Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Review on Thermal Error Suppression and Modeling Compensation Methods of High-Speed Motorized Spindle

Author(s): Yang Li, Ye Dai*, Yanhua Gao, Xueshi Tao and Gang Wang

Volume 17, Issue 4, 2023

Published on: 23 August, 2022

Article ID: e080622205713 Pages: 17

DOI: 10.2174/1872212117666220608110451

Price: $65

Abstract

Background: The internal structure of a high-speed motorized spindle is compact, and a large amount of heat is generated in the process of high-speed operation, which causes thermal deformation of the parts. The thermal characteristics of the motorized spindle become worse when the temperature increases, which seriously affects its machining accuracy.

Objectives: This paper studies the thermal error prevention method and thermal error modeling compensation method of the motorized spindle, and introduces the measures to suppress thermal errors, the optimization method of temperature measurement points, and the theoretical method of thermal error modeling.

Methods: The advantages and disadvantages of various thermal error suppression methods are reviewed by comparing the literature related to the thermal error of the motorized spindle.

Results: This paper reviews the thermal error suppression methods, and discusses the prospect and development direction of the thermal error suppression of the motorized spindle.

Conclusion: High-speed motorized spindle is the core component of CNC machine tools, reducing thermal deformation can greatly improve machining accuracy. The thermal error can be reduced by optimizing the design of the structure of the key parts of thermal deformation, using a comprehensive thermal error prediction model, and improving the ability of the thermal error prediction model to maintain accuracy for a long time.

Keywords: High-speed motorized spindle, accuracy, thermal error suppression, thermal key point optimization, CNC, modeling compensation.

Graphical Abstract
[1]
Y. Zhu, The study of simulation cutting force loading method and test for motorized spindle reliability test rig., Jilin University: Changchun, 2014.
[2]
X.L. Deng, Thermal characteristics analysis technology of CNC machine tool spindle system., Zhejiang University Press: CNA: Hangzhou, 2017.
[3]
J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, "Thermal issues in machine tools", CIRP Ann., vol. 61, no. 2, pp. 771-791, 2012.
[http://dx.doi.org/10.1016/j.cirp.2012.05.008]
[4]
J.B. Bryan, "International Status of Thermal Error Research (1990). CIRP", Ann. Manuf. Technol., vol. 39, p. 1990, 1990.
[5]
L. Yang, W. Zhao, and S. Lan, "A review on spindle thermal error compensation in machine tools", Int. J. Mach. Tools Manuf., vol. 95, pp. 20-38, 2015.
[http://dx.doi.org/10.1016/j.ijmachtools.2015.04.008]
[6]
J.G. Yang, "Present situation and prospect of error compensation technology for NC Machine Tools", Aer. Manuf. Technol, pp. 40-45, 2012.
[7]
J. Wang, G.T. Zhang, C. Zhang, and F.H. Wu, "Design and performance analysis of high-speed ceramic motorized spindle", Manuf. Technol. Mach. Tool., vol. 02, pp. 58-62, 2012.
[8]
C. C. Gao, P. Yu, L. Jiang, Z. C. Guo, Z. Zhang, N. Jiang, H. Jin, J. Q. Sun, Y. N. Qi, B. Du, and Z. W. Zhang, "Ram device with highspeed and high-torque carbon fiber spindle.", CN Patent 105345484A, 2016.
[9]
D. Kono, S. Mizuno, T. Muraki, and M. Nakaminami, "A machine tool motorized spindle with hybrid structure of steel and carbon fiber composite", CIRP Ann., vol. 68, no. 1, pp. 389-392, 2019.
[http://dx.doi.org/10.1016/j.cirp.2019.04.022]
[10]
F. Aggogeri, A. Merlo, and M. Mazzola, "Application of multifunctional materials for machine tool structures", In ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, Florida, USA, 2009, pp. 11-13
[11]
X.L. Deng, F.J. Jiang, and Z.Z. Zhou, "Design of feeding system of sandwich compound structure of NC machine tool", Mach. Tool. Hyd., vol. 41, pp. 108-111, 2013.
[12]
X.L. Deng, F.J. Jiang, B. Zhou, and J.C. Wang, Improved design of thermal characteristics for sandwich composite structure feed system of NC machine tool.. Modular. Mach. Tool. Autmo. Manuf. Tech, pp. 135-137, 2013.
[13]
X.X. Liang, Y. Chen, and S. Qiu, "Analysis and optimization of thermal deformation of resin concrete machine tool bed based on ANSYS Workbench", Mach. Tool. Hyd., vol. 43, pp. 175-178, 2015.
[14]
X.B. Wu, and Q.Z. Gong, "Heat insulation structure of electric spindle.", CN Patent 211135551U, 2020.
[15]
C. Zhang, Y. Chen, and W. Rui, "Flow boiling in constructal tree-shaped minichannel network", Int. J. Heat Mass Transf., vol. 54, no. 1-3, pp. 202-209, 2011.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.051]
[16]
S.L. Xu, J. Qin, and G.X. Hu, "Numerical study on Heat-flow coupling field in microchannel heat sink structures for electronic Chip Cooling. Chin. J. Mech", Eng-En., vol. 22, pp. 2863-2866, 2011.
[17]
S.L. Xu, Z.K. Guo, J. Qin, Q.Y. Cai, G.X. Hu, and W.J. Wang, "Three dimensional numerical simulation fluid flow and heat transfer in tree-shape microchannels. Chin. J. Mech", Eng-En., vol. 25, pp. 1185-1188, 2014.
[18]
X.L. Deng, S.J. Pang, and R.Q. Li, "Thermal design of cooling structure for CNC machine tool spindle system based on insect wing vein bionic channel", Chin. J. Eng. Des., vol. 25, pp. 583-589, 2018.
[19]
L. Wang, G. Wang, and Y. Dai, "Rotary structure of high-speed motorized spindle.", Zhejiang: CN111168089A, 2020.
[20]
J. Chen, Y. G. Lai, and X. Q. Tang, "Motorized spindle cooling device.", Guangdong: CN Patent 108772748B, 2020.
[21]
Y.R. Kang, X.J. Shi, J.M. Gao, and F.J. Li, "Thermal behavior analysis of a motorized Spindle with novel shaft core cooling", J. Xi’an Jiaotong. Univ., vol. 51, pp. 13-18, 2017.
[22]
R.K. Hu, Research on Thermal Characteristics of Ram Parts of CNC Gantry Milling Machine and Design of Thermal Symmetrical Structure., Guilin University of Electronic Technology: Guilin, 2014.
[23]
M.L. Chen, "Machine tool thermal deformation and thermal symmetric structure design. Mod", Manuf. Technol. Equip., vol. 03, pp. 31-33, 2017.
[24]
J.F. Zhang, P.F. Feng, Z.J. Wu, D.W. Yu, and C. Chen, "Thermal structure design and analysis of a machine tool headstock", Mechanika., vol. 19, no. 4, pp. 478-485, 2013.
[http://dx.doi.org/10.5755/j01.mech.19.4.5044]
[25]
K.K. Zhang, M.F. Huang, S.J. Zheng, and Z.P. Zhang, "Research on improvement for thermal structure of gantry milling machine ram. Modular", Mach. Tool. Autmo. Manuf. Tech., vol. 05, pp. 127-129, 2015.
[26]
L. T. Kong, D. D. Zhang, G. J. Lv, D. B. Kong, Q. Li, M. Y. Ming, Q. Ruan, Z. L. He, and L. Wang, "Double-nested thermally symmetric machine tool structure", "Shandong: CN Patent 212705431U", , 2021.
[27]
X. Yang, and S. Chen, "Study on a wireless temperature and humidity monitoring system for workshop with constant temperature based on scm", Appl. Mech. Mater., vol. 701-702, pp. 593-597, 2014.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.701-702.593]
[28]
H. Xu, "Design and realization of automatic control system of constant temperature and humidity workshop", Mech. Electr. Inf., vol. 12, pp. 9-11, 2017.
[29]
J.Z. Zhu, "Design and realization of energy-saving renovation of industrial constant temperature and humidity workshop in southern area", Mech. Electr. Inf., vol. 29, pp. 69-71, 2020.
[30]
H. Liu, E. Miao, and L. Zhang, "Thermal error modeling for machine tools: Mechanistic analysis and solution for the pseudocorrelation of temperature-sensitive points", IEEE Access, vol. 99, pp. 1-1, 2020.
[31]
Z.C. Chen, "Research on thermal sensitivity and thermal coupling", In Proceedings of the national conference on thermal error control and compensation of machine tools, 1992.
[32]
J.Y. Yan, H.T. Zhang, G.L. Liu, and J.G. Yang, "Optimization of measuring points for machine tool thermal error modeling based on grouping of synthetic grey correlation method", J. Hunan Univ: Nat. Sci. Ed., vol. 04, pp. 37-41, 2008.
[33]
H.T. Wang, L.P. Wang, T.M. Li, and J. Han, "Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method", Int. J. Adv. Manuf. Technol., vol. 69, no. 1-4, pp. 121-126, 2013.
[http://dx.doi.org/10.1007/s00170-013-4998-6]
[34]
J. Han, L. Wang, H. Wang, and N. Cheng, "A new thermal error modeling method for CNC machine tools", Int. J. Adv. Manuf. Technol., vol. 62, no. 1-4, pp. 205-212, 2012.
[http://dx.doi.org/10.1007/s00170-011-3796-2]
[35]
J. Han, L. Wang, and N. Cheng, "Thermal error modeling of machine tool based on fuzzy c-means cluster analysis and minimalresource allocating networks", Int. J. Adv. Manuf. Technol., vol. 60, 2011.
[36]
J. Yang, H. Shi, B. Feng, L. Zhao, C. Ma, and X. Mei, "Thermal error modeling and compensation for a high-speed motorized spindle", Int. J. Adv. Manuf. Technol., vol. 77, no. 5-8, pp. 1005-1017, 2015.
[http://dx.doi.org/10.1007/s00170-014-6535-7]
[37]
L. Zhang, G.H. Chen, D.Z. Zhao, H. Xiang, and M.D. Liu, "Optimization method of machine tool spindle temperature measurement points based on fuzzy clustering and grey theory", Mach. Tool. Hyd., vol. 48, no. 22, pp. 85-90, 2020.
[38]
E. Aguero, J.R. Alique, and R. Haber, "Fuzzy modelling of machine-tool cutting process", In Industrial Fuzzy Control and Intelligent Systems, IFIS '93., 1994 Third International Conference on, 1994
[39]
J.L. Deng, Basic method of grey system., Huazhong University of Science and Technology Press: CNA: Wuhan, 1987.
[40]
Y. Dai, X.X. Yin, W.Q. Wei, G. Wang, and S.Q. Zhan, "Thermal error modeling of high-speed motorized spindle based on ANFIS", Yiqi Yibiao Xuebao, vol. 41, pp. 50-58, 2020.
[41]
X.H. Lu, Z.Y. Jia, and Z.C. Zhang, Optimization of measuring points for machine tool thermal error modeling based on grey relational analysis method. Modular. Mach. Tool. Autom. Manuf. Tech, pp. 70-74, 2011.
[42]
Y.X. Li, J.G. Yang, T. Gelvis, and Y.Y. Li, "Optimization of measuring points for machine tool thermal error based on grey system theory", Int. J. Adv. Manuf. Technol., vol. 35, no. 7-8, pp. 745-750, 2008.
[http://dx.doi.org/10.1007/s00170-006-0751-8]
[43]
J.Y. Yan, and J.G. Yang, "Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation", Int. J. Adv. Manuf. Technol., vol. 43, no. 11-12, pp. 1124-1132, 2009.
[http://dx.doi.org/10.1007/s00170-008-1791-z]
[44]
Y. Wang, G. Zhang, K.S. Moon, and J.W. Sutherland, "Compensation for the thermal error of a multi-axis machining center", J. Mater. Process. Technol., vol. 75, no. 1–3, pp. 45-53, 1998.
[http://dx.doi.org/10.1016/S0924-0136(97)00291-4]
[45]
C.L. Lei, Z.Y. Rui, and W.P. Zhao, "New method for optimization of temperature measuring points on high-speed motorized spindle unit", J. Lanzhou Univ. Technol., vol. 39, pp. 22-25, 2013.
[46]
C.L. Lei, Analysis and modeling research on thermal error mechanism of motorized spindle of high-speed CNC machine tool., Lanzhou University of Technology: Lanzhou, 2011.
[47]
X.Y. Wei, M.Y. Qian, X.G. Feng, E.M. Miao, and Y.C. Chen, "Robust modeling method for thermal errors of CNC machine tools based on partial least squares algorithm", Yiqi Yibiao Xuebao, vol. 42, pp. 34-41, 2021.
[48]
L.G. Cai, G.P. Li, Q. Cheng, and W.S. Li, "Reduction of temperature measurement points of NC machine tool based on rough set and partial correlation analysis", J. Beijing Univ. Technol., vol. 42, pp. 969-974, 2016.
[49]
R.Y. Zhao, "R. J. Liang. W. H. Ye, Optimization of temperature measuring points for machine tool based on fuzzy clustering and partial correlation analysis", Mech. Sci. Technol. Aerosp. Eng., vol. 31, pp. 1767-1771, 2012.
[50]
Z.H. Shen, and S.Q. Yang, Research on optimization method of temperature measuring point arrangement based on fuzzy clustering and correlative degree analysis. Mod. Manuf. Eng., pp. 112-118, 2018.
[51]
J.Y. Yan, and J.G. Yang, "Application of grey GM(X,N) model on CNC machine thermal error modeling. Chin. J. Mech", Eng-En, vol. 20, pp. 1297-1300, 2009.
[52]
Y. Zhang, and J.G. Yang, "Modeling for machine tool thermal error based on grey theory preprocessing neural network", Mater. Mech. Eng., vol. 47, pp. 134-139, 2011.
[53]
H. Jiang, and J.G. Yang, Application of an optimized grey system model on 5-Axis CNC machine tool thermal error modeling., IEEE, 2010, pp. 1-5.
[http://dx.doi.org/10.1109/ICEEE.2010.5661570]
[54]
J. Zhang, Y. Li, S.T. Wang, and W.D. Gou, "Thermal error modeling of high-speed motorized spindle based on genetic RBF neural network", J. Huazhong Univ. Sci. Techno: Bat. Sci. Ed., vol. 46, pp. 73-77, 2018.
[55]
X. Li, "real-time prediction of workpiece errors for a CNC turning centre, part 2. modeling and estimation of thermally induced errors", Int. J. Adv. Manuf. Technol., vol. 17, no. 9, pp. 654-658, 2001.
[http://dx.doi.org/10.1007/s001700170129]
[56]
Z.C. Du, J.G. Yang, X.L. Dou, and H. Liu, Thermal error modeling of CNC turning center using radial basis function Neural Network.J. Shanghai Jiaotong. U., pp. 26-29, 2003.
[57]
C. Ma, J. Yang, X.S. Mei, L. Zhao, and X.M. Wang, "High-speed spindle thermal error modeling based on genetic algorithm and BP neural network", Comput. Integrated Manuf. Syst., vol. 21, pp. 2627-2636, 2015.
[58]
F. Tan, M. Yin, J. Peng, Y.B. Wei, and G.F. Yin, "Thermal error modeling of CNC machine tool spindle based on integrated BP neural network", Comput. Integrated Manuf. Syst., vol. 24, pp. 1383-1390, 2018.
[59]
Q.J. Guo, Q.W. Qu, and J.G. Yang, "Application of ant colony algorithm to volumetric thermal error modeling and compensation of a CNC machine tool", Appl. Mech. Mater., vol. 170-173, pp. 3487-3490, 2012.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.170-173.3487]
[60]
Y. Liu, X. Wang, X. Zhu, and Y. Zhai, "Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network", J. Mech. Sci. Technol., vol. 35, no. 1, pp. 281-292, 2021.
[http://dx.doi.org/10.1007/s12206-020-1228-7]
[61]
B. Li, X. Tian, and M. Zhang, "Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network", Int. J. Adv. Manuf. Technol., vol. 105, 2019.
[62]
C. Wu, S. Xiang, and W. Xiang, "Spindle thermal error prediction approach based on thermal infrared images: A deep learning method", J. Manuf. Syst., pp. 67-80, 2021.
[63]
A.M. Abdulshahed, A.P. Longstaff, S. Fletcher, and A. Potdar, "Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model", J. Manuf. Syst., vol. 41, pp. 130-142, 2016.
[http://dx.doi.org/10.1016/j.jmsy.2016.08.006]
[64]
B. Li, Y. Zhang, L.P. Wang, and X.K. Li, "Optimizing thermal error modeling of numerical control machine tool based on wavelet neural network based on genetic algorithm", Chin. J. Mech. Eng., vol. 55, pp. 215-220, 2019.
[65]
Q. Guo, S. Fan, and R.F. Xu, "Spindle thermal error optimization modeling of a Five-axis machine tool. Chin. J. Mech", Eng-En., vol. 30, pp. 746-753, 2017.
[66]
J.H. Lee, and S.H. Yang, "Statistical optimization and assessment of a thermal error model for CNC machine tools", Int. J. Mach. Tools Manuf., vol. 42, no. 1, pp. 147-155, 2002.
[http://dx.doi.org/10.1016/S0890-6955(01)00110-9]
[67]
P.C. Tseng, "A real-time thermal inaccuracy compensation method on a machining centre", Int. J. Adv. Manuf. Technol., vol. 13, no. 3, pp. 182-190, 1997.
[http://dx.doi.org/10.1007/BF01305870]
[68]
Y. Zhang, J.G. Yang, S.T. Xiang, and H.X. Xiao, "Volumetric error modeling and compensation considering thermal effect on five-axis machine tools", Proceedings. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci, vol. 227, no. 5, 2013.
[http://dx.doi.org/10.1177/0954406212456475]
[69]
J.S. Chen, J. Yuan, and J. Ni, "Thermal error modeling for real-time error compensation", Int. J. Adv. Manuf. Technol., vol. 12, no. 4, pp. 266-275, 1996.
[http://dx.doi.org/10.1007/BF01239613]
[70]
W.L. Xu, Thermal characteristic analysis and thermal error compensation method of High-Speed Milling motor spindle., Guangdong University of Technology: Guangzhou, 2016.
[71]
H.W. Wang, and J. Meng, "Predictive modeling on multiple linear regression. J. B Univ", Aeronaut. Astronaut, pp. 500-504, 2007.
[72]
Y. Lu, and M.N. Islam, "A new approach to thermally induced volumetric error compensation", Int. J. Adv. Manuf. Technol., vol. 62, no. 9-12, pp. 1071-1085, 2012.
[http://dx.doi.org/10.1007/s00170-011-3849-6]
[73]
X.B. Wu, X.H. Yao, and J.Z. Fu, "Thermal error modeling of NC machine tool based on bayesian network. Chin. J. Mech", Eng-En., vol. 20, pp. 293-296, 2009.
[74]
X.H. Yao, J.Z. Fu, and Z. Chen, "Bayesian networks modeling for thermal error of numerical control machine tools", J. Zhejiang Univ. Sci. A, vol. 11, no. 11, pp. 54-60, 2008.
[http://dx.doi.org/10.1631/jzus.A0820337]
[75]
Z.B. Ruan, L.C. Zhang, and J.F. Sha, "Online compensation method for position irrelevant thermal errors of CNC machine tools", Prec. Manuf. Autom., vol. 34, p. 472017, .

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy