Generic placeholder image

Letters in Drug Design & Discovery


ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Effects of Epigallocatechin Gallate on the Cytotoxicity of Epirubicin-HCl in Lung Cancer Cells

Author(s): Ayse Erdogan* and Aysun Ozkan

Volume 20, Issue 1, 2023

Published on: 25 August, 2022

Page: [77 - 87] Pages: 11

DOI: 10.2174/1570180819999220530153200

Price: $65


Background: Studies have shown that epigallocatechin-3-gallate (EGCG), which is present in green tea at a higher rate than other components, has an additive or synergistic cytotoxic effect when applied with different anticancer drugs and reduces the side effects caused by anticancer drugs. It is known that the order of administration of drugs in combined applications also affects cytotoxicity. In this context, our study determined the most effective application sequence by evaluating the cytotoxic responses of epirubicin-HCl and EGCG according to the different application orders in A-549 cells (NSCLC).

Methods: To demonstrate the apoptotic activity, we detected changes in mRNA ratios of Bax, a proapoptotic gene, and Bcl-2, an anti-apoptotic gene (Bax/Bcl2), as well as changes in the activity of caspase 3/7 enzyme. To demonstrate the effect of oxidative stress generation, we investigated changes in glutathione peroxidase activity.

Results: It was observed that the cell viability of A-549 cells exposed to different concentrations of epirubicin- HCl and EGCG for 48 h decreased depending on the concentration increase. According to the results of cell viability in cells to which epirubicin-HCl (< IC50) and EGCG (< IC50) were treated together, and the combination index (CI) value calculations, the most effective combination concentrations were determined to be IC20 Epirubicin-HCl and IC10 EGCG. LDH activities were higher in epirubicin-HCl + EGCG treatment than in the epirubicin-HCl alone treatment compared to control groups. Treatment of epirubicin-HCl with EGCG was found to be more effective in increasing glutathione peroxidase activity than epirubicin-HCl alone. Both epirubicin-HCl alone and combination treatments caused an increase in Bax/Bcl-2 ratio in A-549 cells.

Conclusion: Combination therapy of epirubicin-HCl with EGCG may be helpful in the future for lung cancer patients trying to be treated with conventional chemotherapy drugs but cannot achieve the desired success.

Keywords: Epirubicin-HCl, combined therapy, epigallocatechin-3-gallate, apoptotic effect, lung cancer, cytotoxicity.

Graphical Abstract
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[] [PMID: 33818764]
Wen, T.; Song, L.; Hua, S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med., 2021, 10(7), 2396-2422.
[] [PMID: 33650320]
Bag, S.; Mondal, A.; Majumder, A.; Banik, A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem., 2022, 371, 131098.
[] [PMID: 34634647]
Nimbhorkar, R.; Rasane, P.; Singh, J. Caffeine alternatives: Searching a herbal solution. Pharma Innov., 2021, 10(5), 256-264.
Vastrad, J.V.; Badanayak, P.; Goudar, G. Phenolic Compounds in Tea: Phytochemical, Biological, and Therapeutic Applications; IntechOpen, 2021, p. 19.
Wang, H.; Cao, X.; Yuan, Z.; Guo, G. Untargeted metabolomics coupled with chemometrics approach for Xinyang Maojian green tea with cultivar, elevation and processing variations. Food Chem., 2021, 352, 129359.
[] [PMID: 33735748]
Fang, K.; Xia, Z.; Li, H.; Jiang, X.; Qin, D.; Wang, Q.; Wang, Q.; Pan, C.; Li, B.; Wu, H. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Hortic. Res., 2021, 8(1), 42.
[] [PMID: 33642595]
Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J. Phytomed., 2015, 5(2), 84-97.
[PMID: 25949949]
Butt, M.S.; Ahmad, R.S.; Sultan, M.T.; Qayyum, M.M.; Naz, A. Green tea and anticancer perspectives: Updates from last decade. Crit. Rev. Food Sci. Nutr., 2015, 55(6), 792-805.
[] [PMID: 24915354]
Health, N.I.O.. 2016. Available from:
Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol., 1984, 105, 114-121.
[] [PMID: 6727659]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[] [PMID: 942051]
Bijwaard, K.E.; Aguilera, N.S.I.; Monczak, Y.; Trudel, M.; Taubenberger, J.K.; Lichy, J.H.; Lichy, J.H. Quantitative real-time reverse transcription-PCR assay for cyclin D1 expression: Utility in the diagnosis of mantle cell lymphoma. Clin. Chem., 2001, 47(2), 195-201.
[] [PMID: 11159766]
Ortega, A.M.M.; Campos, M.R.S. Bioactive compounds as therapeutic alternatives. Bioactive compounds; Woodhead Publishing, 2019, pp. 247-264.
Ohishi, T.; Fukutomi, R.; Shoji, Y.; Goto, S.; Isemura, M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules, 2021, 26(2), 453.
[] [PMID: 33467101]
Ranzato, E.; Martinotti, S.; Magnelli, V.; Murer, B.; Biffo, S.; Mutti, L.; Burlando, B. Epigallocatechin-3-gallate induces mesothelioma cell death via H2 O2 -dependent T-type Ca2+ channel opening. J. Cell. Mol. Med., 2012, 16(11), 2667-2678.
[] [PMID: 22564432]
Rajabi, S.; Maresca, M.; Yumashev, A.V.; Choopani, R.; Hajimehdipoor, H. The most competent plant-derived natural products for targeting Apoptosis in cancer therapy. Biomolecules, 2021, 11(4), 534.
[] [PMID: 33916780]
Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem., 2022, 379, 132135.
[] [PMID: 35063850]
Schramm, L. Going green: The role of the green tea component EGCG in chemoprevention. J. Carcinog. Mutagen., 2013, 4(142), 1000142.
[] [PMID: 24077764]
Mazumder, M.K.; Choudhury, S. Tea polyphenols as multi-target therapeutics for Alzheimer’s disease: An in silico study. Med. Hypotheses, 2019, 125, 94-99.
[] [PMID: 30902161]
Seo, E.J.; Wu, C.F.; Ali, Z.; Wang, Y.H.; Khan, S.I.; Walker, L.A.; Khan, I.A.; Efferth, T. Both phenolic and non-phenolic green tea fractions inhibit migration of cancer cells. Front. Pharmacol., 2016, 7, 398.
[] [PMID: 28194107]
Minnelli, C.; Cianfruglia, L.; Laudadio, E.; Mobbili, G.; Galeazzi, R.; Armeni, T. Effect of epigallocatechin-3-Gallate on EGFR signaling and migration in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(21), 11833.
[] [PMID: 34769263]
Masuda, M.; Suzui, M.; Lim, J.T.; Deguchi, A.; Soh, J.W.; Weinstein, I.B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J. Exp. Ther. Oncol., 2002, 2(6), 350-359.
[] [PMID: 12440226]
Chu, M.; Zheng, C.; Chen, C.; Song, G.; Hu, X.; Wang, Z.W. Targeting cancer stem cells by nutraceuticals for cancer therapy. Seminars in Cancer Biology; Academic Press, 2021.
Ding, F.; Yang, S. Epigallocatechin-3-gallate inhibits proliferation and triggers apoptosis in colon cancer via the hedgehog/phosphoinositide 3-kinase pathways. Can. J. Physiol. Pharmacol., 2021, 99(9), 910-920.
[] [PMID: 33617370]
Naujokat, C.; McKee, D. L. The “Big Five” phytochemicals targeting cancer stem cells: Curcumin, EGCG, sulforaphane, resveratrol and genistein. Curr Med Chem, 2021, 28, 4321-4342.
Zhang, Y.; Wang, S.X.; Ma, J.W.; Li, H.Y.; Ye, J.C.; Xie, S.M.; Du, B.; Zhong, X.Y. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J. Neurooncol., 2015, 121(1), 41-52.
[] [PMID: 25173233]
Wei, H.; Ge, Q.; Zhang, L.Y.; Xie, J.; Gan, R.H.; Lu, Y.G.; Zheng, D.L. EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. J. Nutr. Biochem., 2022, 99, 108843.
[] [PMID: 34407449]
Jha, H.; Arora, R. Cytotoxic and Chemopreventive Activity of Polyphenols and Their Derivatives in Colon Cancer. Colon Cancer Diagnosis and Therapy, Springer, 2022, 3, 241-275.
Qiao, J.; Gu, C.; Shang, W.; Du, J.; Yin, W.; Zhu, M.; Wang, W.; Han, M.; Lu, W. Effect of green tea on pharmacokinetics of 5-fluorouracil in rats and pharmacodynamics in human cell lines in vitro. Food Chem. Toxicol., 2011, 49(6), 1410-1415.
[] [PMID: 21440026]
Lang, M.; Henson, R.; Braconi, C.; Patel, T. Epigallocatechin-gallate modulates chemotherapy-induced apoptosis in human cholangiocarcinoma cells. Liver Int., 2009, 29(5), 670-677.
[] [PMID: 19226332]
George, B.P.; Chandran, R.; Abrahamse, H.; Chandran, R.; Abrahamse, H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 2021, 10(9), 1455.
[] [PMID: 34573087]
Tao, L.; Forester, S.C.; Lambert, J.D. Pro-oxidant effects of the green tea catechin epigallocatechin-3-gallate in oral cancer cells: A role for the mitochondria. Cancer Res., 2013, 73, 3667.
Lecumberri, E.; Dupertuis, Y.M.; Miralbell, R.; Pichard, C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr., 2013, 32(6), 894-903.
[] [PMID: 23582951]
Sijing, S.; Yizhuang, D.; Zhongzhi, L.; Min, L.; Zhen, Z.; Xiaolong, R.; Dongsheng, L. Epigallocatechin gallate enhances 5-fluorouracil antitumor activity in MCF7 cells by regulating the expression of Bcl-xL. Int. J. Clin. Exp. Pathol., 2016, 9, 4251-4259.
(a) Shrivastava, N.; Iqbal, B.; Ali, J.; Baboota, S. Chemopreventive and Therapeutic Potential of Natural Agents and Their Combinations for Breast Cancer. Discovery and Development of Anti-Breast Cancer Agents from Natural Products; Elsevier, 2021, pp. 231-281.;
(b) Amin, A.R.; Khuri, F.R.; Chen, Z.G.; Shin, D.M. Synergistic growth inhibition of squamous cell carcinoma of the head and neck by erlotinib and epigallocatechin-3-gallate: The role of p53-dependent inhibition of nuclear factor-kappaB. Cancer Prev. Res. (Phila.), 2009, 2(6), 538-545.
[] [PMID: 19470788]
Stearns, M.E.; Amatangelo, M.D.; Varma, D.; Sell, C.; Goodyear, S.M. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: Inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am. J. Pathol., 2010, 177(6), 3169-3179.
[] [PMID: 20971741]
Wu, H.; Xin, Y.; Xu, C.; Xiao, Y. Capecitabine combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts. Exp. Ther. Med., 2012, 3(4), 650-654.
[] [PMID: 22969946]
Volta, V.; Ranzato, E.; Martinotti, S.; Gallo, S.; Russo, M.V.; Mutti, L.; Biffo, S.; Burlando, B. Preclinical demonstration of synergistic Active Nutrients/Drug (AND) combination as a potential treatment for malignant pleural mesothelioma. PLoS One, 2013, 8(3), e58051.
[] [PMID: 23526965]
Mayr, C.; Wagner, A.; Neureiter, D.; Pichler, M.; Jakab, M.; Illig, R.; Berr, F.; Kiesslich, T. The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells. BMC Complement. Altern. Med., 2015, 15(1), 194.
[] [PMID: 26100134]
Zhou, D.H.; Wang, X.; Feng, Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr. Cancer, 2014, 66(4), 636-644.
[] [PMID: 24712372]
Morelli, M.P.; Cascone, T.; Troiani, T.; De Vita, F.; Orditura, M.; Laus, G.; Eckhardt, S.G.; Pepe, S.; Tortora, G.; Ciardiello, F. Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann. Oncol., 2005, 16(Suppl. 4), iv61-iv68.
[] [PMID: 15923432]
Xu, J.M.; Azzariti, A.; Colucci, G.; Paradiso, A. The effect of gefitinib (Iressa, ZD1839) in combination with oxaliplatin is schedule-dependent in colon cancer cell lines. Cancer Chemother. Pharmacol., 2003, 52(6), 442-448.
[] [PMID: 13680161]
Xu, J.M.; Azzariti, A.; Severino, M.; Lu, B.; Colucci, G.; Paradiso, A. Characterization of sequence-dependent synergy between ZD1839 (“Iressa”) and oxaliplatin. Biochem. Pharmacol., 2003, 66(4), 551-563.
[] [PMID: 12906920]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy