Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Fabry Disease: Current and Novel Therapeutic Strategies. A Narrative Review

Author(s): Lina Palaiodimou, Panagiotis Kokotis, Christina Zompola, Georgia Papagiannopoulou, Eleni Bakola, Marianna Papadopoulou, Vasiliki Zouvelou, Dimitrios Petras, Charalampos Vlachopoulos and Georgios Tsivgoulis*

Volume 21, Issue 3, 2023

Published on: 20 August, 2022

Page: [440 - 456] Pages: 17

DOI: 10.2174/1570159X20666220601124117

Price: $65

Abstract

Background: Fabry disease (FD) is an inherited lysosomal storage disorder, leading to multisystemic manifestations and causing significant morbidity and mortality.

Objective: The aim of this narrative review is to present the current and novel therapeutic strategies in FD, including symptomatic and specific treatment options.

Methods: A systematic literature search was conducted to identify relevant studies, including completed and ongoing randomized-controlled clinical trials (RCTs), prospective or retrospective cohort studies, case series and case reports that provided clinical data regarding FD treatment.

Results: A multidisciplinary symptomatic treatment is recommended for FD patients, personalized according to disease manifestations and their severity. During the last two decades, FD-specific treatments, including two enzyme-replacement-therapies (agalsidase alfa and agalsidase beta) and chaperone treatment with migalastat have been approved for use and allowed for symptoms’ stabilization or even disease burden reduction. More therapeutic agents are currently under investigation. Substrate reduction therapies, including lucerastat and venglustat, have shown promising results in RCTs and may be used either as monotherapy or as complementary therapy to established enzymereplacement- therapies. More stable enzyme-replacement-therapy molecules that are associated with less adverse events and lower likelihood of neutralizing antibodies formation have also been developed. Ex-vivo and in-vivo gene therapy is being tested in animal models and pilot human clinical trials, with preliminary results showing a favorable safety and efficacy profile.

Conclusion: The therapeutic landscape in FD appears to be actively expanding with more treatment options expected to become available in the near future, allowing for a more personalized approach in FD patients.

Keywords: Fabry disease, enzyme replacement therapy, chaperone, gene therapy, rare neurological diseases, mutation.

Graphical Abstract
[1]
Kint, J.A. The enzyme defect in Fabry’s disease. Nature, 1970, 227(5263), 1173.
[http://dx.doi.org/10.1038/2271173b0] [PMID: 5451124]
[2]
Germain, D.P. Fabry disease. Orphanet J. Rare Dis., 2010, 5(1), 30.
[http://dx.doi.org/10.1186/1750-1172-5-30] [PMID: 21092187]
[3]
Schiffmann, R. Fabry disease. Pharmacol. Ther., 2009, 122(1), 65-77.
[http://dx.doi.org/10.1016/j.pharmthera.2009.01.003] [PMID: 19318041]
[4]
Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1,092 human genomes. Nature, 2012, 491(7422), 56-65.
[http://dx.doi.org/10.1038/nature11632] [PMID: 23128226]
[5]
Laney, D.A.; Fernhoff, P.M. Diagnosis of Fabry disease via analysis of family history. J. Genet. Couns., 2008, 17(1), 79-83.
[http://dx.doi.org/10.1007/s10897-007-9128-x] [PMID: 18172746]
[6]
Scott, C.R.; Elliott, S.; Buroker, N.; Thomas, L.I.; Keutzer, J.; Glass, M.; Gelb, M.H.; Turecek, F. Identification of infants at risk for developing Fabry, Pompe, or mucopolysaccharidosis-I from newborn blood spots by tandem mass spectrometry. J. Pediatr., 2013, 163(2), 498-503.
[http://dx.doi.org/10.1016/j.jpeds.2013.01.031] [PMID: 23465405]
[7]
Inoue, T.; Hattori, K.; Ihara, K.; Ishii, A.; Nakamura, K.; Hirose, S. Newborn screening for Fabry disease in Japan: Prevalence and genotypes of Fabry disease in a pilot study. J. Hum. Genet., 2013, 58(8), 548-552.
[http://dx.doi.org/10.1038/jhg.2013.48] [PMID: 23677059]
[8]
Colon, C.; Ortolano, S.; Melcon-Crespo, C.; Alvarez, J.V.; Lopez-Suarez, O.E.; Couce, M.L.; Fernández-Lorenzo, J.R. Newborn screening for Fabry disease in the north-west of Spain. Eur. J. Pediatr., 2017, 176(8), 1075-1081.
[http://dx.doi.org/10.1007/s00431-017-2950-8] [PMID: 28646478]
[9]
Mechtler, T.P.; Stary, S.; Metz, T.F.; De Jesús, V.R.; Greber-Platzer, S.; Pollak, A.; Herkner, K.R.; Streubel, B.; Kasper, D.C. Neonatal screening for lysosomal storage disorders: Feasibility and incidence from a nationwide study in Austria. Lancet, 2012, 379(9813), 335-341.
[http://dx.doi.org/10.1016/S0140-6736(11)61266-X] [PMID: 22133539]
[10]
Hwu, W.L.; Chien, Y.H.; Lee, N.C.; Chiang, S.C.; Dobrovolny, R.; Huang, A.C.; Yeh, H.Y.; Chao, M.C.; Lin, S.J.; Kitagawa, T.; Desnick, R.J.; Hsu, L.W. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum. Mutat., 2009, 30(10), 1397-1405.
[http://dx.doi.org/10.1002/humu.21074] [PMID: 19621417]
[11]
Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High incidence of later-onset fabry disease revealed by newborn screening. Am. J. Hum. Genet., 2006, 79(1), 31-40.
[http://dx.doi.org/10.1086/504601] [PMID: 16773563]
[12]
Linhart, A.; Paleček, T. Narrative review on Morbus Fabry: Diagnosis and management of cardiac manifestations. Cardiovasc. Diagn. Ther., 2021, 11(2), 650-660.
[http://dx.doi.org/10.21037/cdt-20-593] [PMID: 33968642]
[13]
Felis, A.; Whitlow, M.; Kraus, A.; Warnock, D.G.; Wallace, E. Current and investigational therapeutics for fabry disease. Kidney Int. Rep., 2019, 5(4), 407-413.
[http://dx.doi.org/10.1016/j.ekir.2019.11.013] [PMID: 32274449]
[14]
Lenders, M.; Brand, E. Fabry disease: The current treatment landscape. Drugs, 2021, 81(6), 635-645.
[http://dx.doi.org/10.1007/s40265-021-01486-1] [PMID: 33721270]
[15]
Carubbi, F.; Bonilauri, L. Fabry disease: Raising awareness of the disease among physicians. Intern. Emerg. Med., 2012, 7(S3)(Suppl. 3), S227-S231.
[http://dx.doi.org/10.1007/s11739-012-0821-x] [PMID: 23073862]
[16]
Ortiz, A.; Germain, D.P.; Desnick, R.J.; Politei, J.; Mauer, M.; Burlina, A.; Eng, C.; Hopkin, R.J.; Laney, D.; Linhart, A.; Waldek, S.; Wallace, E.; Weidemann, F.; Wilcox, W.R. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol. Genet. Metab., 2018, 123(4), 416-427.
[http://dx.doi.org/10.1016/j.ymgme.2018.02.014] [PMID: 29530533]
[17]
Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med., 2006, 5(3), 101-117.
[http://dx.doi.org/10.1016/S0899-3467(07)60142-6] [PMID: 19674681]
[18]
Schiffmann, R.; Warnock, D.G.; Banikazemi, M.; Bultas, J.; Linthorst, G.E.; Packman, S.; Sorensen, S.A.; Wilcox, W.R.; Desnick, R.J. Fabry disease: Progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol. Dial. Transplant., 2009, 24(7), 2102-2111.
[http://dx.doi.org/10.1093/ndt/gfp031] [PMID: 19218538]
[19]
Senechal, M.; Germain, D.P. Fabry disease: A functional and anatomical study of cardiac manifestations in 20 hemizygous male patients. Clin. Genet., 2003, 63(1), 46-52.
[http://dx.doi.org/10.1034/j.1399-0004.2003.630107.x] [PMID: 12519371]
[20]
Linhart, A.; Kampmann, C.; Zamorano, J.L.; Sunder-Plassmann, G.; Beck, M.; Mehta, A.; Elliott, P.M. Cardiac manifestations of Anderson-Fabry disease: Results from the international Fabry outcome survey. Eur. Heart J., 2007, 28(10), 1228-1235.
[http://dx.doi.org/10.1093/eurheartj/ehm153] [PMID: 17483538]
[21]
Linhart, A.; Germain, D.P.; Olivotto, I.; Akhtar, M.M.; Anastasakis, A.; Hughes, D.; Namdar, M.; Pieroni, M.; Hagège, A.; Cecchi, F.; Gimeno, J.R.; Limongelli, G.; Elliott, P. An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur. J. Heart Fail., 2020, 22(7), 1076-1096.
[http://dx.doi.org/10.1002/ejhf.1960] [PMID: 32640076]
[22]
Anastasakis, A.; Papatheodorou, E.; Steriotis, A.K. Fabry disease and cardiovascular involvement. Curr. Pharm. Des., 2013, 19(33), 5997-6008.
[http://dx.doi.org/10.2174/13816128113199990353] [PMID: 23448453]
[23]
Hasegawa, H.; Takano, H.; Shindo, S.; Takeda, S.; Funabashi, N.; Nakagawa, K.; Toyozaki, T.; Kuwabara, Y.; Komuro, I. Images in cardiovascular medicine. Transition from left ventricular hypertrophy to massive fibrosis in the cardiac variant of Fabry disease. Circulation, 2006, 113(16), e720-e721.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.584292] [PMID: 16636179]
[24]
Palecek, T.; Dostalova, G.; Kuchynka, P.; Karetova, D.; Bultas, J.; Elleder, M.; Linhart, A. Right ventricular involvement in Fabry disease. J. Am. Soc. Echocardiogr., 2008, 21(11), 1265-1268.
[http://dx.doi.org/10.1016/j.echo.2008.09.002] [PMID: 18835697]
[25]
Kampmann, C.; Linhart, A.; Baehner, F.; Palecek, T.; Wiethoff, C.M.; Miebach, E.; Whybra, C.; Gal, A.; Bultas, J.; Beck, M. Onset and progression of the Anderson-Fabry disease related cardiomyopathy. Int. J. Cardiol., 2008, 130(3), 367-373.
[http://dx.doi.org/10.1016/j.ijcard.2008.03.007] [PMID: 18572264]
[26]
Takenaka, T.; Teraguchi, H.; Yoshida, A.; Taguchi, S.; Ninomiya, K.; Umekita, Y.; Yoshida, H.; Horinouchi, M.; Tabata, K.; Yonezawa, S.; Yoshimitsu, M.; Higuchi, K.; Nakao, S.; Anan, R.; Minagoe, S.; Tei, C. Terminal stage cardiac findings in patients with cardiac Fabry disease: An electrocardiographic, echocardiographic, and autopsy study. J. Cardiol., 2008, 51(1), 50-59.
[http://dx.doi.org/10.1016/j.jjcc.2007.12.001] [PMID: 18522775]
[27]
Ogawa, K.; Sugamata, K.; Funamoto, N.; Abe, T.; Sato, T.; Nagashima, K.; Ohkawa, S. Restricted accumulation of globotriaosylceramide in the hearts of atypical cases of Fabry’s disease. Hum. Pathol., 1990, 21(10), 1067-1073.
[http://dx.doi.org/10.1016/0046-8177(90)90258-7] [PMID: 2120125]
[28]
Nakao, S.; Takenaka, T.; Maeda, M.; Kodama, C.; Tanaka, A.; Tahara, M.; Yoshida, A.; Kuriyama, M.; Hayashibe, H.; Sakuraba, H.; Tanaka, H. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N. Engl. J. Med., 1995, 333(5), 288-293.
[http://dx.doi.org/10.1056/NEJM199508033330504] [PMID: 7596372]
[29]
Kubo, T. Fabry disease and its cardiac involvement. J. Gen. Fam. Med., 2017, 18(5), 225-229.
[http://dx.doi.org/10.1002/jgf2.76] [PMID: 29264031]
[30]
Mehta, A.; Ricci, R.; Widmer, U.; Dehout, F.; Garcia de Lorenzo, A.; Kampmann, C.; Linhart, A.; Sunder-Plassmann, G.; Ries, M.; Beck, M. Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur. J. Clin. Invest., 2004, 34(3), 236-242.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01309.x] [PMID: 15025684]
[31]
Wanner, C.; Oliveira, J.P.; Ortiz, A.; Mauer, M.; Germain, D.P.; Linthorst, G.E.; Serra, A.L.; Maródi, L.; Mignani, R.; Cianciaruso, B.; Vujkovac, B.; Lemay, R.; Beitner-Johnson, D.; Waldek, S.; Warnock, D.G. Prognostic indicators of renal disease progression in adults with Fabry disease: Natural history data from the Fabry Registry. Clin. J. Am. Soc. Nephrol., 2010, 5(12), 2220-2228.
[http://dx.doi.org/10.2215/CJN.04340510] [PMID: 20813854]
[32]
Fervenza, F.C.; Torra, R.; Lager, D.J. Fabry disease: An underrecognized cause of proteinuria. Kidney Int., 2008, 73(10), 1193-1199.
[http://dx.doi.org/10.1038/sj.ki.5002677] [PMID: 18033242]
[33]
Tsakiris, D.; Simpson, H.K.; Jones, E.H.; Briggs, J.D.; Elinder, C.G.; Mendel, S.; Piccoli, G.; dos Santos, J.P.; Tognoni, G.; Vanrenterghem, Y.; Valderrabano, F. Report on management of renale failure in Europe, XXVI, 1995. Rare diseases in renal replacement therapy in the ERA-EDTA Registry. Nephrol. Dial. Transplant., 1996, 11(Suppl. 7), 4-20.
[http://dx.doi.org/10.1093/ndt/11.supp7.4] [PMID: 9067983]
[34]
Thadhani, R.; Wolf, M.; West, M.L.; Tonelli, M.; Ruthazer, R.; Pastores, G.M.; Obrador, G.T. Patients with Fabry disease on dialysis in the United States. Kidney Int., 2002, 61(1), 249-255.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00097.x] [PMID: 11786107]
[35]
Ranieri, M.; Bedini, G.; Parati, E.A.; Bersano, A. Fabry disease: Recognition, diagnosis, and treatment of neurological features. Curr. Treat. Options Neurol., 2016, 18(7), 33.
[http://dx.doi.org/10.1007/s11940-016-0414-5] [PMID: 27225543]
[36]
Mitsias, P.; Levine, S.R. Cerebrovascular complications of Fabry’s disease. Ann. Neurol., 1996, 40(1), 8-17.
[http://dx.doi.org/10.1002/ana.410400105] [PMID: 8687196]
[37]
Mendez, M.F.; Stanley, T.M.; Medel, N.M.; Li, Z.; Tedesco, D.T. The vascular dementia of Fabry’s disease. Dement. Geriatr. Cogn. Disord., 1997, 8(4), 252-257.
[http://dx.doi.org/10.1159/000106640] [PMID: 9213072]
[38]
Sims, K.; Politei, J.; Banikazemi, M.; Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: Natural history data from the Fabry Registry. Stroke, 2009, 40(3), 788-794.
[http://dx.doi.org/10.1161/STROKEAHA.108.526293] [PMID: 19150871]
[39]
Ortiz, J.F.; Parwani, J.; Millhouse, P.W.; Eissa-Garcés, A.; Hassen, G.; Cuenca, V.D.; Alzamora, I.M.; Khurana, M.; Herrera-Bucheli, D.; Altamimi, A.; Atoot, A.; Cueva, W. Prevalence of Fabry disease in patients with cryptogenic strokes: A systematic review. Cureus, 2021, 13(11)e19358
[http://dx.doi.org/10.7759/cureus.19358] [PMID: 34925972]
[40]
Rolfs, A.; Böttcher, T.; Zschiesche, M.; Morris, P.; Winchester, B.; Bauer, P.; Walter, U.; Mix, E.; Löhr, M.; Harzer, K.; Strauss, U.; Pahnke, J.; Grossmann, A.; Benecke, R. Prevalence of Fabry disease in patients with cryptogenic stroke: A prospective study. Lancet, 2005, 366(9499), 1794-1796.
[http://dx.doi.org/10.1016/S0140-6736(05)67635-0] [PMID: 16298216]
[41]
Ellaway, C. Paediatric Fabry disease. Transl. Pediatr., 2016, 5(1), 37-42.
[PMID: 26835405]
[42]
Ries, M.; Gupta, S.; Moore, D.F.; Sachdev, V.; Quirk, J.M.; Murray, G.J.; Rosing, D.R.; Robinson, C.; Schaefer, E.; Gal, A.; Dambrosia, J.M.; Garman, S.C.; Brady, R.O.; Schiffmann, R. Pediatric Fabry disease. Pediatrics, 2005, 115(3), e344-e355.
[http://dx.doi.org/10.1542/peds.2004-1678] [PMID: 15713906]
[43]
Ries, M.; Ramaswami, U.; Parini, R.; Lindblad, B.; Whybra, C.; Willers, I.; Gal, A.; Beck, M. The early clinical phenotype of Fabry disease: A study on 35 European children and adolescents. Eur. J. Pediatr., 2003, 162(11), 767-772.
[http://dx.doi.org/10.1007/s00431-003-1299-3] [PMID: 14505049]
[44]
Dütsch, M.; Marthol, H.; Stemper, B.; Brys, M.; Haendl, T.; Hilz, M.J. Small fiber dysfunction predominates in Fabry neuropathy. J. Clin. Neurophysiol., 2002, 19(6), 575-586.
[45]
Luciano, C.A.; Russell, J.W.; Banerjee, T.K.; Quirk, J.M.; Scott, L.J.; Dambrosia, J.M.; Barton, N.W.; Schiffmann, R. Physiological characterization of neuropathy in Fabry’s disease. Muscle Nerve, 2002, 26(5), 622-629.
[http://dx.doi.org/10.1002/mus.10236] [PMID: 12402283]
[46]
Vadher, P.; Agarwal, P.; Mistry, A.; Gajjar, K.; Bansal, N.; Neazee, S. Angiokeratoma corporis diffusum: An uncommon case with suspected anderson fabry disease. Indian Dermatol. Online J., 2020, 11(2), 212-215.
[http://dx.doi.org/10.4103/idoj.IDOJ_136_19] [PMID: 32477981]
[47]
Möhrenschlager, M.; Braun-Falco, M.; Ring, J.; Abeck, D. Fabry disease: Recognition and management of cutaneous manifestations. Am. J. Clin. Dermatol., 2003, 4(3), 189-196.
[http://dx.doi.org/10.2165/00128071-200304030-00005] [PMID: 12627994]
[48]
Larralde, M.; Boggio, P.; Amartino, H.; Chamoles, N. Fabry disease: A study of 6 hemizygous men and 5 heterozygous women with emphasis on dermatologic manifestations. Arch. Dermatol., 2004, 140(12), 1440-1446.
[http://dx.doi.org/10.1001/archderm.140.12.1440] [PMID: 15611419]
[49]
Anderson, W. A case of angeio-keratoma., 1898, 10(4), 113-117.
[50]
Cox-Brinkman, J.; Vedder, A.; Hollak, C.; Richfield, L.; Mehta, A.; Orteu, K.; Wijburg, F.; Hammond, P. Three-dimensional face shape in Fabry disease. Eur. J. Hum. Genet., 2007, 15(5), 535-542.
[http://dx.doi.org/10.1038/sj.ejhg.5201798] [PMID: 17327876]
[51]
Ries, M.; Moore, D.F.; Robinson, C.J.; Tifft, C.J.; Rosenbaum, K.N.; Brady, R.O.; Schiffmann, R. Krasnewich, D Quantitative dysmorphology assessment in Fabry disease. Genet. Med., 2006, 8(2), 96-101.
[52]
Sodi, A.; Ioannidis, A.S.; Mehta, A.; Davey, C.; Beck, M.; Pitz, S. Ocular manifestations of Fabry’s disease: Data from the Fabry Outcome Survey. Br. J. Ophthalmol., 2007, 91(2), 210-214.
[http://dx.doi.org/10.1136/bjo.2006.100602] [PMID: 16973664]
[53]
Moiseev, S.V.; Ismailova, D.S.; Moiseev, A.S.; Bulanov, N.M.; Karovaikina, E.A.; Nosova, N.R.; Fomin, V.V. Cornea verticillata in Fabry disease. Ter. Arkh., 2018, 90(12), 17-22.
[http://dx.doi.org/10.26442/00403660.2018.12.000003] [PMID: 30701828]
[54]
Spaeth, G.L.; Frost, P. Fabry’s disease. Its ocular manifestations. Arch. Ophthalmol., 1965, 74(6), 760-769.
[http://dx.doi.org/10.1001/archopht.1965.00970040762005]
[55]
Conti, G.; Sergi, B. Auditory and vestibular findings in Fabry disease: A study of hemizygous males and heterozygous females. Acta paediatrica, 2003, 92(443), 33-37.
[56]
Germain, D.P.; Avan, P.; Chassaing, A.; Bonfils, P. Patients affected with Fabry disease have an increased incidence of progressive hearing loss and sudden deafness: An investigation of twenty-two hemizygous male patients. BMC Med. Genet., 2002, 3(1), 10.
[http://dx.doi.org/10.1186/1471-2350-3-10] [PMID: 12377100]
[57]
Magage, S.; Lubanda, J.C.; Susa, Z.; Bultas, J.; Karetová, D.; Dobrovolný, R.; Hrebícek, M.; Germain, D.P.; Linhart, A. Natural history of the respiratory involvement in Anderson-Fabry disease. J. Inherit. Metab. Dis., 2007, 30(5), 790-799.
[http://dx.doi.org/10.1007/s10545-007-0616-9] [PMID: 17619837]
[58]
Rosenberg, D.M.; Ferrans, V.J.; Fulmer, J.D.; Line, B.R.; Barranger, J.A.; Brady, R.O.; Crystal, R.G. Chronic airflow obstruction in Fabry’s disease. Am. J. Med., 1980, 68(6), 898-905.
[http://dx.doi.org/10.1016/0002-9343(80)90224-7] [PMID: 6247911]
[59]
Mersebach, H.; Johansson, J.O.; Rasmussen, A.K.; Bengtsson, B.A.; Rosenberg, K.; Hasholt, L.; Sørensen, S.A.; Sørensen, S.S.; Feldt-Rasmussen, U. Osteopenia: A common aspect of Fabry disease. Predictors of bone mineral density. Genet. Med., 2007, 9(12), 812-818.
[60]
Kleinert, J.; Dehout, F.; Schwarting, A.; de Lorenzo, A.G.; Ricci, R.; Kampmann, C.; Beck, M.; Ramaswami, U.; Linhart, A.; Gal, A.; Houge, G.; Widmer, U.; Mehta, A.; Sunder-Plassmann, G. Anemia is a new complication in Fabry disease: Data from the fabry outcome survey. Kidney Int., 2005, 67(5), 1955-1960.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00294.x] [PMID: 15840043]
[61]
Hauser, A.C.; Gessl, A.; Lorenz, M.; Voigtländer, T.; Födinger, M.; Sunder-Plassmann, G. High prevalence of subclinical hypothyroidism in patients with Anderson-Fabry disease. J. Inherit. Metab. Dis., 2005, 28(5), 715-722.
[http://dx.doi.org/10.1007/s10545-005-0003-3] [PMID: 16151903]
[62]
Papaxanthos-Roche, A.; Deminière, C.; Bauduer, F.; Hocké, C.; Mayer, G.; Lacombe, D. Azoospermia as a new feature of Fabry disease. Fertil. Steril., 2007, 88(1), 212.e15-212.e18.
[http://dx.doi.org/10.1016/j.fertnstert.2006.11.036] [PMID: 17261284]
[63]
Foda, M.M.; Mahmood, K.; Rasuli, P.; Dunlap, H.; Kiruluta, G.; Schillinger, J.F. High-flow priapism associated with Fabry’s disease in a child: A case report and review of the literature. Urology, 1996, 48(6), 949-952.
[http://dx.doi.org/10.1016/S0090-4295(96)00320-2] [PMID: 8973687]
[64]
Mayes, J.S.; Scheerer, J.B.; Sifers, R.N.; Donaldson, M.L. Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin. Chim. Acta, 1981, 112(2), 247-251.
[65]
Linthorst, G.E.; Vedder, A.C.; Aerts, J.M.; Hollak, C.E. Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clinica Chimica Acta, 2005, 353(1-2), 201-203.
[66]
Stiles, A.R.; Zhang, H.; Dai, J.; McCaw, P.; Beasley, J.; Rehder, C.; Koeberl, D.D.; McDonald, M.; Bali, D.S.; Young, S.P. A comprehensive testing algorithm for the diagnosis of Fabry disease in males and females. Mol. Genet. Metab., 2020, 130(3), 209-214.
[http://dx.doi.org/10.1016/j.ymgme.2020.04.006] [PMID: 32418857]
[67]
Germain, D.P.; Benistan, K.; Angelova, L. X-linked inheritance and its implication in the diagnosis and management of female patients in Fabry disease. Rev. Med. Interne, 2010, 31(Suppl. 2), S209-S213.
[http://dx.doi.org/10.1016/S0248-8663(10)70013-8] [PMID: 21211665]
[68]
Vardarli, I.; Rischpler, C.; Herrmann, K.; Weidemann, F. Diagnosis and screening of patients with Fabry disease. Ther. Clin. Risk Manag., 2020, 16, 551-558.
[http://dx.doi.org/10.2147/TCRM.S247814] [PMID: 32606714]
[69]
Nowak, A.; Mechtler, T.P.; Desnick, R.J.; Kasper, D.C. Plasma LysoGb3: A useful biomarker for the diagnosis and treatment of Fabry disease heterozygotes. Mol. Genet. Metab., 2017, 120(1-2), 57-61.
[http://dx.doi.org/10.1016/j.ymgme.2016.10.006] [PMID: 27773586]
[70]
Smid, B.E.; van der Tol, L.; Biegstraaten, M.; Linthorst, G.E.; Hollak, C.E.; Poorthuis, B.J. Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease. J. Med. Genet., 2015, 52(4), 262-268.
[http://dx.doi.org/10.1136/jmedgenet-2014-102872] [PMID: 25596309]
[71]
Tschöpe, C.; Dominguez, F.; Canaan-Kühl, S.; Blaschke, D.; Kühl, U.; Pieske, B.; Haverkamp, W. Endomyocardial biopsy in Anderson-Fabry disease: The key in uncertain cases. Int. J. Cardiol., 2015, 190, 284-286.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.130] [PMID: 25932808]
[72]
Navarro, C.; Teijeira, S.; Dominguez, C.; Fernandez, J.M.; Rivas, E.; Fachal, C.; Barrera, S.; Rodriguez, C.; Iranzo, P. Fabry disease: An ultrastructural comparative study of skin in hemizygous and heterozygous patients. Acta Neuropathol., 2006, 111(2), 178-185.
[http://dx.doi.org/10.1007/s00401-005-0026-8] [PMID: 16463201]
[73]
Laney, D.A.; Bennett, R.L.; Clarke, V.; Fox, A.; Hopkin, R.J.; Johnson, J.; O’Rourke, E.; Sims, K.; Walter, G. Fabry disease practice guidelines: Recommendations of the National Society of Genetic Counselors. J. Genet. Couns., 2013, 22(5), 555-564.
[http://dx.doi.org/10.1007/s10897-013-9613-3] [PMID: 23860966]
[74]
Gomes, I.; Nora, D.B.; Becker, J.; Ehlers, J.A.; Schwartz, I.V.; Giugliani, R.; Ashton-Prolla, P.; Jardim, L. Nerve conduction studies, electromyography and sympathetic skin response in Fabry’s disease. J. Neurol. Sci., 2003, 214(1-2), 21-25.
[http://dx.doi.org/10.1016/S0022-510X(03)00172-2] [PMID: 12972384]
[75]
Üçeyler, N.; He, L.; Schönfeld, D.; Kahn, A.K.; Reiners, K.; Hilz, M.J.; Breunig, F.; Sommer, C. Small fibers in Fabry disease: Baseline and follow-up data under enzyme replacement therapy. J. Peripher. Nerv. Syst., 2011, 16(4), 304-314.
[http://dx.doi.org/10.1111/j.1529-8027.2011.00365.x] [PMID: 22176145]
[76]
Cocozza, S.; Russo, C.; Pontillo, G.; Pisani, A.; Brunetti, A. Neuroimaging in Fabry disease: Current knowledge and future directions. Insights Imaging, 2018, 9(6), 1077-1088.
[http://dx.doi.org/10.1007/s13244-018-0664-8] [PMID: 30390274]
[77]
Glass, R.B.; Astrin, K.H.; Norton, K.I.; Parsons, R.; Eng, C.M.; Banikazemi, M.; Desnick, R.J. Fabry disease: Renal sonographic and magnetic resonance imaging findings in affected males and carrier females with the classic and cardiac variant phenotypes. J. Comput. Assist. Tomogr., 2004, 28(2), 158-168.
[http://dx.doi.org/10.1097/00004728-200403000-00002] [PMID: 15091117]
[78]
Imbriaco, M.; Nappi, C.; Ponsiglione, A.; Pisani, A.; Dell’Aversana, S.; Nicolai, E.; Spinelli, L.; Aiello, M.; Diomiaiuti, C.T.; Riccio, E.; Esposito, R.; Galderisi, M.; Losi, M.; Greiser, A.; Chow, K.; Cuocolo, A. Hybrid positron emission tomography-magnetic resonance imaging for assessing different stages of cardiac impairment in patients with Anderson-Fabry disease: AFFINITY study group. Eur. Heart J. Cardiovasc. Imaging, 2019, 20(9), 1004-1011.
[http://dx.doi.org/10.1093/ehjci/jez039] [PMID: 30879055]
[79]
Linhart, A.; Elliott, P.M. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart, 2007, 93(4), 528-535.
[http://dx.doi.org/10.1136/hrt.2005.063818] [PMID: 17401074]
[80]
Ikeda, K.; Hirayama, M.; Hirota, Y.; Asa, E.; Seki, J.; Tanaka, Y. Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes. Biochem. Biophys. Res. Commun., 2008, 377(1), 268-274.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.121] [PMID: 18840403]
[81]
Cantor, W.J.; Daly, P.; Iwanochko, M.; Clarke, J.T.; Cusimano, R.J.; Butany, J. Cardiac transplantation for Fabry’s disease. Can. J. Cardiol., 1998, 14(1), 81-84.
[PMID: 9487277]
[82]
Mehra, M.R.; Canter, C.E.; Hannan, M.M.; Semigran, M.J.; Uber, P.A.; Baran, D.A.; Danziger-Isakov, L.; Kirklin, J.K.; Kirk, R.; Kushwaha, S.S.; Lund, L.H.; Potena, L.; Ross, H.J.; Taylor, D.O.; Verschuuren, E.A.M.; Zuckermann, A. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J. Heart Lung Transplant., 2016, 35(1), 1-23.
[83]
Karras, A.; De Lentdecker, P.; Delahousse, M.; Debauchez, M.; Tricot, L.; Pastural, M.; Bruneval, P.; Zemoura, L.; Duong Van Huyen, J.P.; Lidove, O. Combined heart and kidney transplantation in a patient with Fabry disease in the enzyme replacement therapy era. Am. J. Transplant., 2008, 8(6), 1345-1348.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02245.x] [PMID: 18522550]
[84]
Rajagopalan, N.; Dennis, D.R.; O’Connor, W. Successful combined heart and kidney transplantation in patient with Fabry’s disease: A case report. Transplant. Proc., 2019, 51(9), 3171-3173.
[http://dx.doi.org/10.1016/j.transproceed.2019.03.032] [PMID: 31371217]
[85]
Tran Ba, S.N.; Lidove, O.; Dorent, R.; Debauchez, M.; Nataf, P.; Delahousse, M.; Karras, A.; Azeroual, L.; De Lentdecker, P.; Chauveheid, M.P.; Sené, T.; Ziza, J.M. Combined heart and kidney transplantation in Fabry’s disease: Long-term outcomes in two patients. Rev. Med. Interne, 2017, 38(2), 137-142.
[http://dx.doi.org/10.1016/j.revmed.2016.03.008] [PMID: 27241078]
[86]
Verocai, F.; Clarke, J.T.; Iwanochko, R.M. Case report: Long-term outcome post-heart transplantation in a woman with Fabry’s disease. J. Inherit. Metab. Dis., 2010, 33(S3)(Suppl. 3), S385-S387.
[http://dx.doi.org/10.1007/s10545-010-9194-3] [PMID: 20852936]
[87]
Di Nora, C.; Livi, U. Heart transplantation in cardiac storage diseases: Data on Fabry disease and cardiac amyloidosis. Curr. Opin. Organ Transplant., 2020, 25(3), 211-217.
[http://dx.doi.org/10.1097/MOT.0000000000000756] [PMID: 32304420]
[88]
Azevedo, O.; Cordeiro, F.; Gago, M.F.; Miltenberger-Miltenyi, G.; Ferreira, C.; Sousa, N.; Cunha, D. Fabry disease and the heart: A comprehensive review. Int. J. Mol. Sci., 2021, 22(9), 4434.
[http://dx.doi.org/10.3390/ijms22094434] [PMID: 33922740]
[89]
Warnock, D.G.; Thomas, C.P.; Vujkovac, B.; Campbell, R.C.; Charrow, J.; Laney, D.A.; Jackson, L.L.; Wilcox, W.R.; Wanner, C. Antiproteinuric therapy and Fabry nephropathy: Factors associated with preserved kidney function during agalsidase-beta therapy. J. Med. Genet., 2015, 52(12), 860-866.
[http://dx.doi.org/10.1136/jmedgenet-2015-103471] [PMID: 26490103]
[90]
Wanner, C.; Breunig, F. Fabry nephropathy and the case for adjunctive renal therapy. J. Am. Soc. Nephrol., 2007, 18(9), 2426-2428.
[http://dx.doi.org/10.1681/ASN.2007070783] [PMID: 17699807]
[91]
Tahir, H.; Jackson, L.L.; Warnock, D.G. Antiproteinuric Therapy and Fabry Nephropathy: Sustained Reduction of Proteinuria in Patients Receiving Enzyme Replacement Therapy with Agalsidase-β. 2007, 18(9), 2609-2617.
[92]
Jain, G.; Warnock, D.G. Blood pressure, proteinuria and nephropathy in Fabry disease. Nephron Clin. Pract., 2011, 118(1), c43-c48.
[http://dx.doi.org/10.1159/000320903] [PMID: 21071972]
[93]
Waldek, S.; Feriozzi, S. Fabry nephropathy: A review - how can we optimize the management of Fabry nephropathy? BMC Nephrol., 2014, 15(1), 72-72.
[http://dx.doi.org/10.1186/1471-2369-15-72] [PMID: 24886109]
[94]
Mende, C.W. Chronic kidney disease and SGLT2 inhibitors: A review of the evolving treatment landscape. Adv. Ther., 2022, 39(1), 148-164.
[http://dx.doi.org/10.1007/s12325-021-01994-2] [PMID: 34846711]
[95]
Hundertmark, M.J.; Agbaje, O.F.; Coleman, R.; George, J.T.; Grempler, R.; Holman, R.R.; Lamlum, H.; Lee, J.; Milton, J.E.; Niessen, H.G.; Rider, O.; Rodgers, C.T.; Valkovič, L.; Wicks, E.; Mahmod, M.; Neubauer, S. Design and rationale of the EMPA-VISION trial: Investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Heart Fail., 2021, 8(4), 2580-2590.
[http://dx.doi.org/10.1002/ehf2.13406] [PMID: 33960149]
[96]
Mignani, R.; Feriozzi, S.; Schaefer, R.M.; Breunig, F.; Oliveira, J.P.; Ruggenenti, P.; Sunder-Plassmann, G. Dialysis and transplantation in Fabry disease: Indications for enzyme replacement therapy. Clin. J. Am. Soc. Nephrol., 2010, 5(2), 379-385.
[http://dx.doi.org/10.2215/CJN.05570809] [PMID: 20056752]
[97]
Cybulla, M.; Kurschat, C.; West, M.; Nicholls, K.; Torras, J.; Sunder-Plassmann, G.; Feriozzi, S. Kidney transplantation and enzyme replacement therapy in patients with Fabry disease. J. Nephrol., 2013, 26(4), 645-651.
[http://dx.doi.org/10.5301/jn.5000214] [PMID: 23023720]
[98]
Shah, T.; Gill, J.; Malhotra, N.; Takemoto, S.K.; Bunnapradist, S. Kidney transplant outcomes in patients with Fabry disease. Transplantation, 2009, 87(2), 280-285.
[http://dx.doi.org/10.1097/TP.0b013e318191a842] [PMID: 19155985]
[99]
Suarez, M.L.G.; Thongprayoon, C.; Hansrivijit, P.; Medaura, J.; Vaitla, P.; Mao, M.A.; Bathini, T.; Boonpheng, B.; Kanduri, S.R.; Kovvuru, K.; Basu, A.; Cheungpasitporn, W. Outcomes of kidney transplantation in Fabry disease: A meta-analysis. Diseases, 2020, 9(1), 2.
[http://dx.doi.org/10.3390/diseases9010002] [PMID: 33374610]
[100]
Capelli, I.; Aiello, V.; Gasperoni, L.; Comai, G.; Corradetti, V.; Ravaioli, M.; Biagini, E.; Graziano, C.; La Manna, G. Kidney transplant in Fabry disease: A revision of the literature. Medicina (Kaunas), 2020, 56(6), 284.
[http://dx.doi.org/10.3390/medicina56060284] [PMID: 32532136]
[101]
Politei, J.M.; Bouhassira, D.; Germain, D.P.; Goizet, C.; Guerrero-Sola, A.; Hilz, M.J.; Hutton, E.J.; Karaa, A.; Liguori, R.; Üçeyler, N.; Zeltzer, L.K.; Burlina, A. Pain in Fabry disease: Practical recommendations for diagnosis and treatment. CNS Neurosci. Ther., 2016, 22(7), 568-576.
[http://dx.doi.org/10.1111/cns.12542] [PMID: 27297686]
[102]
Sommer, C.; Uçeyler, N.; Duning, T.; Arning, K.; Baron, R.; Brand, E.; Canaan-Kühl, S.; Hilz, M.; Naleschinski, D.; Wanner, C.; Weidemann, F. Pain therapy for Fabry’s disease. Internist (Berl.), 2013, 54(1), 121-122, 124-130.
[http://dx.doi.org/10.1007/s00108-012-3204-5] [PMID: 23250563]
[103]
Schuller, Y.; Linthorst, G.E.; Hollak, C.E.M.; Van Schaik, I.N.; Biegstraaten, M. Pain management strategies for neuropathic pain in Fabry disease--a systematic review. BMC Neurol., 2016, 16(1), 25-25.
[http://dx.doi.org/10.1186/s12883-016-0549-8] [PMID: 26911544]
[104]
Eng, C.M.; Germain, D.P.; Banikazemi, M.; Warnock, D.G.; Wanner, C.; Hopkin, R.J.; Bultas, J.; Lee, P.; Sims, K.; Brodie, S.E.; Pastores, G.M.; Strotmann, J.M. Wilcox, WR Fabry disease: Guidelines for the evaluation and management of multi-organ system involvement. Genet. Med., 2006, 8(9), 539-548.
[105]
Theodorou, A.; Palaiodimou, L.; Kokotis, P.; Papadopoulou, M.; Fradelos, S.; Voudouri, A.; Zompola, C.; Magoufis, G.; Arvaniti, C.; Bonakis, A.; Tsivgoulis, G. Teaching NeuroImages: An uncommon cause of carotid artery dissection: Fabry disease. Neurology, 2020, 95(19), e2711-e2713.
[http://dx.doi.org/10.1212/WNL.0000000000010650] [PMID: 32817187]
[106]
Kargiotis, O.; Psychogios, K.; Safouris, A.; Kalyvas, P.; Magoufis, G.; Stamboulis, E.; Tsivgoulis, G. Intravenous thrombolysis for acute ischemic stroke in Fabry disease. Neurologist, 2019, 24(5), 146-149.
[http://dx.doi.org/10.1097/NRL.0000000000000241] [PMID: 31478997]
[107]
Zenone, T.; Chan, V. Young woman with recurrent ischemic strokes diagnosed as Fabry disease: Lessons learned from a case report. Clin. Neurol. Neurosurg., 2011, 113(7), 586-588.
[http://dx.doi.org/10.1016/j.clineuro.2011.02.012] [PMID: 21420783]
[108]
Saarinen, J.T.; Sillanpää, N.; Kantola, I. A male Fabry disease patient treated with intravenous thrombolysis for acute ischemic stroke. J. Clin. Neurosci., 2015, 22(2), 423-425.
[109]
Replagal (agalsidase alfa). European Public Assessment Report (EPAR). Available from: http://www.emea.europa.eu/humandocs/Humans/EPAR/replagal/replagal.htm (Accessed on Mar 22, 2022).
[110]
Fabrazyme (agalsidase beta); European Public Assessment Report (EPAR). Available from: http://www.emea.europa.eu/humandocs/Humans/EPAR/fabrazyme/fabrazyme.htm (Accessed on Mar 22, 2022).
[111]
Pastores, G.M. Agalsidase alfa (Replagal) in the treatment of Anderson-Fabry disease. Biologics, 2007, 1(3), 291-300.
[PMID: 19707338]
[112]
Schiffmann, R.; Murray, G.J.; Treco, D.; Daniel, P.; Sellos-Moura, M.; Myers, M.; Quirk, J.M.; Zirzow, G.C.; Borowski, M.; Loveday, K.; Anderson, T.; Gillespie, F.; Oliver, K.L.; Jeffries, N.O.; Doo, E.; Liang, T.J.; Kreps, C.; Gunter, K.; Frei, K.; Crutchfield, K.; Selden, R.F.; Brady, R.O. Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc. Natl. Acad. Sci. USA, 2000, 97(1), 365-370.
[http://dx.doi.org/10.1073/pnas.97.1.365] [PMID: 10618424]
[113]
Schiffmann, R.; Kopp, J.B.; Austin, H.A., III; Sabnis, S.; Moore, D.F.; Weibel, T.; Balow, J.E.; Brady, R.O. Enzyme replacement therapy in Fabry disease: A randomized controlled trial. JAMA, 2001, 285(21), 2743-2749.
[http://dx.doi.org/10.1001/jama.285.21.2743] [PMID: 11386930]
[114]
Hughes, D.A.; Elliott, P.M.; Shah, J.; Zuckerman, J.; Coghlan, G.; Brookes, J.; Mehta, A.B. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: A randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart, 2008, 94(2), 153-158.
[http://dx.doi.org/10.1136/hrt.2006.104026] [PMID: 17483124]
[115]
Schiffmann, R.; Pastores, G.M.; Lien, Y-H.H.; Castaneda, V.; Chang, P.; Martin, R.; Wijatyk, A. Agalsidase alfa in pediatric patients with Fabry disease: A 6.5-year open-label follow-up study. Orphanet J. Rare Dis., 2014, 9(1), 169-169.
[http://dx.doi.org/10.1186/s13023-014-0169-6] [PMID: 25425121]
[116]
Schiffmann, R.; Ries, M.; Timmons, M.; Flaherty, J.T.; Brady, R.O. Long-term therapy with agalsidase alfa for Fabry disease: Safety and effects on renal function in a home infusion setting. Nephrol. Dial. Transplant., 2006, 21(2), 345-354.
[http://dx.doi.org/10.1093/ndt/gfi152] [PMID: 16204287]
[117]
Feriozzi, S.; Schwarting, A.; Sunder-Plassmann, G.; West, M.; Cybulla, M. Agalsidase alfa slows the decline in renal function in patients with Fabry disease. Am. J. Nephrol., 2009, 29(5), 353-361.
[http://dx.doi.org/10.1159/000168482] [PMID: 18974635]
[118]
Feriozzi, S.; Torras, J.; Cybulla, M.; Nicholls, K.; Sunder-Plassmann, G.; West, M.; Investigators, F.O.S. The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin. J. Am. Soc. Nephrol., 2012, 7(1), 60-69.
[http://dx.doi.org/10.2215/CJN.03130411] [PMID: 22246281]
[119]
Hughes, D.A.; Barba Romero, M.Á.; Hollak, C.E.; Giugliani, R.; Deegan, P.B. Response of women with Fabry disease to enzyme replacement therapy: Comparison with men, using data from FOS--the Fabry Outcome Survey. Mol. Genet. Metab., 2011, 103(3), 207-214.
[http://dx.doi.org/10.1016/j.ymgme.2011.03.022] [PMID: 21543245]
[120]
Arends, M.; Biegstraaten, M.; Hughes, D.A.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Vaz, F.M.; van Kuilenburg, A.B.P.; Wanner, C.; Hollak, C.E.M. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors. PLoS One, 2017, 12(8)e0182379
[http://dx.doi.org/10.1371/journal.pone.0182379] [PMID: 28763515]
[121]
Weidemann, F.; Niemann, M.; Breunig, F.; Herrmann, S.; Beer, M.; Störk, S.; Voelker, W.; Ertl, G.; Wanner, C.; Strotmann, J. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: Evidence for a better outcome with early treatment. Circulation, 2009, 119(4), 524-529.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.794529] [PMID: 19153271]
[122]
Arends, M.; Wijburg, F.A.; Wanner, C.; Vaz, F.M.; van Kuilenburg, A.B.P.; Hughes, D.A.; Biegstraaten, M.; Mehta, A.; Hollak, C.E.M.; Langeveld, M. Favourable effect of early versus late start of enzyme replacement therapy on plasma globotriaosylsphingosine levels in men with classical Fabry disease. Mol. Genet. Metab., 2017, 121(2), 157-161.
[http://dx.doi.org/10.1016/j.ymgme.2017.05.001] [PMID: 28495078]
[123]
Biegstraaten, M.; Arngrímsson, R.; Barbey, F.; Boks, L.; Cecchi, F.; Deegan, P.B.; Feldt-Rasmussen, U.; Geberhiwot, T.; Germain, D.P.; Hendriksz, C.; Hughes, D.A.; Kantola, I.; Karabul, N.; Lavery, C.; Linthorst, G.E.; Mehta, A.; van de Mheen, E.; Oliveira, J.P.; Parini, R.; Ramaswami, U.; Rudnicki, M.; Serra, A.; Sommer, C.; Sunder-Plassmann, G.; Svarstad, E.; Sweeb, A.; Terryn, W.; Tylki-Szymanska, A.; Tøndel, C.; Vujkovac, B.; Weidemann, F.; Wijburg, F.A.; Woolfson, P.; Hollak, C.E.M. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: The European Fabry Working Group consensus document. Orphanet J. Rare Dis., 2015, 10(1), 36-36.
[http://dx.doi.org/10.1186/s13023-015-0253-6] [PMID: 25885911]
[124]
Kritzer, A.; Siddharth, A.; Leestma, K.; Bodamer, O. Early initiation of enzyme replacement therapy in classical Fabry disease normalizes biomarkers in clinically asymptomatic pediatric patients. Mol. Genet. Metab. Rep., 2019, 21, 100530-100530.
[http://dx.doi.org/10.1016/j.ymgmr.2019.100530] [PMID: 31660293]
[125]
Germain, D.P.; Fouilhoux, A.; Decramer, S.; Tardieu, M.; Pillet, P.; Fila, M.; Rivera, S.; Deschênes, G.; Lacombe, D. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin. Genet., 2019, 96(2), 107-117.
[http://dx.doi.org/10.1111/cge.13546] [PMID: 30941742]
[126]
ClinicalTrials.gov. A phase II comparability study between Replagal ® produced from agalsidase alfa manufactured by 2 different processes in adult male patients with fabry disease. NCT: NCT01304277, Available from: https://clinicaltrials.gov/ct2/show/study/NCT01304277 Accessed on Mar 22, 2022.
[127]
Khan, A.; Sirrs, S.M.; Bichet, D.G.; Morel, C.F.; Tocoian, A.; Lan, L.; West, M.L. The safety of agalsidase alfa enzyme replacement therapy in Canadian patients with fabry disease following implementation of a bioreactor process. Drugs R D., 2021, 21(4), 385-397.
[http://dx.doi.org/10.1007/s40268-021-00361-4] [PMID: 34542871]
[128]
Goker-Alpan, O.; Longo, N.; McDonald, M.; Shankar, S.P.; Schiffmann, R.; Chang, P.; Shen, Y.; Pano, A. An open-label clinical trial of agalsidase alfa enzyme replacement therapy in children with Fabry disease who are naïve to enzyme replacement therapy. Drug Des. Devel. Ther., 2016, 10, 1771-1781.
[http://dx.doi.org/10.2147/DDDT.S102761] [PMID: 27307708]
[129]
Keating, G.M.; Simpson, D. Agalsidase Beta: A review of its use in the management of Fabry disease. Drugs, 2007, 67(3), 435-455.
[http://dx.doi.org/10.2165/00003495-200767030-00007] [PMID: 17335299]
[130]
Matsuura, F.; Ohta, M.; Ioannou, Y.A.; Desnick, R.J. Human alpha-galactosidase A: Characterization of the N-linked oligosaccharides on the intracellular and secreted glycoforms overexpressed by Chinese hamster ovary cells. Glycobiology, 1998, 8(4), 329-339.
[http://dx.doi.org/10.1093/glycob/8.4.329] [PMID: 9499380]
[131]
Eng, C.M.; Banikazemi, M.; Gordon, R.E.; Goldman, M.; Phelps, R.; Kim, L.; Gass, A.; Winston, J.; Dikman, S.; Fallon, J.T.; Brodie, S.; Stacy, C.B.; Mehta, D.; Parsons, R.; Norton, K.; O’Callaghan, M.; Desnick, R.J. A phase 1/2 clinical trial of enzyme replacement in fabry disease: Pharmacokinetic, substrate clearance, and safety studies. Am. J. Hum. Genet., 2001, 68(3), 711-722.
[http://dx.doi.org/10.1086/318809] [PMID: 11179018]
[132]
Eng, C.M.; Guffon, N.; Wilcox, W.R.; Germain, D.P.; Lee, P.; Waldek, S.; Caplan, L.; Linthorst, G.E.; Desnick, R.J. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med., 2001, 345(1), 9-16.
[http://dx.doi.org/10.1056/NEJM200107053450102] [PMID: 11439963]
[133]
Banikazemi, M.; Bultas, J.; Waldek, S.; Wilcox, W.R.; Whitley, C.B.; McDonald, M.; Finkel, R.; Packman, S.; Bichet, D.G.; Warnock, D.G.; Desnick, R.J. Agalsidase-beta therapy for advanced Fabry disease: A randomized trial. Ann. Intern. Med., 2007, 146(2), 77-86.
[http://dx.doi.org/10.7326/0003-4819-146-2-200701160-00148] [PMID: 17179052]
[134]
Waldek, S. PR interval and the response to enzyme-replacement therapy for Fabry’s disease. N. Engl. J. Med., 2003, 348(12), 1186-1187.
[http://dx.doi.org/10.1056/NEJM200303203481224] [PMID: 12646684]
[135]
Weidemann, F.; Breunig, F.; Beer, M.; Sandstede, J.; Turschner, O.; Voelker, W.; Ertl, G.; Knoll, A.; Wanner, C.; Strotmann, J.M. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: A prospective strain rate imaging study. Circulation, 2003, 108(11), 1299-1301.
[http://dx.doi.org/10.1161/01.CIR.0000091253.71282.04] [PMID: 12952834]
[136]
Spinelli, L.; Pisani, A.; Sabbatini, M.; Petretta, M.; Andreucci, M.V.; Procaccini, D.; Lo Surdo, N.; Federico, S.; Cianciaruso, B. Enzyme replacement therapy with agalsidase beta improves cardiac involvement in Fabry’s disease. Clin. Genet., 2004, 66(2), 158-165.
[http://dx.doi.org/10.1111/j.1399-0004.2004.00284.x] [PMID: 15253767]
[137]
Wilcox, W.R.; Banikazemi, M.; Guffon, N.; Waldek, S.; Lee, P.; Linthorst, G.E.; Desnick, R.J.; Germain, D.P. Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am. J. Hum. Genet., 2004, 75(1), 65-74.
[http://dx.doi.org/10.1086/422366] [PMID: 15154115]
[138]
Banikazemi, M.; Ullman, T.; Desnick, R.J. Gastrointestinal manifestations of Fabry disease: Clinical response to enzyme replacement therapy. Mol. Genet. Metab., 2005, 85(4), 255-259.
[http://dx.doi.org/10.1016/j.ymgme.2005.04.009] [PMID: 15939645]
[139]
Breunig, F.; Weidemann, F.; Strotmann, J.; Knoll, A.; Wanner, C. Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int., 2006, 69(7), 1216-1221.
[http://dx.doi.org/10.1038/sj.ki.5000208] [PMID: 16609685]
[140]
Guffon, N.; Fouilhoux, A. Clinical benefit in Fabry patients given enzyme replacement therapy--a case series. J. Inherit. Metab. Dis., 2004, 27(2), 221-227.
[http://dx.doi.org/10.1023/B:BOLI.0000028726.11177.8b] [PMID: 15159653]
[141]
Watt, T.; Burlina, A.P.; Cazzorla, C.; Schönfeld, D.; Banikazemi, M.; Hopkin, R.J.; Martins, A.M.; Sims, K.; Beitner-Johnson, D.; O’Brien, F.; Feldt-Rasmussen, U. Agalsidase beta treatment is associated with improved quality of life in patients with Fabry disease: Findings from the Fabry Registry. Genet. Med., 2010, 12(11), 703-712.
[142]
Pisani, A.; Riccio, E.; Sabbatini, M. Agalsidase alfa and agalsidase beta in the treatment of Fabry disease: Does the dose really matter? Genet. Med., 2015, 17(1), 21-23.
[143]
Tsuboi, K.; Yamamoto, H. Clinical observation of patients with Fabry disease after switching from agalsidase beta (Fabrazyme) to agalsidase alfa (Replagal). Genet. Med., 2012, 14(9), 779-786.
[144]
Pisani, A.; Spinelli, L.; Visciano, B.; Capuano, I.; Sabbatini, M.; Riccio, E.; Messalli, G.; Imbriaco, M. Effects of switching from agalsidase Beta to agalsidase alfa in 10 patients with anderson-fabry disease. JIMD Rep., 2013, 9, 41-48.
[http://dx.doi.org/10.1007/8904_2012_177] [PMID: 23430546]
[145]
Weidemann, F.; Krämer, J.; Duning, T.; Lenders, M.; Canaan-Kühl, S.; Krebs, A.; Guerrero González, H.; Sommer, C.; Üçeyler, N.; Niemann, M.; Störk, S.; Schelleckes, M.; Reiermann, S.; Stypmann, J.; Brand, S.M.; Wanner, C.; Brand, E. Patients with Fabry disease after enzyme replacement therapy dose reduction versus treatment switch. J. Am. Soc. Nephrol., 2014, 25(4), 837-849.
[http://dx.doi.org/10.1681/ASN.2013060585] [PMID: 24556354]
[146]
Vedder, A.C.; Linthorst, G.E.; Houge, G.; Groener, J.E.; Ormel, E.E.; Bouma, B.J.; Aerts, J.M.; Hirth, A.; Hollak, C.E. Treatment of Fabry disease: Outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One, 2007, 2(7)e598
[http://dx.doi.org/10.1371/journal.pone.0000598] [PMID: 17622343]
[147]
Sirrs, S.M.; Bichet, D.G.; Casey, R.; Clarke, J.T.; Lemoine, K.; Doucette, S.; West, M.L. Outcomes of patients treated through the Canadian Fabry disease initiative. Mol. Genet. Metab., 2014, 111(4), 499-506.
[http://dx.doi.org/10.1016/j.ymgme.2014.01.014] [PMID: 24534763]
[148]
El Dib, R.; Gomaa, H.; Carvalho, R.P.; Camargo, S.E.; Bazan, R.; Barretti, P.; Barreto, F.C. Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst. Rev., 2016, 7(7), CD006663-CD006663.
[PMID: 27454104]
[149]
Lenders, M.; Brand, E. Effects of enzyme replacement therapy and antidrug antibodies in patients with Fabry disease. J. Am. Soc. Nephrol., 2018, 29(9), 2265-2278.
[http://dx.doi.org/10.1681/ASN.2018030329] [PMID: 30093456]
[150]
Arends, M.; Biegstraaten, M.; Wanner, C.; Sirrs, S.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Bichet, D.G.; Khan, A.; Iwanochko, M.; Vaz, F.M.; van Kuilenburg, A.B.P.; West, M.L.; Hughes, D.A.; Hollak, C.E.M. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: An international cohort study. J. Med. Genet., 2018, 55(5), 351-358.
[http://dx.doi.org/10.1136/jmedgenet-2017-104863] [PMID: 29437868]
[151]
Rombach, S.M.; Aerts, J.M.; Poorthuis, B.J.; Groener, J.E.; Donker-Koopman, W.; Hendriks, E.; Mirzaian, M.; Kuiper, S.; Wijburg, F.A.; Hollak, C.E.; Linthorst, G.E. Long-term effect of antibodies against infused alpha-galactosidase A in Fabry disease on plasma and urinary (lyso)Gb3 reduction and treatment outcome. PLoS One, 2012, 7(10)e47805
[http://dx.doi.org/10.1371/journal.pone.0047805] [PMID: 23094092]
[152]
Lenders, M.; Stypmann, J.; Duning, T.; Schmitz, B.; Brand, S.M.; Brand, E. Serum-mediated inhibition of enzyme replacement therapy in fabry disease. J. Am. Soc. Nephrol., 2016, 27(1), 256-264.
[http://dx.doi.org/10.1681/ASN.2014121226] [PMID: 25933799]
[153]
Lenders, M.; Brand, E. Mechanisms of neutralizing anti-drug antibody formation and clinical relevance on therapeutic efficacy of enzyme replacement therapies in fabry disease. Drugs, 2021, 81(17), 1969-1981.
[http://dx.doi.org/10.1007/s40265-021-01621-y] [PMID: 34748189]
[154]
Lenders, M.; Oder, D.; Nowak, A.; Canaan-Kühl, S.; Arash-Kaps, L.; Drechsler, C.; Schmitz, B.; Nordbeck, P.; Hennermann, J.B.; Kampmann, C.; Reuter, S.; Brand, S.M.; Wanner, C.; Brand, E. Impact of immunosuppressive therapy on therapy-neutralizing antibodies in transplanted patients with Fabry disease. J. Intern. Med., 2017, 282(3), 241-253.
[http://dx.doi.org/10.1111/joim.12647] [PMID: 28682471]
[155]
Bernier, V.; Lagacé, M.; Bichet, D.G.; Bouvier, M. Pharmacological chaperones: Potential treatment for conformational diseases. Trends Endocrinol. Metab., 2004, 15(5), 222-228.
[http://dx.doi.org/10.1016/j.tem.2004.05.003] [PMID: 15223052]
[156]
Parenti, G.; Andria, G.; Valenzano, K.J. Pharmacological chaperone therapy: Preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol. Ther., 2015, 23(7), 1138-1148.
[157]
Benjamin, E.R.; Flanagan, J.J.; Schilling, A.; Chang, H.H.; Agarwal, L.; Katz, E.; Wu, X.; Pine, C.; Wustman, B.; Desnick, R.J.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J. Inherit. Metab. Dis., 2009, 32(3), 424-440.
[http://dx.doi.org/10.1007/s10545-009-1077-0] [PMID: 19387866]
[158]
Germain, D.P.; Fan, J.Q. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: In vitro and preclinical studies. Int. J. Clin. Pharmacol. Ther., 2009, 47(Suppl. 1), S111-S117.
[PMID: 20040321]
[159]
Germain, D.P.; Hughes, D.A.; Nicholls, K.; Bichet, D.G.; Giugliani, R.; Wilcox, W.R.; Feliciani, C.; Shankar, S.P.; Ezgu, F.; Amartino, H.; Bratkovic, D.; Feldt-Rasmussen, U.; Nedd, K.; Sharaf El Din, U.; Lourenco, C.M.; Banikazemi, M.; Charrow, J.; Dasouki, M.; Finegold, D.; Giraldo, P.; Goker-Alpan, O.; Longo, N.; Scott, C.R.; Torra, R.; Tuffaha, A.; Jovanovic, A.; Waldek, S.; Packman, S.; Ludington, E.; Viereck, C.; Kirk, J.; Yu, J.; Benjamin, E.R.; Johnson, F.; Lockhart, D.J.; Skuban, N.; Castelli, J.; Barth, J.; Barlow, C.; Schiffmann, R. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N. Engl. J. Med., 2016, 375(6), 545-555.
[http://dx.doi.org/10.1056/NEJMoa1510198] [PMID: 27509102]
[160]
Galafold (migalastat). European Public Assessment Report (EPAR). Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/galafold
[161]
Schiffmann, R.; Bichet, D.G.; Jovanovic, A.; Hughes, D.A.; Giugliani, R.; Feldt-Rasmussen, U.; Shankar, S.P.; Barisoni, L.; Colvin, R.B.; Jennette, J.C.; Holdbrook, F.; Mulberg, A.; Castelli, J.P.; Skuban, N.; Barth, J.A.; Nicholls, K. Migalastat improves diarrhea in patients with Fabry disease: Clinical-biomarker correlations from the phase 3 FACETS trial. Orphanet J. Rare Dis., 2018, 13(1), 68-68.
[http://dx.doi.org/10.1186/s13023-018-0813-7] [PMID: 29703262]
[162]
Wu, X.; Katz, E.; Della, V.M.C.; Mascioli, K.; Flanagan, J.J.; Castelli, J.P.; Schiffmann, R.; Boudes, P.; Lockhart, D.J.; Valenzano, K.J.; Benjamin, E.R. A pharmacogenetic approach to identify mutant forms of α-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Hum. Mutat., 2011, 32(8), 965-977.
[http://dx.doi.org/10.1002/humu.21530] [PMID: 21598360]
[163]
Benjamin, E.R.; Della, V.M.C.; Wu, X.; Katz, E.; Pruthi, F.; Bond, S.; Bronfin, B.; Williams, H.; Yu, J.; Bichet, D.G.; Germain, D.P.; Giugliani, R.; Hughes, D.; Schiffmann, R.; Wilcox, W.R.; Desnick, R.J.; Kirk, J.; Barth, J.; Barlow, C.; Valenzano, K.J.; Castelli, J.; Lockhart, D.J. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet. Med., 2017, 19(4), 430-438.
[164]
Hughes, D.A.; Nicholls, K.; Shankar, S.P.; Sunder-Plassmann, G.; Koeller, D.; Nedd, K.; Vockley, G.; Hamazaki, T.; Lachmann, R.; Ohashi, T.; Olivotto, I.; Sakai, N.; Deegan, P.; Dimmock, D.; Eyskens, F.; Germain, D.P.; Goker-Alpan, O.; Hachulla, E.; Jovanovic, A.; Lourenco, C.M.; Narita, I.; Thomas, M.; Wilcox, W.R.; Bichet, D.G.; Schiffmann, R.; Ludington, E.; Viereck, C.; Kirk, J.; Yu, J.; Johnson, F.; Boudes, P.; Benjamin, E.R.; Lockhart, D.J.; Barlow, C.; Skuban, N.; Castelli, J.P.; Barth, J.; Feldt-Rasmussen, U. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet., 2017, 54(4), 288-296.
[http://dx.doi.org/10.1136/jmedgenet-2016-104178] [PMID: 27834756]
[165]
Hughes, D.A.; Nicholls, K.; Sunder-Plassmann, G.; Jovanovic, A.; Feldt-Rasmussen, U.; Schiffmann, R.; Giugliani, R.; Jain, V.; Viereck, C.; Castelli, J.P.; Skuban, N.; Barth, J.A.; Bichet, D.G. Safety of switching to Migalastat from enzyme replacement therapy in Fabry disease: Experience from the Phase 3 ATTRACT study. Am. J. Med. Genet. A., 2019, 179(6), 1069-1073.
[http://dx.doi.org/10.1002/ajmg.a.61105] [PMID: 30920142]
[166]
Chimenti, C.; Nencini, P.; Pieruzzi, F.; Feriozzi, S.; Mignani, R.; Pieroni, M.; Pisani, A. The GALA project: Practical recommendations for the use of migalastat in clinical practice on the basis of a structured survey among Italian experts. Orphanet J. Rare Dis., 2020, 15(1), 86.
[http://dx.doi.org/10.1186/s13023-020-1318-8] [PMID: 32264911]
[167]
Bichet, D.G.; Torra, R.; Wallace, E.; Hughes, D.; Giugliani, R.; Skuban, N.; Krusinska, E.; Feldt-Rasmussen, U.; Schiffmann, R.; Nicholls, K. Long-term follow-up of renal function in patients treated with migalastat for Fabry disease. Mol. Genet. Metab. Rep., 2021, 28, 100786-100786.
[http://dx.doi.org/10.1016/j.ymgmr.2021.100786] [PMID: 34401344]
[168]
Müntze, J.; Gensler, D.; Maniuc, O.; Liu, D.; Cairns, T.; Oder, D.; Hu, K.; Lorenz, K.; Frantz, S.; Wanner, C.; Nordbeck, P. Oral chaperone therapy migalastat for treating Fabry disease: Enzymatic response and serum biomarker changes after 1 year. Clin. Pharmacol. Ther., 2019, 105(5), 1224-1233.
[http://dx.doi.org/10.1002/cpt.1321] [PMID: 30506669]
[169]
Lenders, M.; Nordbeck, P.; Kurschat, C.; Karabul, N.; Kaufeld, J.; Hennermann, J.B.; Patten, M.; Cybulla, M.; Müntze, J.; Üçeyler, N.; Liu, D.; Das, A.M.; Sommer, C.; Pogoda, C.; Reiermann, S.; Duning, T.; Gaedeke, J.; Stumpfe, K.; Blaschke, D.; Brand, S.M.; Mann, W.A.; Kampmann, C.; Muschol, N.; Canaan-Kühl, S.; Brand, E. Treatment of Fabry’s disease with migalastat: Outcome from a prospective observational multicenter study (FAMOUS). Clin. Pharmacol. Ther., 2020, 108(2), 326-337.
[http://dx.doi.org/10.1002/cpt.1832] [PMID: 32198894]
[170]
Clinicaltrials.Gov. German observational multicenter study of patients with fabry disease under chaperone therapy with migalastat- HCl. NCT: NCT03135197, Available from: https://clinicaltrials.gov/ct2/show/NCT03135197 Accessed on Mar 22, 2022.
[171]
Clinicaltrials.Gov. French Prospective, Observational Cohort Study of Patients With Fabry Disease Treated With Migalastat. Nct: NCT04602364, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT04602364 Accessed on Mar 22, 2022.
[172]
Clinicaltrials.Gov. MigALastat Therapy Adherence Among FABRY Patients: A Prospective Multicentral Observational Study (MALTA-FABRY). NCT: NCT03683966, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT03683966 Accessed on Mar 22, 2022.
[173]
Coutinho, M.F.; Santos, J.I.; Alves, S. Less is more: Substrate reduction therapy for lysosomal storage disorders. Int. J. Mol. Sci., 2016, 17(7), 1065.
[http://dx.doi.org/10.3390/ijms17071065] [PMID: 27384562]
[174]
Welford, R.W.D.; Mühlemann, A.; Garzotti, M.; Rickert, V.; Groenen, P.M.A.; Morand, O.; Üçeyler, N.; Probst, M.R. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum. Mol. Genet., 2018, 27(19), 3392-3403.
[http://dx.doi.org/10.1093/hmg/ddy248] [PMID: 29982630]
[175]
Guérard, N.; Morand, O.; Dingemanse, J. Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: Safety, tolerability, and pharmacokinetics in healthy subjects. Orphanet J. Rare Dis., 2017, 12(1), 9.
[http://dx.doi.org/10.1186/s13023-017-0565-9] [PMID: 28088251]
[176]
Guérard, N.; Zwingelstein, C.; Dingemanse, J. Lucerastat, an iminosugar for substrate reduction therapy: Pharmacokinetics, tolerability, and safety in subjects with mild, moderate, and severe renal function impairment. J. Clin. Pharmacol., 2017, 57(11), 1425-1431.
[http://dx.doi.org/10.1002/jcph.944] [PMID: 28618006]
[177]
Guérard, N.; Oder, D.; Nordbeck, P.; Zwingelstein, C.; Morand, O.; Welford, R.W.D.; Dingemanse, J.; Wanner, C. Lucerastat, an iminosugar for substrate reduction therapy: Tolerability, pharmacodynamics, and pharmacokinetics in patients with fabry disease on enzyme replacement. Clin. Pharmacol. Ther., 2018, 103(4), 703-711.
[http://dx.doi.org/10.1002/cpt.790] [PMID: 28699267]
[178]
Clinicaltrials.Gov. A Study to Evaluate the Long-term Safety and Tolerability of Lucerastat in Adult Subjects With Fabry Disease. NCT: NCT03737214, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT03737214 Accessed on Mar 22, 2022.
[179]
Clinicaltrials.Gov. Efficacy and Safety of Lucerastat Oral Monotherapy in Adult Subjects With Fabry Disease (MODIFY). NCT: NCT03425539, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT03425539 Accessed on Mar 22, 2022.
[180]
Frey, A.; Trokan, L.; Vogler, M.; Hughes, D.; Gimona, A. Measures to mitigate disruption due to the COVID-19 pandemic of the MODIFY phase 3 pivotal trial in patients with Fabry disease. Mol. Genet. Metab., 2021, 132(2), S39-S40.
[http://dx.doi.org/10.1016/j.ymgme.2020.12.080]
[181]
Morand, O.; Johnson, J.; Walter, J.; Atkinson, L.; Kline, G.; Frey, A.; Politei, J.; Schiffmann, R. Symptoms and quality of life in patients with Fabry disease: Results from an international patient survey. Adv. Ther., 2019, 36(10), 2866-2880.
[http://dx.doi.org/10.1007/s12325-019-01061-x] [PMID: 31435831]
[182]
Peterschmitt, M.J.; Crawford, N.P.S.; Gaemers, S.J.M.; Ji, A.J.; Sharma, J.; Pham, T.T. Pharmacokinetics, pharmacodynamics, safety, and tolerability of oral venglustat in healthy volunteers. Clin. Pharmacol. Drug Dev., 2021, 10(1), 86-98.
[http://dx.doi.org/10.1002/cpdd.865] [PMID: 32851809]
[183]
Clinicaltrials.Gov. Evaluate the Safety, Pharmacodynamics, Pharmacokinetics, and Exploratory Efficacy of GZ/SAR402671 in Treatment-naïve Adult Male Patients With Fabry Disease. NCT: NCT02228460, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT02228460 Accessed on Mar 22, 2022.
[184]
Clinicaltrials.Gov. A study to evaluate the effect of venglustat tablets on left ventricular mass index in male and female adult participants with fabry disease (CARAT). NCT: NCT05280548, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT05280548 Accessed on Mar 22, 2022.
[185]
Clinicaltrials.Gov. A study to evaluate the effect of venglustat tablets on neuropathic and abdominal pain in male and female adult participants with fabry disease (PERIDOT). NCT: NCT05206773, Available from: https://Clinicaltrials.Gov/Ct2/Show/NCT05206773 Accessed on Mar 22, 2022.
[186]
Tekoah, Y.; Shulman, A.; Kizhner, T.; Ruderfer, I.; Fux, L.; Nataf, Y.; Bartfeld, D.; Ariel, T.; Gingis-Velitski, S.; Hanania, U.; Shaaltiel, Y. Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant Biotechnol. J., 2015, 13(8), 1199-1208.
[http://dx.doi.org/10.1111/pbi.12428] [PMID: 26102075]
[187]
Kizhner, T.; Azulay, Y.; Hainrichson, M.; Tekoah, Y.; Arvatz, G.; Shulman, A.; Ruderfer, I.; Aviezer, D.; Shaaltiel, Y. Characterization of a chemically modified plant cell culture expressed human α-Galactosidase-A enzyme for treatment of Fabry disease. Mol. Genet. Metab., 2015, 114(2), 259-267.
[http://dx.doi.org/10.1016/j.ymgme.2014.08.002] [PMID: 25155442]
[188]
Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; Nicholls, K.; Tuffaha, A.; Atta, M.G.; Rup, B.; Charney, M.R.; Paz, A.; Szlaifer, M.; Alon, S.; Brill-Almon, E.; Chertkoff, R.; Hughes, D. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis., 2019, 42(3), 534-544.
[http://dx.doi.org/10.1002/jimd.12080] [PMID: 30834538]
[189]
Clinicaltrials.Gov. Study of the Safety and Efficacy of PRX-102 Compared to Agalsidase Beta on Renal Function (BALANCE). NCT: NCT02795676, Available from: https://Clinicaltrials.Gov/Ct2/Show/Study/NCT02795676 Accessed on Mar 22, 2022.
[190]
Clinicaltrials.Gov. Study of the safety, efficacy, & PK of pegunigalsidase Alfa (PRX-102) 2 mg/kg IV administered every 4 weeks in Fabry disease patients (BRIGHT). NCT: NCT03180840, Available from: https://Clinicaltrials.Gov/Ct2/Show/Study/NCT03180840 Accessed on Mar 22, 2022.
[191]
Clinicaltrials.Gov. Safety and efficacy of PRX 102 in patients with fabry disease currently treated with REPLAGAL® (Agalsidase alfa). NCT: NCT03018730, Available from: https://Clinicaltrials.Gov/Ct2/Show/Study/NCT03018730 Accessed on Mar 22, 2022.
[192]
Linhart, A.; Dostalova, G.; Nicholls, K.; West, M.; Tøndel, C.; Jovanovic, A.; Giraldo, P.; Vujkovac, B.; Hiwot, T.; Brill-Almon, E.; Alon, S.; Szlaifer, M.; Chertkoff, R.; Hughes, D. Switching from agalsidase alfa to pegunigalsidase alfa for treating Fabry disease: One year of treatment data from BRIDGE, a phase III open label study. Mol. Genet. Metab., 2020, 129(2), S98-S99.
[http://dx.doi.org/10.1016/j.ymgme.2019.11.249]
[193]
Dostálová, G.; Hulkova, H.; Linhart, A. Anderson-Fabry disease: No histological signs of pathological accumulation in arterial and venous endothelium during pegunigalsidase alfa therapy. Kardiol. Pol., 2021, 79(12), 1385-1386.
[http://dx.doi.org/10.33963/KP.a2021.0139] [PMID: 34668177]
[194]
Niederkrüger, H.; Dabrowska-Schlepp, P.; Schaaf, A. Suspension culture of plant cells under phototrophic conditions. In: Industrial Scale Suspension Culture of Living Cells, 2014, pp. 259-292.
[http://dx.doi.org/10.1002/9783527683321.ch08]
[195]
Reski, R.; Parsons, J.; Decker, E.L. Moss-made pharmaceuticals: From bench to bedside. Plant Biotechnol. J., 2015, 13(8), 1191-1198.
[http://dx.doi.org/10.1111/pbi.12401] [PMID: 26011014]
[196]
Shen, J.S.; Busch, A.; Day, T.S.; Meng, X.L.; Yu, C.I.; Dabrowska-Schlepp, P.; Fode, B.; Niederkrüger, H.; Forni, S.; Chen, S.; Schiffmann, R.; Frischmuth, T.; Schaaf, A. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J. Inherit. Metab. Dis., 2016, 39(2), 293-303.
[http://dx.doi.org/10.1007/s10545-015-9886-9] [PMID: 26310963]
[197]
Hennermann, J.B.; Arash-Kaps, L.; Fekete, G.; Schaaf, A.; Busch, A.; Frischmuth, T. Pharmacokinetics, pharmacodynamics, and safety of moss-agalactosidase A in patients with Fabry disease. J. Inherit. Metab. Dis., 2019, 42(3), 527-533.
[http://dx.doi.org/10.1002/jimd.12052] [PMID: 30746723]
[198]
Domm, J.M.; Wootton, S.K.; Medin, J.A.; West, M.L. Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Mol. Genet. Metab., 2021, 134(1-2), 117-131.
[http://dx.doi.org/10.1016/j.ymgme.2021.07.006] [PMID: 34340879]
[199]
Medin, J.A.; Khan, A.; Huang, J.; Barber, D.; Anthony Rupar, C.; Auray-Blais, C.; Fraser, G.; Fowler, D.H.; Keating, A.; West, M.L.; Foley, R. FACTs Fabry gene therapy clinical trial: Two-year data. Mol. Genet. Metab., 2019, 126(2), S99.
[http://dx.doi.org/10.1016/j.ymgme.2018.12.248]
[200]
Khan, A.; Barber, D.L.; Huang, J.; Rupar, C.A.; Rip, J.W.; Auray-Blais, C.; Boutin, M.; O’Hoski, P.; Gargulak, K.; McKillop, W.M.; Fraser, G.; Wasim, S.; LeMoine, K.; Jelinski, S.; Chaudhry, A.; Prokopishyn, N.; Morel, C.F.; Couban, S.; Duggan, P.R.; Fowler, D.H.; Keating, A.; West, M.L.; Foley, R.; Medin, J.A. Lentivirus-mediated gene therapy for Fabry disease. Nat. Commun., 2021, 12(1), 21321-21371.
[http://dx.doi.org/10.1038/s41467-021-21371-5]
[201]
Fabry Disease news. Clinical trial data support AVR-RD-01 gene therapy for fabry disease. Available from: https://fabrydiseasenews.com/2020/06/16/clinical-trial-data-support-avr-rd-01-gene-therapy-for-fabry-disease/ Accessed on Mar 22, 2022.
[202]
Biopharma Dive. Avrobio stops work on rare disease gene therapy after unexpected study results. Available from: https://www.biopharmadive.com/news/avrobio-fabry-discontinue-gene-therapy-data/616594/ Accessed on May 21, 2022.
[203]
Clinicaltrials.Gov. An open-label, phase 1/2 trial of gene therapy 4D-310 in adult males with fabry disease. NCT: NCT04519749, Available from: https://Clinicaltrials.Gov/Ct2/Show/Study/ NCT04519749 Accessed on Mar 22, 2022.
[204]
Clinicaltrials.Gov. Dose-ranging study of ST-920, an AAV2/6 human alpha galactosidase a gene therapy in subjects with fabry disease. NCT: NCT04046224, Available from: https://Clinicaltrials.Gov/Ct2/Show/Study/NCT04046224 Accessed on Mar 22, 2022.
[205]
Clinicaltrials.Gov. A Fabry Disease Gene Therapy Study (MARVEL1). NCT: NCT04040049, Available from: https://Clinicaltrials.Gov/Ct2/Show/Study/NCT04040049 Accessed on Mar 22, 2022.
[206]
Fabrydiseasenews. Experimental gene therapy may be safe and effective, early data shows. Available from: https://fabry diseasenews.com/2022/03/11/4dmts-4d-310-gene-therapy-safe-effective-interim-data Accessed on Mar 22, 2022.
[207]
Fabrydiseasenews. Gal A activity nears normal in 2nd man given FLT190 gene therapy. Available from: https://fabrydiseasenews.com/2021/11/19/gal-a-activity-nears-normal-in-2nd-man-given-flt190-gene-therapy Accessed on Mar 22, 2022.
[208]
Del Pozo-Rodríguez, A.; Solinís, M.; Rodríguez-Gascón, A. Applications of lipid nanoparticles in gene therapy. Euro. J. Pharmaceut. Biopharma, 2016, 109, 184-193.
[209]
Rodríguez-Castejón, J.; Alarcia-Lacalle, A.; Gómez-Aguado, I.; Vicente-Pascual, M.; Solinís Aspiazu, M.Á.; Del Pozo-Rodríguez, A.; Rodríguez-Gascón, A. α-Galactosidase A Augmentation by non-viral gene therapy: Evaluation in fabry disease mice. Pharmaceutics, 2021, 13(6), 771.
[http://dx.doi.org/10.3390/pharmaceutics13060771] [PMID: 34064206]
[210]
DeRosa, F.; Smith, L.; Shen, Y.; Huang, Y.; Pan, J.; Xie, H.; Yahalom, B.; Heartlein, M.W. Improved efficacy in a fabry disease model using a systemic mRNA liver depot system as compared to enzyme replacement therapy. Mol. Ther., 2019, 27(4), 878-889.
[211]
Zhu, X.; Yin, L.; Theisen, M.; Zhuo, J.; Siddiqui, S.; Levy, B.; Presnyak, V.; Frassetto, A.; Milton, J.; Salerno, T.; Benenato, K.E.; Milano, J.; Lynn, A.; Sabnis, S.; Burke, K.; Besin, G.; Lukacs, C.M.; Guey, L.T.; Finn, P.F.; Martini, P.G.V. Systemic mRNA therapy for the treatment of fabry disease: Preclinical studies in wild-type mice, fabry mouse model, and wild-type non-human primates. Am. J. Hum. Genet., 2019, 104(4), 625-637.
[http://dx.doi.org/10.1016/j.ajhg.2019.02.003] [PMID: 30879639]
[212]
Hopkin, R.J.; Cabrera, G.; Charrow, J.; Lemay, R.; Martins, A.M.; Mauer, M.; Ortiz, A.; Patel, M.R.; Sims, K.; Waldek, S.; Warnock, D.G.; Wilcox, W.R. Risk factors for severe clinical events in male and female patients with Fabry disease treated with agalsidase beta enzyme replacement therapy: Data from the Fabry Registry. Mol. Genet. Metab., 2016, 119(1-2), 151-159.
[http://dx.doi.org/10.1016/j.ymgme.2016.06.007] [PMID: 27510433]
[213]
Beck, M.; Hughes, D.; Kampmann, C.; Larroque, S.; Mehta, A.; Pintos-Morell, G.; Ramaswami, U.; West, M.; Wijatyk, A.; Giugliani, R. Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis. Mol. Genet. Metab. Rep., 2015, 3, 21-27.
[http://dx.doi.org/10.1016/j.ymgmr.2015.02.002] [PMID: 26937390]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy