Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

A Global Analysis of Alternative Splicing of Dichocarpum Medicinal Plants, Ranunculales

Author(s): Da-Cheng Hao*, Hao Chen, Pei-Gen Xiao and Tao Jiang*

Volume 23, Issue 3, 2022

Published on: 10 June, 2022

Page: [207 - 216] Pages: 10

DOI: 10.2174/1389202923666220527112929

Price: $65

Abstract

Background: The multiple isoforms are often generated from a single gene via Alternative Splicing (AS) in plants, and the functional diversity of the plant genome is significantly increased. Despite well-studied gene functions, the specific functions of isoforms are little known, therefore, the accurate prediction of isoform functions is exceedingly wanted.

Methods: Here we perform the first global analysis of AS of Dichocarpum, a medicinal genus of Ranunculales, by utilizing full-length transcriptome datasets of five Chinese endemic Dichocarpum taxa.

Multiple software were used to identify AS events, the gene function was annotated based on seven databases, and the protein-coding sequence of each AS isoform was translated into an amino acid sequence. The self-developed software DIFFUSE was used to predict the functions of AS isoforms.

Results: Among 8,485 genes with AS events, the genes with two isoforms were the most (6,038), followed by those with three isoforms and four isoforms. Retained intron (RI, 551) was predominant among 1,037 AS events, and alternative 3' splice sites and alternative 5' splice sites were second. The software DIFFUSE was effective in predicting functions of Dichocarpum isoforms, which have not been unearthed. When compared with the sequence alignment-based database annotations, DIFFUSE performed better in differentiating isoform functions. The DIFFUSE predictions on the terms GO:0003677 (DNA binding) and GO: 0010333 (terpene synthase activity) agreed with the biological features of transcript isoforms.

Conclusion: Numerous AS events were for the first time identified from full-length transcriptome datasets of five Dichocarpum taxa, and functions of AS isoforms were successfully predicted by the selfdeveloped software DIFFUSE. The global analysis of Dichocarpum AS events and predicting isoform functions can help understand the metabolic regulations of medicinal taxa and their pharmaceutical explorations.

Keywords: Alternative splicing, Dichocarpum, isoform function, DNA sequence, gene expression profile, deep learning.

« Previous
Graphical Abstract
[1]
Zhang, P.G.; Huang, S.Z.; Pin, A.L.; Adams, K.L. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis. Mol. Biol. Evol., 2010, 27(7), 1686-1697.
[http://dx.doi.org/10.1093/molbev/msq054] [PMID: 20185454]
[2]
Wei, X.P.; Li, H.J.; Che, P.; Guo, H.J.; Zhang, B.G.; Liu, H.T.; Qi, Y.D. Comparing chloroplast genomes of traditional Chinese herbs Schisandra sphenanthera and S. chinensis. Chin. Herb. Med., 2020, 12(3), 247-256.
[http://dx.doi.org/10.1016/j.chmed.2019.09.009]
[3]
Thatcher, S.R.; Zhou, W.; Leonard, A.; Wang, B.B.; Beatty, M.; Zastrow-Hayes, G.; Zhao, X.; Baumgarten, A.; Li, B. Genome-wide analysis of alternative splicing in Zea mays: Landscape and genetic regulation. Plant Cell, 2014, 26(9), 3472-3487.
[http://dx.doi.org/10.1105/tpc.114.130773] [PMID: 25248552]
[4]
Dong, C.; He, F.; Berkowitz, O.; Liu, J.; Cao, P.; Tang, M.; Shi, H.; Wang, W.; Li, Q.; Shen, Z.; Whelan, J.; Zheng, L. Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in rice (Oryza sativa). Plant Cell, 2018, 30(10), 2267-2285.
[http://dx.doi.org/10.1105/tpc.18.00051] [PMID: 30254029]
[5]
Marquez, Y.; Brown, J.W.; Simpson, C.; Barta, A.; Kalyna, M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res., 2012, 22(6), 1184-1195.
[http://dx.doi.org/10.1101/gr.134106.111] [PMID: 22391557]
[6]
Zheng, Y.; Luo, L.; Chen, Q.; Yang, D.; Gong, Y.; Yang, Y.; Qin, X.; Wang, Y.; Kong, X.; Yang, Y. Cold response transcriptome analysis of the alternative splicing events induced by the cold stress in D. catenatum. Int. J. Mol. Sci., 2022, 23(2), 981.
[http://dx.doi.org/10.3390/ijms23020981] [PMID: 35055168]
[7]
Rigo, R.; Bazin, J.R.M.; Crespi, M.; Charon, C.L. Alternative splicing in the regulation of plant-microbe interactions. Plant Cell Physiol., 2019, 60(9), 1906-1916.
[http://dx.doi.org/10.1093/pcp/pcz086] [PMID: 31106828]
[8]
Zhang, D.; Li, W.; Chen, Z.J.; Wei, F.G.; Liu, Y.L.; Gao, L.Z. SMRT- and Illumina-based RNA-seq analyses unveil the ginsinoside biosynthesis and transcriptomic complexity in Panax notoginseng. Sci. Rep., 2020, 10(1), 15310.
[http://dx.doi.org/10.1038/s41598-020-72291-1] [PMID: 32943706]
[9]
Ma, T.; Gao, H.; Zhang, D.; Sun, W.; Yin, Q.; Wu, L.; Zhang, T.; Xu, Z.; Wei, J.; Su, Y.; Shi, Y.; Ding, D.; Yuan, L.; Dong, G.; Leng, L.; Xiang, L.; Chen, S. Genome-wide analysis of light-regulated alternative splicing in Artemisia annua L. Front. Plant Sci., 2021, 12, 733505.
[http://dx.doi.org/10.3389/fpls.2021.733505] [PMID: 34659300]
[10]
Wu, B.; Li, Y.; Li, J.; Xie, Z.; Luan, M.; Gao, C.; Shi, Y.; Chen, S. Genome-wide analysis of alternative splicing and non-coding RNAs reveal complicated transcriptional regulation in Cannabis sativa L. Int. J. Mol. Sci., 2021, 22(21), 11989.
[http://dx.doi.org/10.3390/ijms222111989] [PMID: 34769433]
[11]
Liu, G.F.; Liu, J.J.; He, Z.R.; Wang, F.M.; Yang, H.; Yan, Y.F.; Gao, M.J.; Gruber, M.Y.; Wan, X.C.; Wei, S. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant Cell Environ., 2018, 41(1), 176-186.
[http://dx.doi.org/10.1111/pce.13080] [PMID: 28963730]
[12]
Xu, Q.; Zhu, J.; Zhao, S.; Hou, Y.; Li, F.; Tai, Y.; Wan, X.; Wei, C. Transcriptome profling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis. Front. Plant Sci., 2017, 8, 1205.
[http://dx.doi.org/10.3389/fpls.2017.01205] [PMID: 28744294]
[13]
Chen, L.; Shi, X.; Nian, B.; Duan, S.; Jiang, B.; Wang, X.; Lv, C.; Zhang, G.; Ma, Y.; Zhao, M. Alternative splicing regulation of anthocyanin biosynthesis in Camellia sinensis var. assamica unveiled by PacBio Iso-Seq. G3 (Bethesda), 2020, 10(8), 2713-2723.
[http://dx.doi.org/10.1534/g3.120.401451] [PMID: 32518082]
[14]
Li, Y.; Dai, C.; Hu, C.; Liu, Z.; Kang, C. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J., 2017, 90(1), 164-176.
[http://dx.doi.org/10.1111/tpj.13462] [PMID: 27997733]
[15]
Hao, C.; Yang, L. Drug metabolism and disposition diversity of Ranunculales phytometabolites: A systems perspective. Expert Opin. Drug Metab. Toxicol., 2016, 12(9), 1047-1065.
[http://dx.doi.org/10.1080/17425255.2016.1201068] [PMID: 27295138]
[16]
Li, M.; Hu, M.; Xiao, Y.; Wu, X.; Wang, J. The activation of gene expression and alternative splicing in the formation and evolution of allopolyploid Brassica napus. Hortic. Res., 2022. Epub ahead of print
[http://dx.doi.org/10.1093/hr/uhab075]
[17]
Hao, D.C.; He, C.N.; Shen, J.; Xiao, P.G. Anticancer chemodiversity of Ranunculaceae medicinal plants: Molecular mechanisms and functions. Curr. Genomics, 2017, 18(1), 39-59.
[http://dx.doi.org/10.2174/1389202917666160803151752] [PMID: 28503089]
[18]
Hao, D.C.; Zhang, Y.; He, C.N.; Xiao, P.G. Distribution of therapeutic efficacy of Ranunculales plants used by ethnic minorities on the phylogenetic tree of Chinese species. Evid. Based Complement. Alternat. Med., 2022, 2022, 9027727.
[http://dx.doi.org/10.1155/2022/9027727] [PMID: 35069772]
[19]
Xiao, P.G.; Wang, W.C. A new genus of Ranunculaceae—Dichocarpum. W. T. Wang et Hsiao. Acta Phytotaxon. Sin., 1964, 9, 315-333.
[20]
Xiang, K.L.; Zhao, L.; Erst, A.S.; Yu, S.X.; Jabbour, F.; Wang, W. A molecular phylogeny of Dichocarpum (Ranunculaceae): Implications for eastern Asian biogeography. Mol. Phylogenet. Evol., 2017, 107, 594-604.
[http://dx.doi.org/10.1016/j.ympev.2016.12.026] [PMID: 28025001]
[21]
Li, P.; Shen, J.; Li, Y.; Yao, H.; Yu, M.; He, C.; Xiao, P. Metabolite profiling based on UPLC-Q-TOF-MS/MS and the biological evaluation of medicinal plants of Chinese Dichocarpum (Ranunculaceae). Chem. Biodivers., 2021, 18(10), e2100432.
[http://dx.doi.org/10.1002/cbdv.202100432] [PMID: 34351062]
[22]
Hao, D.C.; Li, P.; Xiao, P.G.; He, C.N. Dissection of full-length transcriptome and metabolome of Dichocarpum (Ranunculaceae): Implications in evolution of specialized metabolism of Ranunculales medicinal plants. PeerJ, 2021, 9, e12428.
[http://dx.doi.org/10.7717/peerj.12428] [PMID: 34760397]
[23]
Chen, H.; Shaw, D.; Zeng, J.; Bu, D.; Jiang, T. DIFFUSE: Predicting isoform functions from sequences and expression profiles via deep learning. Bioinformatics, 2019, 35(14), i284-i294.
[http://dx.doi.org/10.1093/bioinformatics/btz367] [PMID: 31510699]
[24]
Trincado, J.L.; Entizne, J.C.; Hysenaj, G.; Singh, B.; Skalic, M.; Elliott, D.J.; Eyras, E. SUPPA2: Fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol., 2018, 19(1), 40.
[http://dx.doi.org/10.1186/s13059-018-1417-1] [PMID: 29571299]
[25]
Hao, C.; Chen, S.L.; Osbourn, A.; Kontogianni, V.G.; Liu, L.W.; Jordán, M.J. Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea. Gene, 2015, 558(1), 41-53.
[http://dx.doi.org/10.1016/j.gene.2014.12.043] [PMID: 25536164]
[26]
O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; Astashyn, A.; Badretdin, A.; Bao, Y.; Blinkova, O.; Brover, V.; Chetvernin, V.; Choi, J.; Cox, E.; Ermolaeva, O.; Farrell, C.M.; Goldfarb, T.; Gupta, T.; Haft, D.; Hatcher, E.; Hlavina, W.; Joardar, V.S.; Kodali, V.K.; Li, W.; Maglott, D.; Masterson, P.; McGarvey, K.M.; Murphy, M.R.; O’Neill, K.; Pujar, S.; Rangwala, S.H.; Rausch, D.; Riddick, L.D.; Schoch, C.; Shkeda, A.; Storz, S.S.; Sun, H.; Thibaud-Nissen, F.; Tolstoy, I.; Tully, R.E.; Vatsan, A.R.; Wallin, C.; Webb, D.; Wu, W.; Landrum, M.J.; Kimchi, A.; Tatusova, T.; DiCuccio, M.; Kitts, P.; Murphy, T.D.; Pruitt, K.D. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res., 2016, 44(D1), D733-D745.
[http://dx.doi.org/10.1093/nar/gkv1189] [PMID: 26553804]
[27]
Tatusov, R.L.; Natale, D.A.; Garkavtsev, I.V.; Tatusova, T.A.; Shankavaram, U.T.; Rao, B.S.; Kiryutin, B.; Galperin, M.Y.; Fedorova, N.D.; Koonin, E.V. The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res., 2001, 29(1), 22-28.
[http://dx.doi.org/10.1093/nar/29.1.22] [PMID: 11125040]
[28]
El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; Sonnhammer, E.L.L.; Hirsh, L.; Paladin, L.; Piovesan, D.; Tosatto, S.C.E.; Finn, R.D. The Pfam protein families database in 2019. Nucleic Acids Res., 2019, 47(D1), D427-D432.
[http://dx.doi.org/10.1093/nar/gky995] [PMID: 30357350]
[29]
Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 2016, 44(D1), D457-D462.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[30]
Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bairoch, A. UniProtKB/Swiss-Prot. Methods Mol. Biol., 2007, 406, 89-112.
[PMID: 18287689]
[31]
Gene Ontology Consortium. going forward. Nucleic Acids Res., 2015, 43, D1049-D1056.
[PMID: 25428369]
[32]
Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res., 2008, 36, W5-9.
[http://dx.doi.org/10.1093/nar/gkn201]
[33]
Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 2015, 12(1), 59-60.
[http://dx.doi.org/10.1038/nmeth.3176] [PMID: 25402007]
[34]
Eddy, S.R. Accelerated profile HMM searches. PLOS Comput. Biol., 2011, 7(10), e1002195.
[http://dx.doi.org/10.1371/journal.pcbi.1002195] [PMID: 22039361]
[35]
Shimizu, K.; Adachi, J.; Muraoka, Y. ANGLE: A sequencing errors resistant program for predicting protein coding regions in unfinished cDNA. J. Bioinform. Comput. Biol., 2006, 4(3), 649-664.
[http://dx.doi.org/10.1142/S0219720006002260] [PMID: 16960968]
[36]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[37]
Li, B.; Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1), 323.
[http://dx.doi.org/10.1186/1471-2105-12-323] [PMID: 21816040]
[38]
Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; Lanczycki, C.J.; Lu, F.; Marchler, G.H.; Song, J.S.; Thanki, N.; Wang, Z.; Yamashita, R.A.; Zhang, D.; Zheng, C.; Bryant, S.H. CDD: NCBI’s conserved domain database. Nucleic Acids Res., 2015, 43, D222-D226.
[http://dx.doi.org/10.1093/nar/gku1221] [PMID: 25414356]
[39]
Li, W.; Kang, S.; Liu, C.C.; Zhang, S.; Shi, Y.; Liu, Y.; Zhou, X.J. High-resolution functional annotation of human transcriptome: Predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res., 2014, 42(6), e39.
[http://dx.doi.org/10.1093/nar/gkt1362] [PMID: 24369432]
[40]
Shaw, D.; Chen, H.; Jiang, T. DeepIsoFun: A deep domain adaptation approach to predict isoform functions. Bioinformatics, 2019, 35(15), 2535-2544.
[http://dx.doi.org/10.1093/bioinformatics/bty1017] [PMID: 30535380]
[41]
Caniza, H.; Romero, A.E.; Heron, S.; Yang, H.; Devoto, A.; Frasca, M.; Mesiti, M.; Valentini, G.; Paccanaro, A. GOssTo: A stand-alone application and a web tool for calculating semantic similarities on the Gene Ontology. Bioinformatics, 2014, 30(15), 2235-2236.
[42]
Sun, Y.; Hou, H.; Song, H.; Lin, K.; Zhang, Z.; Hu, J.; Pang, E. The comparison of alternative splicing among the multiple tissues in cucumber. BMC Plant Biol., 2018, 18, 5.
[43]
Wang, M.; Wang, P.; Liang, F.; Ye, Z.; Li, J.; Shen, C.; Pei, L.; Wang, F.; Hu, J.; Tu, L.; Lindsey, K.; He, D.; Zhang, X. A global survey of alternative splicing in allopolyploid cotton: Landscape, complexity and regulation. New Phytol., 2018, 217(1), 163-178.
[http://dx.doi.org/10.1111/nph.14762] [PMID: 28892169]
[44]
Hao, C.; Ge, G.; Xiao, P.; Zhang, Y.; Yang, L. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. PLoS One, 2011, 6(6), e21220.
[http://dx.doi.org/10.1371/journal.pone.0021220] [PMID: 21731678]
[45]
Zander, M.; Lewsey, M.G.; Clark, N.M.; Yin, L.; Bartlett, A.; Saldierna Guzmán, J.P.; Hann, E.; Langford, A.E.; Jow, B.; Wise, A.; Nery, J.R.; Chen, H.; Bar-Joseph, Z.; Walley, J.W.; Solano, R.; Ecker, J.R. Integrated multi-omics framework of the plant response to jasmonic acid. Nat. Plants, 2020, 6(3), 290-302.
[http://dx.doi.org/10.1038/s41477-020-0605-7] [PMID: 32170290]
[46]
Hartmann, L.; Drewe-Boß, P.; Wießner, T.; Wagner, G.; Geue, S.; Lee, H.C.; Obermüller, D.M.; Kahles, A.; Behr, J.; Sinz, F.H.; Rätsch, G.; Wachter, A. Alternative splicing substantially diversifies the transcriptome during early photomorphogenesis and correlates with the energy availability in Arabidopsis. Plant Cell, 2016, 28(11), 2715-2734.
[http://dx.doi.org/10.1105/tpc.16.00508] [PMID: 27803310]
[47]
Moreno, J.E.; Shyu, C.; Campos, M.L.; Patel, L.C.; Chung, H.S.; Yao, J.; He, S.Y.; Howe, G.A. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. Plant Physiol., 2013, 162(2), 1006-1017.
[http://dx.doi.org/10.1104/pp.113.218164] [PMID: 23632853]
[48]
Shen, Y.; Zhou, Z.; Wang, Z.; Li, W.; Fang, C.; Wu, M.; Ma, Y.; Liu, T.; Kong, L.A.; Peng, D.L.; Tian, Z. Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell, 2014, 26(3), 996-1008.
[http://dx.doi.org/10.1105/tpc.114.122739] [PMID: 24681622]
[49]
Wang, T.; Wang, H.; Cai, D.; Gao, Y.; Zhang, H.; Wang, Y.; Lin, C.; Ma, L.; Gu, L. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). Plant J., 2017, 91(4), 684-699.
[http://dx.doi.org/10.1111/tpj.13597] [PMID: 28493303]
[50]
Han, Y.; Zhu, L.; Li, L.; Wang, Y.; Zhao, M.; Wang, K.; Sun, C.; Chen, J.; Liu, L.; Chen, P.; Lei, J.; Wang, Y.; Zhang, M. Characteristics of RNA alternative splicing and its potential roles in ginsenoside biosynthesis in a single plant of ginseng, Panax ginseng C.A. Meyer. Mol. Genet. Genomics, 2021, 296(4), 971-983.
[http://dx.doi.org/10.1007/s00438-021-01792-z] [PMID: 34008042]
[51]
Qiao, D.; Yang, C.; Chen, J.; Guo, Y.; Li, Y.; Niu, S.; Cao, K.; Chen, Z. Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis). Sci. Rep., 2019, 9(1), 2709.
[http://dx.doi.org/10.1038/s41598-019-39286-z] [PMID: 30804390]
[52]
Chen, T.W.; Wu, T.H.; Ng, W.V.; Lin, W.C. Interrogation of alternative splicing events in duplicated genes during evolution. BMC Genomics, 2011, 12(Suppl. 3), S16.
[http://dx.doi.org/10.1186/1471-2164-12-S3-S16] [PMID: 22369477]
[53]
Hao, D.C. Ranunculales medicinal plants: Biodiversity, chemodiversity and pharmacotherapy; Elsevier/Academic Press: London, 2018.
[54]
Wang, W.; Zhou, Y.; Wu, Y.; Dai, X.; Liu, Y.; Qian, Y.; Li, M.; Jiang, X.; Wang, Y.; Gao, L.; Xia, T. Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. J. Agric. Food Chem., 2018, 66(16), 4281-4293.
[http://dx.doi.org/10.1021/acs.jafc.8b00946] [PMID: 29606002]
[55]
Zhang, Y.; Xu, Z.; Ji, A.; Luo, H.; Song, J. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm. Sin. B, 2018, 8(2), 295-305.
[http://dx.doi.org/10.1016/j.apsb.2017.09.002] [PMID: 29719790]
[56]
Xu, Z.; Peters, R.J.; Weirather, J.; Luo, H.; Liao, B.; Zhang, X.; Zhu, Y.; Ji, A.; Zhang, B.; Hu, S.; Au, K.F.; Song, J.; Chen, S. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J., 2015, 82(6), 951-961.
[http://dx.doi.org/10.1111/tpj.12865] [PMID: 25912611]
[57]
Li, Y.; Mi, X.; Zhao, S.; Zhu, J.; Guo, R.; Xia, X.; Liu, L.; Liu, S.; Wei, C. Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genomics, 2020, 21(1), 65.
[http://dx.doi.org/10.1186/s12864-020-6491-6] [PMID: 31959105]
[58]
Lin, A.; Ma, J.; Xu, F.; Xu, W.; Jiang, H.; Zhang, H.; Qu, C.; Wei, L.; Li, J. Differences in alternative splicing between yellow and black-seeded rapeseed. Plants, 2020, 9(8), 977.
[http://dx.doi.org/10.3390/plants9080977] [PMID: 32752101]
[59]
Chao, Q.; Gao, Z.F.; Zhang, D.; Zhao, B.G.; Dong, F.Q.; Fu, C.X.; Liu, L.J.; Wang, B.C. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol. J., 2019, 17(1), 206-219.
[http://dx.doi.org/10.1111/pbi.12958] [PMID: 29851301]
[60]
Wang, L.; Jiang, X.; Wang, L.; Wang, W.; Fu, C.; Yan, X.; Geng, X. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis. BMC Genomics, 2019, 20(1), 456.
[http://dx.doi.org/10.1186/s12864-019-5832-9] [PMID: 31170917]
[61]
Gao, T.; Xu, Z.; Song, X.; Huang, K.; Li, Y.; Wei, J.; Zhu, X.; Ren, H.; Sun, C. Hybrid sequencing of full-length cDNA transcripts of the medicinal plant Scutellaria baicalensis. Int. J. Mol. Sci., 2019, 20(18), 4426.
[http://dx.doi.org/10.3390/ijms20184426] [PMID: 31505762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy