Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Detection of Prostate Cancer Biomarker PCA3 by Using Aptasensors

Author(s): Bruno P. Crulhas, Caroline R. Basso, Gustavo R. Castro and Valber A. Pedrosa*

Volume 29, Issue 37, 2022

Published on: 04 August, 2022

Page: [5895 - 5902] Pages: 8

DOI: 10.2174/0929867329666220607162250

Price: $65

conference banner
Abstract

Background: Prostate cancer cells have very high PCA3 messenger RNA levels, which turns them into one of the new biomarkers for prostate cancer prognosis and diagnosis.

Objective: Our goal here is to develop a new aptasensor to detect PCA3 release by the cancer cell.

Methods: DNA hairpin containing PCA3 aptamer was thiolated, conjugated to methylene blue (MB) redox probe, and immobilized on gold electrode through self-assembly to detect label-free cancer cells.

Results: Our data have evidenced stable and sensitive sensors presenting a wide linear detection range (0-150ng/mL). In addition, monitoring PCA3 released by different types of prostate cells can provide in-depth knowledge about prostate cancer dynamics; therefore, it is a powerful platform for earlier clinical diagnostic. The released PCA3 can vary depending on the type of adopted prostate cells.

Conclusion: PCA3 release was monitored in a group of cells for 2 h; it showed significantly higher expression in both LNCaP and PC-3 cells. This strategy provides a unique and simple methodology to achieve more sensitive and specific PCA3 detection; thus, it emerged as a promising tool for early cost-effective diagnosis.

Keywords: Aptasensor, releasing protein, PCA3, aptamer, cancer cell, biomarker.

« Previous
[1]
Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol., 2020, 77(1), 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Kearns, J.T.; Holt, S.K.; Wright, J.L.; Lin, D.W.; Lange, P.H.; Gore, J.L. PSA screening, prostate biopsy, and treatment of prostate cancer in the years surrounding the USPSTF recommendation against prostate cancer screening. Cancer, 2018, 124(13), 2733-2739.
[http://dx.doi.org/10.1002/cncr.31337] [PMID: 29781117]
[4]
Taitt, H.E. Global trends and prostate cancer: A review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am. J. Men's health, 2018, 12(6), 1807-1823.
[http://dx.doi.org/10.1177/1557988318798279] [PMID: 30203706]
[5]
Butler, E.N.; Kelly, S.P.; Coupland, V.H.; Rosenberg, P.S.; Cook, M.B. Fatal prostate cancer incidence trends in the United States and England by race, stage, and treatment. Br. J. Cancer, 2020, 123(3), 487-494.
[http://dx.doi.org/10.1038/s41416-020-0859-x] [PMID: 32433602]
[6]
Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; Lin, D.W.; Urban, N.; Drescher, C.W.; Knudsen, B.S.; Stirewalt, D.L.; Gentleman, R.; Vessella, R.L.; Nelson, P.S.; Martin, D.B.; Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10513-10518.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[7]
Jolly, P.; Formisano, N.; Estrela, P. DNA aptamer-based detection of prostate cancer. Chem. Pap., 2015, 69(1), 77-89.
[http://dx.doi.org/10.1515/chempap-2015-0025]
[8]
Pentyala, S.; Whyard, T.; Pentyala, S.; Muller, J.; Pfail, J.; Parmar, S.; Helguero, C.G.; Khan, S. Prostate cancer markers: An update. Biomed. Rep., 2016, 4(3), 263-268.
[http://dx.doi.org/10.3892/br.2016.586] [PMID: 26998261]
[9]
Parra-Cabrera, C.; Samitier, J.; Homs-Corbera, A. Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection. Biosens. Bioelectron., 2016, 77, 1192-1200.
[http://dx.doi.org/10.1016/j.bios.2015.10.064] [PMID: 26590517]
[10]
Hessels, D.; Schalken, J.A. The use of PCA3 in the diagnosis of prostate cancer. Nat. Rev. Urol., 2009, 6(5), 255-261.
[http://dx.doi.org/10.1038/nrurol.2009.40] [PMID: 19424173]
[11]
Rodríguez, S.V.M.; García-Perdomo, H.A. Diagnostic accuracy of prostate cancer antigen 3 (PCA3) prior to first prostate biopsy: A systematic review and meta-analysis. Can. Urol. Assoc. J., 2020, 14(5), E214-E219.
[PMID: 31793864]
[12]
Chunhua, L.; Zhao, H.; Zhao, H.; Lu, Y.; Wu, J.; Gao, Z.; Li, G.; Zhang, Y.; Wang, K. Clinical significance of peripheral blood PCA3 gene expression in early diagnosis of prostate cancer. Transl. Oncol., 2018, 11(3), 628-632.
[http://dx.doi.org/10.1016/j.tranon.2018.02.019] [PMID: 29574327]
[13]
Ploussard, G.; de la Taille, A. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev. Anticancer Ther., 2018, 18(10), 1013-1020.
[http://dx.doi.org/10.1080/14737140.2018.1502086] [PMID: 30016891]
[14]
de Kok, J.B.; Verhaegh, G.W.; Roelofs, R.W.; Hessels, D.; Kiemeney, L.A.; Aalders, T.W.; Swinkels, D.W.; Schalken, J.A. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res., 2002, 62(9), 2695-2698.
[PMID: 11980670]
[15]
Wei, J.T.; Feng, Z.; Partin, A.W.; Brown, E.; Thompson, I.; Sokoll, L.; Chan, D.W.; Lotan, Y.; Kibel, A.S.; Busby, J.E.; Bidair, M.; Lin, D.W.; Taneja, S.S.; Viterbo, R.; Joon, A.Y.; Dahlgren, J.; Kagan, J.; Srivastava, S.; Sanda, M.G. Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J. Clin. Oncol., 2014, 32(36), 4066-4072.
[http://dx.doi.org/10.1200/JCO.2013.52.8505] [PMID: 25385735]
[16]
Auprich, M.; Augustin, H.; Budäus, L.; Kluth, L.; Mannweiler, S.; Shariat, S.F.; Fisch, M.; Graefen, M.; Pummer, K.; Chun, F.K.H. A comparative performance analysis of total prostate-specific antigen, percentage free prostate-specific antigen, prostate-specific antigen velocity and urinary prostate cancer gene 3 in the first, second and third repeat prostate biopsy. BJU Int., 2012, 109(11), 1627-1635.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10584.x] [PMID: 21939492]
[17]
Bussemakers, M.J.; van Bokhoven, A.; Verhaegh, G.W.; Smit, F.P.; Karthaus, H.F.; Schalken, J.A.; Debruyne, F.M.; Ru, N.; Isaacs, W.B. DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res., 1999, 59(23), 5975-5979.
[PMID: 10606244]
[18]
Groskopf, J.; Aubin, S.M.J.; Deras, I.L.; Blase, A.; Bodrug, S.; Clark, C.; Brentano, S.; Mathis, J.; Pham, J.; Meyer, T.; Cass, M.; Hodge, P.; Macairan, M.L.; Marks, L.S.; Rittenhouse, H. APTIMA PCA3 molecular urine test: Development of a method to aid in the diagnosis of prostate cancer. Clin. Chem., 2006, 52(6), 1089-1095.
[http://dx.doi.org/10.1373/clinchem.2005.063289] [PMID: 16627561]
[19]
Tinzl, M.; Marberger, M.; Horvath, S.; Chypre, C. DD3PCA3 RNA analysis in urine: A new perspective for detecting prostate cancer. Eur. Urol., 2004, 46(2), 182-187.
[http://dx.doi.org/10.1016/j.eururo.2004.06.004] [PMID: 15245811]
[20]
Soares, J.C.; Soares, A.C.; Rodrigues, V.C.; Melendez, M.E.; Santos, A.C.; Faria, E.F.; Reis, R.M.; Carvalho, A.L.; Oliveira, O.N., Jr Detection of the prostate cancer biomarker PCA3 with electrochemical and impedance-based biosensors. ACS Appl. Mater. Interfaces, 2019, 11(50), 46645-46650.
[http://dx.doi.org/10.1021/acsami.9b19180] [PMID: 31765118]
[21]
Salameh, A.; Lee, A.K.; Cardó-Vila, M.; Nunes, D.N.; Efstathiou, E.; Staquicini, F.I.; Dobroff, A.S.; Marchiò, S.; Navone, N.M.; Hosoya, H.; Lauer, R.C.; Wen, S.; Salmeron, C.C.; Hoang, A.; Newsham, I.; Lima, L.A.; Carraro, D.M.; Oliviero, S.; Kolonin, M.G.; Sidman, R.L.; Do, K.A.; Troncoso, P.; Logothetis, C.J.; Brentani, R.R.; Calin, G.A.; Cavenee, W.K.; Dias-Neto, E.; Pasqualini, R.; Arap, W. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc. Natl. Acad. Sci. USA, 2015, 112(27), 8403-8408.
[http://dx.doi.org/10.1073/pnas.1507882112] [PMID: 26080435]
[22]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[23]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[24]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[25]
Barani, M.; Sabir, F.; Rahdar, A.; Arshad, R.; Kyzas, G.Z. Nanotreatment, and nanodiagnosis of prostate cancer: Recent updates. Nanomaterials (Basel), 2020, 10(9), 1696.
[http://dx.doi.org/10.3390/nano10091696] [PMID: 32872181]
[26]
Crulhas, B.P.; Karpik, A.E.; Delella, F.K.; Castro, G.R.; Pedrosa, V.A. Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal. Bioanal. Chem., 2017, 409(29), 6771-6780.
[http://dx.doi.org/10.1007/s00216-017-0630-1] [PMID: 29032455]
[27]
Karpik, A.E.; Crulhas, B.P.; Rodrigues, C.B.; Castro, G.R.; Pedrosa, V.A. aptamer-based biosensor developed to monitor MUC1 released by prostate cancer cells. Electroanalysis, 2017, 29(10), 2246-2253.
[http://dx.doi.org/10.1002/elan.201700318]
[28]
Parra, J.P.R.L.L.; Crulhas, B.P.; Basso, C.R.; Delella, F.K.; Castro, G.R.; Pedrosa, V.A. Using an electrochemical aptasensor to early detect prostate-specific and free prostate-specific antigens released by cancer cells. Electroanalysis, 2018, 30(12), 2869-2877.
[http://dx.doi.org/10.1002/elan.201800558]
[29]
Crulhas, B.P.; Basso, C.R.; Parra, J.P.R.L.L.; Castro, G.R.; Pedrosa, V.A. Reduced graphene oxide decorated with AuNPs as a new aptamer-based biosensor for the detection of androgen receptor from prostate cells. J. Sens., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/5805609]
[30]
Marangoni, K.; Neves, A. F.; Rocha, R. M.; Faria, P. R.; Alves, P. T.; Souza, A. G.; Fujimura, P. T.; Santos, F. A. A.; Araújo, T. G.; Ward, L. S.; Goulart, L. R. Prostate-specific RNA aptamer: Promising nucleic acid antibody-like cancer detection. Sci. Rep., 2015, 5(1), 12090.
[http://dx.doi.org/10.1038/srep12090] [PMID: 26174796]
[31]
Foj, L.; Milà, M.; Alcaraz, A.; Jiménez, W.; Filella, X. Real-time PCRPCA3 assay is a useful test measured in urine to improve prostate cancer detection. Clin. Chim. Acta, 2014, 435, 53-58.
[http://dx.doi.org/10.1016/j.cca.2014.04.025] [PMID: 24803095]
[32]
Popa, I.; Fradet, Y.; Beaudry, G.; Hovington, H.; Beaudry, G.; Têtu, B. Identification of PCA3 (DD3) in prostatic carcinoma by in situ hybridization. Mod. Pathol., 2007, 20(11), 1121-1127.
[http://dx.doi.org/10.1038/modpathol.3800963] [PMID: 17873893]
[33]
Gu, S.; Niu, X.; Mao, F.; Xu, Z. Retracted Article: Long noncoding RNA PCA3 regulates glycolysis, viability and apoptosis by mediating the miR-1/CDK4 axis in prostate cancer. RSC Advances, 2018, 8(66), 37564-37572.
[http://dx.doi.org/10.1039/C8RA08083F] [PMID: 35558606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy