.; Ray, E.; Ghosh, B.; Biswas, S. Curcumin-loaded chitosan-cholesterol micelles: Evaluation in monolayers and 3D cancer spheroid model. Nanomedicine (Lond.), 2017, 12(12), 1435-1453.
[http://dx.doi.org/10.2217/nnm-2017-0036] [PMID: 28573926]
[31]
Hu, Y.W.; Du, Y.Z.; Liu, N.; Liu, X.; Meng, T.T.; Cheng, B.L.; He, J.B.; You, J.; Yuan, H.; Hu, F.Q. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier. J. Control. Release, 2015, 206, 91-100.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.018] [PMID: 25796347]
[32]
Zhou, X.; Liu, X.; Yang, X.; Wang, L.; Hong, Y.; Lian, K.; Qiu, G.; Shang, X.; Ma, Z.; Yuan, H.; Hu, F. Tumor progress intercept by intervening in Caveolin-1 related intercellular communication via ROS-sensitive c-Myc targeting therapy. Biomaterials, 2021, 275, 120958.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120958] [PMID: 34130142]
[33]
Zhu, Y.; Wen, L.; Shao, S.; Tan, Y.; Meng, T.; Yang, X.; Liu, Y.; Liu, X.; Yuan, H.; Hu, F. Inhibition of tumor-promoting stroma to enforce subsequently targeting AT1R on tumor cells by pathological inspired micelles. Biomaterials, 2018, 161, 33-46.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.023] [PMID: 29421561]
[34]
Wen, L.; Tan, Y.; Dai, S.; Zhu, Y.; Meng, T.; Yang, X.; Liu, Y.; Liu, X.; Yuan, H.; Hu, F. VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv., 2017, 24(1), 1843-1855.
[http://dx.doi.org/10.1080/10717544.2017.1386731] [PMID: 29182025]
[35]
Tan, Y.; Zhu, Y.; Wen, L.; Yang, X.; Liu, X.; Meng, T.; Dai, S.; Ping, Y.; Yuan, H.; Hu, F. Mitochondria-responsive drug release along with heat shock mediated by multifunctional glycolipid micelles for precise cancer chemo-phototherapy. Theranostics, 2019, 9(3), 691-707.
[http://dx.doi.org/10.7150/thno.31022] [PMID: 30809302]
[36]
Tan, Y.; Zhu, Y.; Zhao, Y.; Wen, L.; Meng, T.; Liu, X.; Yang, X.; Dai, S.; Yuan, H.; Hu, F. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials, 2018, 154, 169-181.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.036] [PMID: 29128845]
[37]
Chen, W.L.; Li, F.; Tang, Y.; Yang, S.D.; Li, J.Z.; Yuan, Z.Q.; Liu, Y.; Zhou, X.F.; Liu, C.; Zhang, X.N. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int. J. Nanomedicine, 2017, 12, 4241-4256.
[http://dx.doi.org/10.2147/IJN.S129748] [PMID: 28652730]
[38]
Yang, X.; Lian, K.; Meng, T.; Liu, X.; Miao, J.; Tan, Y.; Yuan, H.; Hu, F. Immune adjuvant targeting micelles allow efficient dendritic cell migration to lymph nodes for enhanced cellular immunity. ACS Appl. Mater. Interfaces, 2018, 10(39), 33532-33544.
[http://dx.doi.org/10.1021/acsami.8b10081] [PMID: 30192498]
[39]
Lin, L.; He, J.; Li, J.; Xu, Y.; Li, J.; Wu, Y. Chitosan nanoparticles strengthen Vγ9Vδ2 T-cell cytotoxicity through upregulation of killing molecules and cytoskeleton polarization. Int. J. Nanomedicine, 2019, 14, 9325-9336.
[http://dx.doi.org/10.2147/IJN.S212898] [PMID: 31819434]
[40]
Castro, F.; Pinto, M.L.; Silva, A.M.; Pereira, C.L.; Teixeira, G.Q.; Gomez-Lazaro, M.; Santos, S.G.; Barbosa, M.A.; Gonçalves, R.M.; Oliveira, M.J. Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomater., 2017, 63, 96-109.
[http://dx.doi.org/10.1016/j.actbio.2017.09.016] [PMID: 28919508]
[41]
Yang, X.Q.; Lian, K.K.; Tan, Y.A.; Zhu, Y.; Liu, X.; Zeng, Y.P.; Yu, T.; Meng, T.T.; Yuan, H.; Hu, F.Q. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting; Carbohyd Polym, 2020, p. 229.
[42]
Ermak, G. Emerging medical technologies; World Scientific: New Jersey, 2016.
[43]
Goswami, R.; Subramanian, G.; Silayeva, L.; Newkirk, I.; Doctor, D.; Chawla, K.; Chattopadhyay, S.; Chandra, D.; Chilukuri, N.; Betapudi, V. Gene therapy leaves a vicious cycle. Front. Oncol., 2019, 9, 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[44]
Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[45]
Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs, 2019, 17(6), E381.
[http://dx.doi.org/10.3390/md17060381] [PMID: 31242678]
[46]
Kritchenkov, A.S.; Andranovits, S.; Skorik, Y.A. Chitosan and its derivatives: Vectors in gene therapy. Russ. Chem. Rev., 2017, 86(3), 231-239.
[http://dx.doi.org/10.1070/RCR4636]
[47]
Andronescu, E.; Grumezescu, A.M. Nanostructures for drug delivery; Elsevier: Amsterdam, Netherlands, 2017.
[48]
Liu, X.; Howard, K.A.; Dong, M.; Andersen, M.O.; Rahbek, U.L.; Johnsen, M.G.; Hansen, O.C.; Besenbacher, F.; Kjems, J. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 2007, 28(6), 1280-1288.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.004] [PMID: 17126901]
[49]
Parmaksiz, S.; Senel, S. An overview on chitosan-based adjuvant/ vaccine delivery systems. Adv. Polym. Sci., 2021, 288, 293-379.
[http://dx.doi.org/10.1007/12_2021_93]
[50]
Köping-Höggård, M.; Tubulekas, I.; Guan, H.; Edwards, K.; Nilsson, M.; Vårum, K.M.; Artursson, P. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther., 2001, 8(14), 1108-1121.
[http://dx.doi.org/10.1038/sj.gt.3301492] [PMID: 11526458]
[51]
Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev., 2010, 62(1), 12-27.
[http://dx.doi.org/10.1016/j.addr.2009.08.004] [PMID: 19796660]
[52]
Sadreddini, S.; Safaralizadeh, R.; Baradaran, B.; Aghebati-Maleki, L.; Hosseinpour-Feizi, M.A.; Shanehbandi, D.; Jadidi-Niaragh, F.; Sadreddini, S.; Kafil, H.S.; Younesi, V.; Yousefi, M. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol. Lett., 2017, 181, 79-86.
[http://dx.doi.org/10.1016/j.imlet.2016.11.013] [PMID: 27916629]
[53]
Choi, J.J.; Le, Q.V.; Kim, D.; Kim, Y.B.; Shim, G.; Oh, Y.K. High molecular weight chitosan-complexed RNA nanoadjuvant for effective cancer immunotherapy. Pharmaceutics, 2019, 11(12), E680.
[http://dx.doi.org/10.3390/pharmaceutics11120680] [PMID: 31847372]
[54]
Mao, H.Q.; Roy, K.; Troung-Le, V.L.; Janes, K.A.; Lin, K.Y.; Wang, Y.; August, J.T.; Leong, K.W. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Control. Release, 2001, 70(3), 399-421.
[http://dx.doi.org/10.1016/S0168-3659(00)00361-8] [PMID: 11182210]
[55]
Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.026] [PMID: 24389132]
[56]
Yang, Z.M.; Li, P.W.; McDonagh, A.; Li, S.D.; Lv, M.Z.; Li, Y.Z.; Yu, Z.Y.; Feng, C.G. Chitosan-based nano-biocomposites and their applications in medicine and pharmaceutics. Curr. Org. Chem., 2018, 22(7), 628-640.
[http://dx.doi.org/10.2174/1385272821666170825120835]
[57]
Lin, Y.H.; Chung, C.K.; Chen, C.T.; Liang, H.F.; Chen, S.C.; Sung, H.W. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules, 2005, 6(2), 1104-1112.
[http://dx.doi.org/10.1021/bm049312a] [PMID: 15762683]
[58]
Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Nurus Sakib, M.; Rashid, T.U. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater., 2020, 5(1), 164-183.
[http://dx.doi.org/10.1016/j.bioactmat.2020.01.012] [PMID: 32083230]
[59]
Birch, N.P.; Schiffman, J.D. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir, 2014, 30(12), 3441-3447.
[http://dx.doi.org/10.1021/la500491c] [PMID: 24593694]
[60]
Dmour, I.; Taha, M.O. Novel nanoparticles based on chitosan-dicarboxylate conjugates via tandem ionotropic/covalent crosslinking with tripolyphosphate and subsequent evaluation as drug delivery vehicles. Int. J. Pharm., 2017, 529(1-2), 15-31.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.061] [PMID: 28634140]
[61]
Argüelles-Monal, W.M.; Lizardi-Mendoza, J.; Fernández-Quiroz, D.; Recillas-Mota, M.T.; Montiel-Herrera, M. Chitosan derivatives: Introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers (Basel), 2018, 10(3), E342.
[http://dx.doi.org/10.3390/polym10030342] [PMID: 30966377]
[62]
Belgacem, M.N.; Gandini, A. Monomers, polymers and composites from renewable resources, 1st ed; Elsevier: Amsterdam, Boston, 2008.
[63]
Lai, J.Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. Int. J. Mol. Sci., 2012, 13(9), 10970-10985.
[http://dx.doi.org/10.3390/ijms130910970] [PMID: 23109832]
[64]
Muzzarelli, R.A.; El Mehtedi, M.; Bottegoni, C.; Aquili, A.; Gigante, A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar. Drugs, 2015, 13(12), 7314-7338.
[http://dx.doi.org/10.3390/md13127068] [PMID: 26690453]
[65]
Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev., 2020, 156, 80-118.
[http://dx.doi.org/10.1016/j.addr.2020.09.009] [PMID: 32980449]
[66]
Fathi, M.; Sahandi Zangabad, P.; Majidi, S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts, 2017, 7(4), 269-277.
[http://dx.doi.org/10.15171/bi.2017.32] [PMID: 29435435]
[67]
Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1), 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[68]
Sabu, A.; Lin, J-Y.; Doong, R-A.; Huang, Y-F.; Chiu, H-C. Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles. Mater. Adv., 2021, 2(22), 7101-7117.
[http://dx.doi.org/10.1039/D1MA00563D]
[69]
Pulendran, B.; S Arunachalam, P.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov., 2021, 20(6), 454-475.
[http://dx.doi.org/10.1038/s41573-021-00163-y] [PMID: 33824489]
[70]
Babu, A.; Ramesh, R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar. Drugs, 2017, 15(4), E96.
[http://dx.doi.org/10.3390/md15040096] [PMID: 28346381]
[71]
Zaharoff, D.A.; Rogers, C.J.; Hance, K.W.; Schlom, J.; Greiner, J.W. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 2007, 25(11), 2085-2094.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.034] [PMID: 17258843]
[72]
Liu, Q.; Jia, J.; Yang, T.; Fan, Q.; Wang, L.; Ma, G. Pathogen-mimicking polymeric nanoparticles based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small, 2016, 12(13), 1744-1757.
[http://dx.doi.org/10.1002/smll.201503662] [PMID: 26849717]
[73]
Yang, X.Q.; Yu, T.; Zeng, Y.P.; Lian, K.K.; Zhou, X.Q.; Li, S.F.; Qiu, G.X.; Jin, X.Y.; Yuan, H.; Hu, F.Q. Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohyd Polym, 2020, 240-116270.
[74]
Jerman, L.F.; Hey-Cunningham, A.J. The role of the lymphatic system in endometriosis: A comprehensive review of the literature. Biol. Reprod., 2015, 92(3), 64.
[http://dx.doi.org/10.1095/biolreprod.114.124313] [PMID: 25588508]
[75]
Zhu, G.; Zhang, F.; Ni, Q.; Niu, G.; Chen, X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano, 2017, 11(3), 2387-2392.
[http://dx.doi.org/10.1021/acsnano.7b00978] [PMID: 28277646]
[76]
Zinkhan, S.; Ogrina, A.; Balke, I.; Reseviča, G.; Zeltins, A.; de Brot, S.; Lipp, C.; Chang, X.; Zha, L.; Vogel, M.; Bachmann, M.F.; Mohsen, M.O. The impact of size on particle drainage dynamics and antibody response. J. Control. Release, 2021, 331, 296-308.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.012] [PMID: 33450322]
[77]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5), 3926-3938.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[78]
Thiele, L.; Rothen-Rutishauser, B.; Jilek, S.; Wunderli-Allenspach, H.; Merkle, H.P.; Walter, E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release, 2001, 76(1-2), 59-71.
[http://dx.doi.org/10.1016/S0168-3659(01)00412-6] [PMID: 11532313]
[79]
Venkataraman, S.; Hedrick, J.L.; Ong, Z.Y.; Yang, C.; Ee, P.L.; Hammond, P.T.; Yang, Y.Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1228-1246.
[http://dx.doi.org/10.1016/j.addr.2011.06.016] [PMID: 21777633]
[80]
Benne, N.; van Duijn, J.; Kuiper, J.; Jiskoot, W.; Slütter, B. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. J. Control. Release, 2016, 234, 124-134.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.033] [PMID: 27221070]
[81]
Yasun, E. Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights. Sn Appl Sci, 2020, 2(9), 1-5.
[82]
Lee, S.J.; Koo, H.; Jeong, H.; Huh, M.S.; Choi, Y.; Jeong, S.Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I.C. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J. Control. Release, 2011, 152(1), 21-29.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.027] [PMID: 21457740]
[83]
Alander, J.T.; Kaartinen, I.; Laakso, A.; Pätilä, T.; Spillmann, T.; Tuchin, V.V.; Venermo, M.; Välisuo, P. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging, 2012, 2012, 940585.
[http://dx.doi.org/10.1155/2012/940585] [PMID: 22577366]
[84]
Karimi, A.R.; Khodadadi, A.; Hadizadeh, M. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: An injectable and pH-stimuli responsive system for effective cancer therapy. RSC Advances, 2016, 6(94), 91445-91452.
[http://dx.doi.org/10.1039/C6RA17064A]
[85]
Lin, M.; Wang, D.; Liu, S.; Huang, T.; Sun, B.; Cui, Y.; Zhang, D.; Sun, H.; Zhang, H.; Sun, H.; Yang, B. Cupreous complex-loaded chitosan nanoparticles for photothermal therapy and chemotherapy of oral epithelial carcinoma. ACS Appl. Mater. Interfaces, 2015, 7(37), 20801-20812.
[http://dx.doi.org/10.1021/acsami.5b05866] [PMID: 26339804]
[86]
Lee, C.M.; Jeong, H.J.; Kim, S.L.; Kim, E.M.; Kim, D.W.; Lim, S.T.; Jang, K.Y.; Jeong, Y.Y.; Nah, J.W.; Sohn, M.H. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes. Int. J. Pharm., 2009, 371(1-2), 163-169.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.021] [PMID: 19138733]
[87]
Zhu, Y.; Yu, F.; Tan, Y.; Wen, L.; Li, Y.; Yuan, H.; Hu, F. Guiding appropriate timing of laser irradiation by polymeric micelles for maximizing chemo-photodynamic therapy. Int. J. Nanomedicine, 2020, 15, 6531-6543.
[http://dx.doi.org/10.2147/IJN.S256477] [PMID: 32982216]
[88]
Zhao, X.; Shen, R.Y.; Bao, L.; Wang, C.; Yuan, H. Chitosan derived glycolipid nanoparticles for magnetic resonance imaging guided photodynamic therapy of cancer. Carbohyd Polym, 2020, 245
[89]
Zhang, L.; Liu, T.; Xiao, Y.; Yu, D.; Zhang, N. Hyaluronic acid-chitosan nanoparticles to deliver Gd-DTPA for MR cancer imaging. Nanomaterials (Basel), 2015, 5(3), 1379-1396.
[http://dx.doi.org/10.3390/nano5031379] [PMID: 28347070]
[90]
Zu, G.Y.; Tong, X.Y.; Zhang, T.T.; Cao, Y.; Kuang, Y.; Zhang, K.C.; Zhang, Y.J.; Luo, L.Q.; Liu, M.; Pei, R.J. PEGylated chitosan grafted with polyamidoamine-dendron as tumor-targeted magnetic resonance imaging contrast agent. New J. Chem., 2017, 41(15), 7689-7696.
[http://dx.doi.org/10.1039/C7NJ00860K]
[91]
Raza Shah, M.; Imran, M.; Ullah, S. Metal nanoparticles for drug delivery and diagnostic applications; Elsevier: Waltham, 2019, p. 1.
[92]
Khmara, I.; Strbak, O.; Zavisova, V.; Koneracka, M.; Kubovcikova, M.; Antal, I.; Kavecansky, V.; Lucanska, D.; Dobrota, D.; Kopcansky, P. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J. Magn. Magn. Mater., 2019, 474, 319-325.
[http://dx.doi.org/10.1016/j.jmmm.2018.11.026]
[93]
Kim, D.H.; Nikles, D.E.; Brazel, C.S. Synthesis and characterization of multifunctional chitosan- MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials (Basel), 2010, 3(7), 4051-4065.
[http://dx.doi.org/10.3390/ma3074051] [PMID: 28883320]
[94]
Bharathiraja, S.; Bui, N.Q.; Manivasagan, P.; Moorthy, M.S.; Mondal, S.; Seo, H.; Phuoc, N.T.; Phan, T.T.V.; Kim, H.; Lee, K.D.; Oh, J. Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep-Uk, 2018, 8(1), 1-6.
[95]
Yang, H.; Chen, Y.; Chen, Z.; Geng, Y.; Xie, X.; Shen, X.; Li, T.; Li, S.; Wu, C.; Liu, Y. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater. Sci., 2017, 5(5), 1001-1013.
[http://dx.doi.org/10.1039/C7BM00043J] [PMID: 28327716]
[96]
Zahraei, M.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Rostami, M. Synthesis and characterization of chitosan coated manganese zinc ferrite nanoparticles as MRI contrast agents. J Nanostruct, 2015, 5(2), 77-86.
[97]
Chokradjaroen, C.; Rujiravanit, R.; Theeramunkong, S.; Saito, N. Effect of electrical discharge plasma on cytotoxicity against cancer cells of N,O-carboxymethyl chitosan-stabilized gold nanoparticles. Carbohydr. Polym., 2020, 237, 116162.
[http://dx.doi.org/10.1016/j.carbpol.2020.116162] [PMID: 32241415]
[98]
Cheng, C.; Xia, D.D.; Zhang, X.L.; Chen, L.; Zhang, Q.Q. Biocompatible poly(N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J. Mater. Sci., 2015, 50(14), 4914-4925.
[http://dx.doi.org/10.1007/s10853-015-9036-7]
[99]
Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers (Basel), 2018, 10(4), 462.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy