Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

A Highly Sensitive Room-Temperature NO2 Gas Sensor based on Porous MnO2/rGO Hybrid Composites

Author(s): Hui Zhang, Kangtai Ou, Ruihua Guan, Yang Cao, Youyi Sun* and Xiao Li

Volume 19, Issue 3, 2023

Published on: 07 October, 2022

Page: [401 - 409] Pages: 9

DOI: 10.2174/1573413718666220616154244

Price: $65

Abstract

Background: The NOX (e.g. NO2) is harmful to human health and environmental quality. It is of great interest to monitor the hazardous NOX with a simple, reliable, and sensitive sensor. Currently, the commonly used detection methods have disadvantages of complex operation, unstable cycling performance and low sensitivity.

Objective: In this paper, rGO coated Ni foam supported MnO2 is synthesized to develop a more advanced detection method for the rapid analysis of NO2.

Methods: A three-dimensional nickel foam supported MnO2 and rGO (MnO2/rGO@NF) was prepared by a hydrothermal method for application in binder-free electrode of NO2 sensor.

Results: The MnO2/rGO@NF composite displayed significantly better NO2 sensing performance compared to single MnO2@NF or rGO@NF. The excellent sensing response (5.9%) as well as high cycling stability were observed in the presence of 50.0 ppm NO2 at room temperature. Furthermore, the mechanism of the great gas-sensing performance was also investigated by the density functional theory (DFT).

Conclusion: These results were very important to further design and prepare new sensitive materials applied in binder-free electrode of gas NO2 sensors.

Keywords: rGO/MnO2, 3D foam, gas sensor, room temperature, density functional theory, sensors.

Graphical Abstract
[1]
Shendage, S.S.; Patil, V.L.; Vanalakar, S.A.; Patil, S.P.; Harale, N.S.; Bhosale, J.L.; Kim, J.H.; Patil, P.S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem., 2017, 240, 426-433.
[http://dx.doi.org/10.1016/j.snb.2016.08.177]
[2]
Patil, V.L.; Vanalakar, S.A.; Patil, P.S.; Kim, J.H. Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators B Chem., 2017, 239, 1185-1193.
[http://dx.doi.org/10.1016/j.snb.2016.08.130]
[3]
Navale, Y.H.; Navale, S.T.; Ramgir, N.S.; Stadler, F.J.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens. Actuators B Chem., 2017, 251, 551-563.
[http://dx.doi.org/10.1016/j.snb.2017.05.085]
[4]
Kamble, D.L.; Harale, N.S.; Patil, V.L.; Patil, P.S.; Kadam, L.D. Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyrolysis, 2017, 127, 38-46.
[http://dx.doi.org/10.1016/j.jaap.2017.09.004]
[5]
Hossain, M.K.; Ahmed, M.H.; Khan, M.I.; Miah, M.S.; Hossain, S. Recent progress of rare earth oxides for sensor, detector, and electronic device applications: A review. ACS Appl. Electron. Mater., 2021, 3(10), 4255-4283.
[http://dx.doi.org/10.1021/acsaelm.1c00703]
[6]
Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007, 6(9), 652-655.
[http://dx.doi.org/10.1038/nmat1967] [PMID: 17660825]
[7]
Yang, W.; Wan, P.; Zhou, X.; Hu, J.; Guan, Y.; Feng, L. Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl. Mater. Interfaces, 2014, 6(23), 21093-21100.
[http://dx.doi.org/10.1021/am505949a] [PMID: 25399743]
[8]
Zhou, L.; Shen, F.; Tian, X.; Wang, D.; Zhang, T.; Chen, W. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale, 2013, 5, 1564-1569.
[9]
Sanger, A.; Kumar, A.; Kumar, A.; Chandra, R. ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon, 2012, 50, 385-394.
[10]
Sanger, A.; Kumar, A.; Kumar, A.; Chandra, R. Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens. Actuators B Chem., 2016, 234, 8-14.
[http://dx.doi.org/10.1016/j.snb.2016.04.152]
[11]
Liu, X.; Cui, J.; Sun, J.; Zhang, X. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Advances, 2014, 4(43), 22601-22605.
[http://dx.doi.org/10.1039/c4ra02453b]
[12]
Yavari, F.; Chen, Z.; Thomas, A.V.; Ren, W.; Cheng, H.M.; Koratkar, N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep., 2011, 1(1), 166.
[http://dx.doi.org/10.1038/srep00166] [PMID: 22355681]
[13]
Han, T.H.; Huang, Y.K.; Tan, A.T.L.; Dravid, V.P.; Huang, J. Steam etched porous graphene oxide network for chemical sensing. J. Am. Chem. Soc., 2011, 133(39), 15264-15267.
[http://dx.doi.org/10.1021/ja205693t] [PMID: 21894991]
[14]
Li, L.; He, S.; Liu, M.; Zhang, C.; Chen, W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal. Chem., 2015, 87(3), 1638-1645.
[http://dx.doi.org/10.1021/ac503234e] [PMID: 25556377]
[15]
Liu, C.; Navale, S.T.; Yang, Z.B.; Galluzzi, M.; Patil, V.B.; Cao, P.J.; Mane, R.S.; Stadler, F.J. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. J. Alloys Compd., 2017, 727, 362-369.
[http://dx.doi.org/10.1016/j.jallcom.2017.08.150]
[16]
Zhang, C.; Boudiba, A.; Navio, C.; Olivier, M.G.; Snyders, R.; Debliquy, M. Study of selectivity of NO2 sensors composed of WO3 and MnO2 thin films grown by radio frequency sputtering. Sens. Actuators B Chem., 2012, 161(1), 914-922.
[http://dx.doi.org/10.1016/j.snb.2011.11.062]
[17]
Kumar, R.; Kumar, R.; Kushwaha, N.; Mittal, J. Ammonia gas sensing using thin film of MnO2 nanofibers. IEEE Sens. J., 2016, 16, 4691-4695.
[18]
Kumar, R.; Kumar, R.; Kushwaha, N.; Mittal, J. Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing. AIP Conference Proceedings, 2017, 1832, p. 050126.
[19]
Zhang, W.; Zeng, C.; Kong, M.; Pan, Y.; Yang, Z. Water-evaporation-induced self-assembly of α-MnO2 hierarchical hollow nanospheres and their applications in ammonia gas sensing. Sens. Actuators B Chem., 2012, 162(1), 292-299.
[http://dx.doi.org/10.1016/j.snb.2011.12.080]
[20]
Yahya, N.A.M.; Hamid, M.R.Y.; Ibrahim, S.A.; Ong, B.H.; Rahman, N.A.; Zain, A.R.M.; Mahdi, M.A.; Yaacob, M.H. H2 sensor based on tapered optical fiber coated with MnO2 nanostructures. Sens. Actuators B Chem., 2017, 246, 421-427.
[http://dx.doi.org/10.1016/j.snb.2017.02.084]
[21]
Sun, Y.; Zhang, W.; Li, D.; Gao, L.; Hou, C.; Zhang, Y.; Liu, Y. Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors. J. Alloys Compd., 2015, 649, 579-584.
[http://dx.doi.org/10.1016/j.jallcom.2015.07.212]
[22]
Du, R.; Tian, X.; Yao, J.; Sun, Y.; Jin, J.; Zhang, Y.; Liu, Y. Controlled synthesis of three-dimensional reduced graphene oxide networks for application in electrode of supercapacitor. Diamond Related Materials, 2016, 70, 186-193.
[http://dx.doi.org/10.1016/j.diamond.2016.11.003]
[23]
Iftekhar Uddin, A.S.M.; Phan, D.T.; Chung, G.S. Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem., 2015, 207, 362-369.
[http://dx.doi.org/10.1016/j.snb.2014.10.091]
[24]
Zhang, W.; Sun, Y.; Liu, T.; Li, D.; Hou, C.; Gao, L.; Liu, Y. Preparation of graphene foam with high performance by modified self-assembly method. Appl. Phys., A Mater. Sci. Process., 2016, 122(3), 259.
[http://dx.doi.org/10.1007/s00339-016-9684-8]
[25]
Zhao, G.X.; Li, J.X.; Jiang, L.; Dong, H.L.; Wang, X.K.; Hu, W.P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci., 2012, 3, 433-437.
[26]
Ma, J.; Zhang, W.H.; Zheng, L.; Sun, Y.Y.; Jin, R.Y.; Zhao, G.Z.; Liu, Y. Q Direct formation of (Co, Mn)3O4 nanowires/Ni composite foam for electrochemical detection. J. Alloys Compd., 2016, 663, 230-234.
[27]
Sun, Y.; Zhang, W.; Li, D.; Gao, L.; Hou, C.; Zhang, Y.; Liu, Y. Direct formation of porous MnO2/Ni composite foam applied for high-performance supercapacitors at mild conditions. Electrochim. Acta, 2015, 178, 823-828.
[http://dx.doi.org/10.1016/j.electacta.2015.08.092]
[28]
Zhu, Y.; Wang, Y.; Duan, G.; Zhang, H.; Li, Y.; Liu, G.; Xu, L.; Cai, W. In situ growth of porous ZnO nanosheet-built network film as high-performance gas sensor. Sens. Actuators B Chem., 2015, 221, 350-356.
[http://dx.doi.org/10.1016/j.snb.2015.06.115]
[29]
Liu, Y.; Luo, C.; Sun, J.; Li, H.; Sun, Z.; Yan, S. Enhanced adsorption removal of methyl orange from aqueous solution by nanostructured proton-containing δ-MnO2. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(10), 5674-5682.
[http://dx.doi.org/10.1039/C4TA07112C]
[30]
Lee, A.; Reedy, B.J. Temperature modulation in semiconductor gas sensing. Sens. Actuators B Chem., 1999, 60(1), 35-42.
[http://dx.doi.org/10.1016/S0925-4005(99)00241-5]
[31]
Gupta Chatterjee, S.; Chatterjee, S.; Ray, A.K.; Chakraborty, A.K. Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B Chem., 2015, 221, 1170-1181.
[http://dx.doi.org/10.1016/j.snb.2015.07.070]
[32]
Bahri, K.; Eslami, H.; Müller-Plathe, F. Self-assembly of model triblock janus colloidal particles in two dimensions. J. Chem. Theory Comput., 2022, 18(3), 1870-1882.
[http://dx.doi.org/10.1021/acs.jctc.1c01116] [PMID: 35157474]
[33]
Eslami, H.; Gharibi, A.; Müller-Plathe, F. Mechanisms of nucleation and solid–solid-phase transitions in triblock janus assemblies. J. Chem. Theory Comput., 2021, 17(3), 1742-1754.
[http://dx.doi.org/10.1021/acs.jctc.0c01080] [PMID: 33529019]
[34]
Rad, A.S. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl. Surf. Sci., 2015, 357, 1217-1224.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.168]
[35]
Gu, F.; Nie, R.; Han, D.; Wang, Z. In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B Chem., 2015, 219, 94-99.
[http://dx.doi.org/10.1016/j.snb.2015.04.119]
[36]
Vanalakar, S.A.; Patil, V.L.; Harale, N.S.; Vhanalakar, S.A.; Gang, M.G.; Kim, J.Y.; Patil, P.S.; Kim, J.H. Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens. Actuators B Chem., 2015, 221, 1195-1201.
[http://dx.doi.org/10.1016/j.snb.2015.07.084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy