Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Research Article

In Silico Modeling of COVID-19 Pandemic Course Differentiation Using the FOD Model

Author(s): Irena Roterman*, Katarzyna Stapor, Piotr Fabian and Leszek Konieczny

Volume 3, Issue 4, 2022

Published on: 05 August, 2022

Article ID: e020622205580 Pages: 13

DOI: 10.2174/2666796703666220602155421

open access plus

conference banner
Abstract

Background: The strange and still unclear scenarios of COVID-19 pandemic development have raised the question about the reason for the observed essential state and personal differences concerning the expansion and severity of the infection process. Some custom activities are taken into consideration in an attempt to explain the phenomenon. Alcohol in the diet is suggested in this paper as the possible factor which could explain the observed differentiation. It easily penetrates cells modifying their natural internal environment, and independently influences tissues as the toxic agent being the source of acetyl aldehyde.

Objective: The process in which the cell seems to be the most sensitive to altered environmental conditions is the protein folding; in particular, its portion occurring in the endoplasmic reticulum where freshly synthesized polypeptides fold and then are introduced to the cell membrane influencing its property and in particular its fluidity, which is the critical parameter deciding the virus penetration into the cell.

Methods: The application of a mathematical model, fuzzy oil drop model FOD, expressing the influence of the environment on the protein folding process shows the mechanism of this influence.

Results: The differences between statistical assessment of epidemy in Europe and the Far East, which may be correlated with alcohol consumption, suggest the influence of diet on the status of epidemy in these regions.

Conclusion: The protein folding seems to be the process most sensitive to environmental conditions in the cell. The different diet customs, including the use of alcohol, may disturb the folding process, lowering as the result the number of proteins needed for cell membrane stability, thus increasing its fluidity and the cell susceptibility to virus penetration.

Observations presented in this paper are based on the initial period of pandemic development and have not been intentionally modified to prevent the influence of additional factors, like government activities or virus mutations.

Keywords: COVID-19, pandemic, cell membrane stability, protein folding, environment for folding, protein structure, micelle.

Graphical Abstract
[1]
Konieczny L, Roterman I. The COVID-19 puzzle. Bioinformation 2020; 16(5): 418-21.
[http://dx.doi.org/10.6026/97320630016418] [PMID: 32831524]
[2]
Roterman I, Konieczny L. Protein folding vs. COVID-19 and the Mediterranean diet. Bio-Algorithms and Med-Systems 2020; 16(2): 1-4.
[http://dx.doi.org/10.1515/bams-2020-0029]
[3]
Ajami NJ, Wargo JA. AI finds microbial signatures in tumours and blood across cancer types. Nature 2020; 579(7800): 502-3.
[http://dx.doi.org/10.1038/d41586-020-00637-w] [PMID: 32161344]
[4]
O’Toole PW, Jeffery IB. Gut microbiota and aging. Science 2015; 350(6265): 1214-5.
[http://dx.doi.org/10.1126/science.aac8469] [PMID: 26785481]
[5]
Dhar D, Mohanty A. Gut microbiota and COVID-19- possible link and implications. Virus Res 2020; 285: 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[6]
Kim JS. Microbial warfare against viruses. Science 2018; 359(6379): 993.
[http://dx.doi.org/10.1126/science.aas9430] [PMID: 29496868]
[7]
Zitvogel L, Kroemer G. Immunostimulatory gut bacteria. Science 2019; 366(6469): 1077-8.
[http://dx.doi.org/10.1126/science.aaz7595] [PMID: 31780546]
[8]
Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 2019; 366(6467): 881-6.
[http://dx.doi.org/10.1126/science.aav3487]
[9]
Greber UF. Virus and host mechanics support membrane penetration and cell entry. J Virol 2016; 90(8): 3802-5.
[http://dx.doi.org/10.1128/JVI.02568-15] [PMID: 26842477]
[10]
Inoue T, Tsai B. A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 2011; 7(5): e1002037.
[http://dx.doi.org/10.1371/journal.ppat.1002037] [PMID: 21589906]
[11]
Yamauchi Y, Helenius A. Virus entry at a glance. J Cell Sci 2013; 126(Pt 6): 1289-95.
[http://dx.doi.org/10.1242/jcs.119685] [PMID: 23641066]
[12]
Reddy AS, Warshaviak DT, Chachisvilis M. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochim Biophys Acta 2012; 1818(9): 2271-81.
[http://dx.doi.org/10.1016/j.bbamem.2012.05.006] [PMID: 22588133]
[13]
Thomas PJ, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci 1995; 20(11): 456-9.
[http://dx.doi.org/10.1016/S0968-0004(00)89100-8] [PMID: 8578588]
[14]
Bowie JU. Solving the membrane protein folding problem. Nature 2005; 438(7068): 581-9.
[http://dx.doi.org/10.1038/nature04395] [PMID: 16319877]
[15]
Coleman OI, Haller D. ER Stress and the UPR in shaping intestinal tissue homeostasis and immunity. Front Immunol 2019; 10: 2825.
[http://dx.doi.org/10.3389/fimmu.2019.02825] [PMID: 31867005]
[16]
Rutkowski DT, Kaufman RJ. A trip to the ER: Coping with stress. Trends Cell Biol 2004; 14(1): 20-8.
[http://dx.doi.org/10.1016/j.tcb.2003.11.001] [PMID: 14729177]
[17]
Johannes L, Popoff V. Tracing the retrograde route in protein trafficking. Cell 2008; 135(7): 1175-87.
[http://dx.doi.org/10.1016/j.cell.2008.12.009] [PMID: 19109890]
[18]
Rahman S, Jan AT, Ayyagari A, Kim J, Minakshi R. Entanglement of UPRER in aging driven neurodegenerative diseases. Front Aging Neurosci 2017; 9: 341.
[http://dx.doi.org/10.3389/fnagi.2017.00341]
[19]
Martinez-Vicente M. Protein degradation and aging. Exp Gerontol 2005; 40(8-9): 622-33.
[http://dx.doi.org/10.1016/j.exger.2005.07.005]
[20]
Zhou AX. The UPR in atherosclerosis. Semin Immunopathol 2013; 35(3): 321-32.
[http://dx.doi.org/10.1007/s00281-013-0372-x]
[21]
Chitnis N, Pytel D, Diehl JA. UPR-inducible miRNAs contribute to stressful situations. Trends Biochem Sci 2013; 38(9): 447-52.
[http://dx.doi.org/10.1016/j.tibs.2013.06.012] [PMID: 23906563]
[22]
Lin T, Lee JE, Kang JW, Shin HY, Lee JB, Jin DI. Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) in mammali-an oocyte maturation and preimplantation embryo development. Int J Mol Sci 2019; 20(2): 409.
[http://dx.doi.org/10.3390/ijms20020409] [PMID: 30669355]
[23]
Johnston BP, McCormick C. Herpesviruses and the unfolded protein response. Viruses 2019; 12(1): 17.
[http://dx.doi.org/10.3390/v12010017] [PMID: 31877732]
[24]
Bergmann TJ, Molinari M. Three branches to rule them all? UPR signalling in response to chemically versus misfolded proteins-induced ER stress. Biol Cell 2018; 110(9): 197-204.
[http://dx.doi.org/10.1111/boc.201800029] [PMID: 29979817]
[25]
Imanikia S, Sheng M, Taylor RC. Cell Non-autonomous UPRER Signaling. Curr Top Microbiol Immunol 2018; 414: 27-43.
[http://dx.doi.org/10.1007/82_2017_38] [PMID: 28879522]
[26]
Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40(3): 141-8.
[http://dx.doi.org/10.1016/j.tibs.2015.01.002] [PMID: 25656104]
[27]
Kennedy D, Samali A. Methods for studying ER stress and UPR markers in human cells. Methods Mol Biol 2015; 1292: 3-18.
[http://dx.doi.org/10.1007/978-1-4939-2522-3_1]
[28]
Walter P, Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011; 334(6059): 1081-6.
[http://dx.doi.org/10.1126/science.1209038]
[29]
Kaneko M, Imaizumi K, Saito A, et al. ER stress and disease: Toward prevention and treatment. Biol Pharm Bull 2017; 40(9): 1337-43.
[http://dx.doi.org/10.1248/bpb.b17-00342] [PMID: 28867719]
[30]
Johnson JR, Rajamanoharan D, McCue HV, Rankin K, Barclay JW. Small heat shock proteins are novel common determinants of alcohol and nicotine sensitivity in caenorhabditis elegans. Genetics 2016; 202(3): 1013-27.
[http://dx.doi.org/10.1534/genetics.115.185025] [PMID: 26773049]
[31]
Zimatkin SM, Liopo AV, Deitrich RA. Distribution and kinetics of ethanol metabolism in rat brain. Alcohol Clin Exp Res 1998; 22(8): 1623-7.
[http://dx.doi.org/10.1111/j.1530-0277.1998.tb03958.x]
[32]
Rintala J, Jaatinen P, Wei L, et al. Lifelong ethanol consumption and loss of locus coeruleus neurons in AA and ANA rats. Alcohol 1998; 16(3): 243-8.
[http://dx.doi.org/10.1016/S0741-8329(98)00012-3] [PMID: 9744856]
[33]
Niemelä O, Parkkila S, Ylä-Herttuala S, et al. Covalent protein adducts in the liver as a result of ethanol metabolism and lipid peroxidation. Lab Incest 1994; 70(4): 537-46.
[34]
Niemelä O, Parkkila S, Ylä-Herttuala S, Villanueva J, Ruebner B, Halsted CH. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology 1995; 22(4): P1: 1208-.
[http://dx.doi.org/10.1016/0270-9139(95)90630-4] [PMID: 7557872]
[35]
Niemelä O, Parkkila S, Pasanen M, Iimuro Y, Bradford B, Thurman RG. Early alcoholic liver injury: Formation of protein adducts with acetaldehyde and lipid peroxidation products, and expression of CYP2E1 and CYP3A. Alcohol Clin Exp Res 1998; 22(9): 2118-24.
[http://dx.doi.org/10.1111/j.1530-0277.1998.tb05925.x]
[36]
Nicholls R, de Jersey J, Worrall S, Wilce P. Modification of proteins and other biological molecules by acetaldehyde: Adduct structure and functional significance. Int J Biochem 1992; 24(12): 1899-906.
[http://dx.doi.org/10.1016/0020-711X(92)90285-9] [PMID: 1473602]
[37]
Nicholls RM, Fowles LF, Worrall S, de Jersey J, Wilce PA. Distribution and turnover of acetaldehyde-modified proteins in liver and blood of ethanol-fed rats. Alcohol Alcohol 1994; 29(2): 149-57.
[38]
McKinnon G, Davidson M, De Jersey J, Shanley B, Ward L. Effects of acetaldehyde on polymerization of microtubule proteins. Brain Res 1987; 416(1): 90-9.
[http://dx.doi.org/10.1016/0006-8993(87)91500-9] [PMID: 3620958]
[39]
Mauch TJ, Donohue TM Jr, Zetterman RK. Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes. Hepatology 1986; 6(2): 263-9.
[http://dx.doi.org/10.1002/hep.1840060218]
[40]
Lin RC, Zhou FC, Fillenwarth MJ, Lumeng L. Zonal distribution of protein-acetaldehyde adducts in the liver of rats fed alcohol for long periods. Hepatology 1993; 18(4): 864-9.
[http://dx.doi.org/10.1002/hep.1840180418]
[41]
Lin RC, Smith RS, Lumeng L. Detection of a protein-acetaldehyde adduct in the liver of rats fed alcohol chronically. J Clin Invest 1988; 81(2): 615-9.
[http://dx.doi.org/10.1172/JCI113362] [PMID: 3123522]
[42]
Eriksson CJ. Ethanol and acetaldehyde metabolism in rat strains genetically selected for their ethanol preference. Biochem Pharmacol 1973; 22(18): 2283-92.
[http://dx.doi.org/10.1016/0006-2952(73)90009-9] [PMID: 4733679]
[43]
Worrall S, de Jersey J, Nicholls R, Wilce P. Acetaldehyde/protein interactions: Are they involved in the pathogenesis of alcoholic liver disease? Dig Dis 1993; 11(4-5): 265-77.
[http://dx.doi.org/10.1159/000171418] [PMID: 8222307]
[44]
Rintala J, Jaatinen P, Parkkila S, Sarviharju M, Kiianmaa K, Hervonen A. Evidence of acetaldehyde-protein adduct formation in rat brain after lifelong consumption of ethanol. Alcohol Alcohol 2000; 35(5): 458-63.
[http://dx.doi.org/10.1093/alcalc/35.5.458]
[45]
Gurtovenko AA, Anwar J. Interaction of ethanol with biological membranes: The formation of non-bilayer structures within the membrane interior and their significance. J Phys Chem B 2009; 113(7): 1983-92.
[http://dx.doi.org/10.1021/jp808041z]
[46]
Sonohara Y, Yamamoto J, Tohashi K, Takatsuka R, Matsuda T, Iwai S, et al. Acetaldehyde forms covalent GG intrastrand crosslinks in DNA. Sci Rep 2019; 9(1): 660.
[http://dx.doi.org/10.1038/s41598-018-37239-6]
[47]
Gallina I, Duxin JP. A safe fix for alcohol-derived DNA damage. Nature 2020; 579(7800): 499-500.
[http://dx.doi.org/10.1038/d41586-020-00462-1] [PMID: 32210381]
[48]
Yin SJ, Liao CS, Chen CM, Fan FT, Lee SC. Genetic polymorphism and activities of human lung alcohol and aldehyde dehydrogenases: Implications for ethanol metabolism and cytotoxicity. Biochem Genet 1992; 30(3-4): 203-15.
[http://dx.doi.org/10.1007/BF02399709]
[49]
Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011; 475(7354): 53-8.
[http://dx.doi.org/10.1038/nature10192] [PMID: 21734703]
[50]
Hodskinson MR, Bolner A, Sato K, et al. Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature 2020; 579(7800): 603-8.
[http://dx.doi.org/10.1038/s41586-020-2059-5] [PMID: 32132710]
[51]
Tuma DJ, Hoffman T, Sorrell MF. The chemistry of acetaldehyde-protein adducts. Alcohol Alcohol Suppl 1991; 1: 271-6.
[PMID: 1845549]
[52]
French SW, Wong K, Jui L, Albano E, Hagbjork AL, Ingelman-Sundberg M. Effect of ethanol on cytochrome P450 2E1 (CYP2E1), lipid peroxidation, and serum protein adduct formation in relation to liver pathology pathogenesis. Exp Mol Pathol 1993; 58(1): 61-75.
[http://dx.doi.org/10.1006/exmp.1993.1006] [PMID: 8454037]
[53]
Lin RC, Dai J, Lumeng L, Zhang MY. Serum low density lipoprotein of alcoholic patients is chemically modified in vivo and induces apolipoprotein E synthesis by macrophages. J Clin Invest 1995; 95(5): 1979-86.
[http://dx.doi.org/10.1172/JCI117882]
[54]
Goodman RP, Markhard AL, Shah H, et al. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 2020; 583(7814): 122-6.
[http://dx.doi.org/10.1038/s41586-020-2337-2] [PMID: 32461692]
[55]
Kenyon CJ. The genetics of ageing. Nature 464(7288): 504-12.
[http://dx.doi.org/10.1038/nature08980]
[56]
Taylor RC. Aging and the UPR(ER). Brain Res 1648; 1648(Pt B): 588-93.
[57]
European Centre for Disease Prevention and Control. Data on 14- day notification rate of new COVID-19 cases and deaths. Available from: https://www.ecdc.europa.eu/en/publications-data/data-national-14-day-notification-rate-COVID-19 (Accessed March 15, 2021).
[58]
European Centre for Disease Prevention and Control. COVID-19 situation update worldwide. Available from: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (Accessed March 15, 2021).
[59]
Serpell LC. Alzheimer’s amyloid fibrils: Structure and assembly. Biochim Biophys Acta 2000; 1502(1): 16-30.
[http://dx.doi.org/10.1016/S0925-4439(00)00029-6] [PMID: 10899428]
[60]
Roterman-Konieczna I. From globular proteins to amyloids. Amsterdam Netherlands, Oxford UK, Cambridge MA USA: Elsevier 2020.
[61]
Roterman I, Banach M, Konieczny L. Antifreeze proteins. Bioinformation 2017; 13(12): 400-1.
[http://dx.doi.org/10.6026/97320630013400] [PMID: 29379256]
[62]
Banach M, Konieczny L, Roterman I. Why do antifreeze proteins require a solenoid? Biochimie 2018; 144: 74-84.
[http://dx.doi.org/10.1016/j.biochi.2017.10.011] [PMID: 29054801]
[63]
Banach M, Stapor K, Konieczny L, Fabian P, Roterman I. Downhill, ultrafast and fast folding proteins revised. Int J Mol Sci 2020; 21(20): 7632.
[http://dx.doi.org/10.3390/ijms21207632] [PMID: 33076540]
[64]
Konieczny L, Roterman I. Globular or ribbon-like micelle From globular proteins to amyloids. Amsterdam Netherlands, Oxford UK, Cambridge MA USA: Elsevier 2020; pp. 41-54.
[http://dx.doi.org/10.1016/B978-0-08-102981-7.00004-X]
[65]
Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 1976; 104(1): 59-107.
[http://dx.doi.org/10.1016/0022-2836(76)90004-8] [PMID: 957439]
[66]
Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat 1951; 22(1) Available from: 79-86.doi.org/10.1214/aoms/1177729694
[http://dx.doi.org/10.1214/aoms/1177729694]
[67]
Roterman I, Stapor K, Fabian P, Konieczny L, Banach M. Model of environmental membrane field for transmembrane proteins. Int J Mol Sci 2021; 22(7): 3619.
[http://dx.doi.org/10.3390/ijms22073619] [PMID: 33807215]
[68]
Fabian P, Banach M, Stapor K, Konieczny L, Ptak-Kaczor M, Roterman I. The structure of amyloid versus the structure of globular pro-teins. Int J Mol Sci 2020; 21(13): 4683.
[http://dx.doi.org/10.3390/ijms21134683] [PMID: 32630137]
[69]
Rubenstein AB, Blacklock K, Nguyen H, Case DA, Khare SD. Systematiccomparison of Amber and Rosetta energy functions for protein-structureevaluation. J Chem Theory Comput 2018; 14(11): 6015-25.
[http://dx.doi.org/10.1021/acs.jctc.8b00303] [PMID: 30240210]
[70]
Ołdziej S, Czaplewski C, Liwo A, et al. Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: Assessment in two blind tests. Proc Natl Acad Sci USA 2005; 102(21): 7547-52.
[http://dx.doi.org/10.1073/pnas.0502655102] [PMID: 15894609]
[71]
Anderson JS, Hernández G, LeMaster DM. (13)C NMR relaxation analysis of protein GB3 for the assessment of side chain dynamics predictions by current AMBER and CHARMMforce fields. J Chem Theory Comput 2020; 16(5): 2896-913.
[http://dx.doi.org/10.1021/acs.jctc.0c00050] [PMID: 32268062]
[72]
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26(16): 1701-18.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[73]
Kim DE, Chivian D, Baker D. Protein structureprediction and analysisusing the Robettaserver. Nucleic Acids Res 2004; 32(Web Server issue): W526-31.
[http://dx.doi.org/10.1093/nar/gkh468]
[74]
Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5(4): 725-38.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[75]
Zhang H, Tan T, van der Spoel D. Generalized born and explicit solvent models for free energy calculations in organic solvents: Cy-clodextrin dimerization. J Chem Theory Comput 2015; 11(11): 5103-13.
[http://dx.doi.org/10.1021/acs.jctc.5b00620] [PMID: 26574308]
[76]
Zhang J, Zhang H, Wu T, Wang Q, van der Spoel D. Comparison of implicit and explicit solvent models for the calculation of solvation free energy in organic solvents. J Chem Theory Comput 2017; 13(3): 1034-43.
[http://dx.doi.org/10.1021/acs.jctc.7b00169] [PMID: 28245118]
[77]
Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577(7792): 706-10.
[http://dx.doi.org/10.1038/s41586-019-1923-7] [PMID: 31942072]
[78]
Protein Structure Prediction Center. Available from: https://predictioncenter.org/ (Accessed March 15, 2021).
[79]
Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, et al. Structures and operating principles of the replisome. Science 2019; 363(6429): 7003.
[http://dx.doi.org/10.1126/science.aav7003]
[80]
Improta S, Politou A, Pastore A. Immunoglobulin-like modules from titin I-band: Extensible components of muscle elasticity. Structure 1996; 4(3): 323-37.
[http://dx.doi.org/10.1016/S0969-2126(96)00036-6]
[81]
Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, et al. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 2015; 22(6): 499-505.
[http://dx.doi.org/10.1038/nsmb.2991]
[82]
Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL-M, Petersen J, Andersen JP, et al. Crystal structure of the sodium-potassium pump. Nature 2007; 450(7172): 1043-9.
[http://dx.doi.org/10.1038/nature06419]
[83]
Roterman I, Stapor K, Fabian P, Konieczny L. The functional significance of hydrophobic residue distribution in bacterial beta-barrel transmembrane proteins. Membranes (Basel) 2021; 11(8): 580.
[http://dx.doi.org/10.3390/membranes11080580] [PMID: 34436343]
[84]
Wickenhagen A, Sugrue E, Lytras S, et al. A prenylated dsRNA sensor protects against severe COVID-19. Science 2021; 374(6567): eabj3624.
[http://dx.doi.org/10.1126/science.abj3624] [PMID: 34581622]
[85]
Tran N-H, Carter SD, De Mazière A, et al. The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science 2021; 374(6563): 52-7.
[http://dx.doi.org/10.1126/science.abh2474] [PMID: 34591618]
[86]
Schoggins J. Defective viral RNA sensing linked to severe COVID-19. Science 2021; 374(6567): 535-6.
[http://dx.doi.org/10.1126/science.abm3921] [PMID: 34709914]
[87]
Altae-Tran H, Kannan S, Demircioglu FE, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 2021; 374(6563): 57-65.
[http://dx.doi.org/10.1126/science.abj6856] [PMID: 34591643]
[88]
Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev 2019; 37: 100589.
[http://dx.doi.org/10.1016/j.blre.2019.100589] [PMID: 31351673]
[89]
Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012; 30: 759-95.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074937] [PMID: 22224764]
[90]
Lynch JB, Hsiao EY. Microbiomes as sources of emergent host phenotypes. Science 2019; 365(6460): 1405-9.
[http://dx.doi.org/10.1126/science.aay0240] [PMID: 31604267]
[91]
Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 2020; 179: 85-100.
[http://dx.doi.org/10.1016/j.biochi.2020.09.018] [PMID: 32971147]
[92]
Chlamydas S, Papavassiliou AG, Piperi C. Epigeneticmechanismsregulating COVID-19 infection. Epigenetics 2020; 16(3): 263-70.
[http://dx.doi.org/10.1080/15592294.2020.1796896]
[93]
Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med 2021; 27(1): 28-33.
[http://dx.doi.org/10.1038/s41591-020-01202-8] [PMID: 33442016]
[94]
Costagliola G, Spada E, Consolini R. Age-related differences in the immune response could contribute to determine the spectrum of se-verity of COVID-19. Immun Inflamm Dis 2021; 9(2): 331-9.
[http://dx.doi.org/10.1002/iid3.404] [PMID: 33566457]
[95]
Cohen J. New Chinese vaccine could bolster global arsenal. Science 2021; 374(6563): 12-3.
[http://dx.doi.org/10.1126/science.acx9214] [PMID: 34591635]
[96]
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: A review. Nanotechnol Environ Eng 2021; 6(1): 19.
[http://dx.doi.org/10.1007/s41204-021-00109-0]
[97]
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent progress in nanotechnology for COVID-19 prevention, diagnostics and treatment. Nanomaterials (Basel) 2021; 11(7): 1788.
[http://dx.doi.org/10.3390/nano11071788]
[98]
Skwarek A, Gąsecka A, Jaguszewski M, Szarpak Ł, Dzieciątkowski T, Filipiak K. Nanoparticles: Breakthrough in COVID-19 prevention, diagnosis and treatment. Arch Med Sci 2021.
[http://dx.doi.org/10.5114/aoms/142103]
[99]
Roterman I, Stapor K, Gądek K, et al. Dependence of protein structure on environment: FOD model applied to membrane proteins. Membranes (Basel) 2021; 12(1): 50.
[http://dx.doi.org/10.3390/membranes12010050] [PMID: 35054576]

© 2024 Bentham Science Publishers | Privacy Policy