Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Research Article

Effect of Repetitive Transcranial Magnetic Stimulation in Inducing Weight Loss in Patients with Chronic Schizophrenia: A Randomized, Double-Blind Controlled 4-Week Study

Author(s): Xiuru Su, Xuan Wang, Xiuling Pan, Xuan Zhang, Xinyan Lu, Long Zhao, Yingnan Chen, Yujie Shang, Lin Zhu, Shulan Lu, Xiaolin Zhu, Fengchun Wu* and Meihong Xiu*

Volume 21, Issue 2, 2023

Published on: 08 December, 2022

Page: [417 - 423] Pages: 7

DOI: 10.2174/1570159X20666220524123315

Price: $65

Abstract

Objectives: There is emerging evidence that high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) may promote weight loss in individuals with obesity in the general population. However, no study has been conducted on patients with schizophrenia (SZ). This study evaluated the efficacy of 10Hz rTMS in reducing body weight in patients with chronic SZ.

Methods: Forty-seven SZ patients were randomly assigned to two groups: 10Hz rTMS or sham stimulation over DLPFC (applied once daily) for 20 consecutive treatments. Body weight was assessed at baseline, at the end of week 1, week 2, week 3 and week 4. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS) at baseline and at the end of week 4.

Results: We found that compared with patients in the sham group, 10Hz rTMS treatment significantly reduced body weight in patients with chronic SZ after a period of 4 weeks of stimulation. Interestingly, further analysis found that from the first week (5 sessions) of treatment, there was a significant difference in body weight between active and sham groups after controlling for baseline weight. However, active rTMS treatment did not improve the psychotic symptoms compared to sham stimulation.

Conclusion: Our results suggest that add-on HF rTMS could be an effective therapeutic strategy for body weight control in patients with chronic SZ.

Keywords: Schizophrenia, weight loss, rTMS, randomized controlled trial, obesity, positive and negative syndrome scale.

Graphical Abstract
[1]
Wang, Y.; Wang, D.; Chen, Y.; Fang, X.; Yu, L.; Zhang, C. A novel synthetic interfering peptide Tat-3L4F attenuates olanzapine-induced weight gain through disrupting crosstalk between serotonin receptor 2C and protein phosphatase and tensin homolog in rats. Int. J. Neuropsychopharmacol., 2020, 23(8), 481-490.
[http://dx.doi.org/10.1093/ijnp/pyaa001] [PMID: 32710540]
[2]
Strine, T.W.; Mokdad, A.H.; Balluz, L.S.; Gonzalez, O.; Crider, R.; Berry, J.T.; Kroenke, K. Depression and anxiety in the United States: Findings from the 2006 behavioral risk factor surveillance system. Psychiatr. Serv., 2008, 59(12), 1383-1390.
[http://dx.doi.org/10.1176/ps.2008.59.12.1383] [PMID: 19033164]
[3]
Annamalai, A.; Kosir, U.; Tek, C. Prevalence of obesity and diabetes in patients with schizophrenia. World J. Diabetes, 2017, 8(8), 390-396.
[http://dx.doi.org/10.4239/wjd.v8.i8.390] [PMID: 28861176]
[4]
Manu, P.; Dima, L.; Shulman, M.; Vancampfort, D.; De Hert, M.; Correll, C.U. Weight gain and obesity in schizophrenia: Epidemiology, pathobiology, and management. Acta Psychiatr. Scand., 2015, 132(2), 97-108.
[http://dx.doi.org/10.1111/acps.12445] [PMID: 26016380]
[5]
Hjorthøj, C.; Stürup, A.E.; McGrath, J.J.; Nordentoft, M. Years of potential life lost and life expectancy in schizophrenia: A systematic review and meta-analysis. Lancet Psychiatry, 2017, 4(4), 295-301.
[http://dx.doi.org/10.1016/S2215-0366(17)30078-0] [PMID: 28237639]
[6]
Correll, C.U.; Solmi, M.; Veronese, N.; Bortolato, B.; Rosson, S.; Santonastaso, P.; Thapa-Chhetri, N.; Fornaro, M.; Gallicchio, D.; Collantoni, E.; Pigato, G.; Favaro, A.; Monaco, F.; Kohler, C.; Vancampfort, D.; Ward, P.B.; Gaughran, F.; Carvalho, A.F.; Stubbs, B. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry, 2017, 16(2), 163-180.
[http://dx.doi.org/10.1002/wps.20420] [PMID: 28498599]
[7]
Hudson, J.I.; Hiripi, E.; Pope, H.G., Jr; Kessler, R.C. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatry, 2007, 61(3), 348-358.
[http://dx.doi.org/10.1016/j.biopsych.2006.03.040] [PMID: 16815322]
[8]
Swanson, S.A.; Crow, S.J.; Le Grange, D.; Swendsen, J.; Merikangas, K.R. Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement. Arch. Gen. Psychiatry, 2011, 68(7), 714-723.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.22] [PMID: 21383252]
[9]
Davis, C. A commentary on the associations among ‘food addiction’, binge eating disorder, and obesity: Overlapping conditions with idiosyncratic clinical features. Appetite, 2017, 115, 3-8.
[http://dx.doi.org/10.1016/j.appet.2016.11.001] [PMID: 27816464]
[10]
Stice, E.; Yokum, S. Gain in body fat is associated with increased striatal response to palatable food cues, whereas body fat stability is associated with decreased striatal response. J. Neurosci., 2016, 36(26), 6949-6956.
[http://dx.doi.org/10.1523/JNEUROSCI.4365-15.2016] [PMID: 27358453]
[11]
Orellana, G.; Slachevsky, A. Executive functioning in schizophrenia. Front. Psychiatry, 2013, 4, 35.
[http://dx.doi.org/10.3389/fpsyt.2013.00035] [PMID: 23805107]
[12]
MacDonald, A.W., III; Carter, C.S. Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. J. Abnorm. Psychol., 2003, 112(4), 689-697.
[http://dx.doi.org/10.1037/0021-843X.112.4.689] [PMID: 14674880]
[13]
Dipasquale, S.; Pariante, C.M.; Dazzan, P.; Aguglia, E.; McGuire, P.; Mondelli, V. The dietary pattern of patients with schizophrenia: A systematic review. J. Psychiatr. Res., 2013, 47(2), 197-207.
[http://dx.doi.org/10.1016/j.jpsychires.2012.10.005] [PMID: 23153955]
[14]
Spagnolo, P.A.; Goldman, D. Neuromodulation interventions for addictive disorders: Challenges, promise, and roadmap for future research. Brain, 2017, 140(5), aww284.
[http://dx.doi.org/10.1093/brain/aww284] [PMID: 28082299]
[15]
Lowe, C.J.; Hall, P.A.; Staines, W.R. The effects of continuous theta burst stimulation to the left dorsolateral prefrontal cortex on executive function, food cravings, and snack food consumption. Psychosom. Med., 2014, 76(7), 503-511.
[http://dx.doi.org/10.1097/PSY.0000000000000090] [PMID: 25215552]
[16]
Song, S.; Zilverstand, A.; Gui, W.; Li, H.; Zhou, X. Effects of single-session versus multi-session non-invasive brain stimulation on craving and consumption in individuals with drug addiction, eating disorders or obesity: A meta-analysis. Brain Stimul., 2019, 12(3), 606-618.
[http://dx.doi.org/10.1016/j.brs.2018.12.975] [PMID: 30612944]
[17]
Faulkner, G.; Cohn, T.; Remington, G. Interventions to reduce weight gain in schizophrenia. Schizophr. Bull., 2007, 33(3), 654-656.
[http://dx.doi.org/10.1093/schbul/sbm022] [PMID: 17449900]
[18]
Kim, S.H.; Chung, J.H.; Kim, T.H.; Lim, S.H.; Kim, Y.; Lee, Y.A.; Song, S.W. The effects of repetitive transcranial magnetic stimulation on eating behaviors and body weight in obesity: A randomized controlled study. Brain Stimul., 2018, 11(3), 528-535.
[http://dx.doi.org/10.1016/j.brs.2017.11.020] [PMID: 29326022]
[19]
Dougall, N.; Maayan, N.; Soares-Weiser, K.; McDermott, L.M.; McIntosh, A. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst. Rev., 2015, (8), CD006081.
[PMID: 26289586]
[20]
Homan, S.; Muscat, W.; Joanlanne, A.; Marousis, N.; Cecere, G.; Hofmann, L.; Ji, E.; Neumeier, M.; Vetter, S.; Seifritz, E.; Dierks, T.; Homan, P. Treatment effect variability in brain stimulation across psychiatric disorders: A meta-analysis of variance. Neurosci. Biobehav. Rev., 2021, 124, 54-62.
[http://dx.doi.org/10.1016/j.neubiorev.2020.11.033] [PMID: 33482243]
[21]
Kennedy, N.I.; Lee, W.H.; Frangou, S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: A meta-analysis of randomized controlled trials. Eur. Psychiatry, 2018, 49, 69-77.
[http://dx.doi.org/10.1016/j.eurpsy.2017.12.025] [PMID: 29413808]
[22]
Slotema, C.W.; Aleman, A.; Daskalakis, Z.J.; Sommer, I.E. Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations: Update and effects after one month. Schizophr. Res., 2012, 142(1-3), 40-45.
[http://dx.doi.org/10.1016/j.schres.2012.08.025] [PMID: 23031191]
[23]
Xiu, M.H.; Guan, H.Y.; Zhao, J.M.; Wang, K.Q.; Pan, Y.F.; Su, X.R.; Wang, Y.H.; Guo, J.M.; Jiang, L.; Liu, H.Y.; Sun, S.G.; Wu, H.R.; Geng, H.S.; Liu, X.W.; Yu, H.J.; Wei, B.C.; Li, X.P.; Trinh, T.; Tan, S.P.; Zhang, X.Y. Cognitive enhancing effect of high-frequency neuronavigated rTMS in chronic schizophrenia patients with predominant negative symptoms: A double-blind controlled 32-week follow-up study. Schizophr. Bull., 2020, 46(5), 1219-1230.
[http://dx.doi.org/10.1093/schbul/sbaa035] [PMID: 32185388]
[24]
Guan, H.Y.; Zhao, J.M.; Wang, K.Q.; Su, X.R.; Pan, Y.F.; Guo, J.M.; Jiang, L.; Wang, Y.H.; Liu, H.Y.; Sun, S.G.; Wu, H.R.; Ren, Y.P.; Geng, H.S.; Liu, X.W.; Yu, H.J.; Wei, B.C.; Li, X.P.; Wu, H.E.; Tan, S.P.; Xiu, M.H.; Zhang, X.Y. High-frequency neuronavigated rTMS effect on clinical symptoms and cognitive dysfunction: A pilot double-blind, randomized controlled study in Veterans with schizophrenia. Transl. Psychiatry, 2020, 10(1), 79.
[http://dx.doi.org/10.1038/s41398-020-0745-6] [PMID: 32098946]
[25]
Ferrulli, A.; Macrì, C.; Terruzzi, I.; Massarini, S.; Ambrogi, F.; Adamo, M.; Milani, V.; Luzi, L. Weight loss induced by deep transcranial magnetic stimulation in obesity: A randomized, double‐blind, sham‐controlled study. Diabetes Obes. Metab., 2019, 21(8), 1849-1860.
[http://dx.doi.org/10.1111/dom.13741] [PMID: 30957981]
[26]
Kim, S.H.; Chung, J.; Kim, T.H.; Lim, S.H.; Kim, Y.; Eun, Y.M.; Lee, Y.A. The effects of repetitive transcranial magnetic stimulation on body weight and food consumption in obese adults: A randomized controlled study. Brain Stimul., 2019, 12(6), 1556-1564.
[http://dx.doi.org/10.1016/j.brs.2019.07.020] [PMID: 31378600]
[27]
Monem, R.G.; Okusaga, O.O. Repetitive transcranial magnetic stimulation: A potential treatment for obesity in patients with schizophrenia. Behav. Sci. (Basel), 2021, 11(6), 86.
[http://dx.doi.org/10.3390/bs11060086] [PMID: 34208079]
[28]
Smucny, J.; Dienel, S.J.; Lewis, D.A.; Carter, C.S. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology, 2022, 47(1), 292-308.
[http://dx.doi.org/10.1038/s41386-021-01089-0] [PMID: 34285373]
[29]
Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci., 2001, 24(1), 167-202.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.167] [PMID: 11283309]
[30]
Vainik, U.; García-García, I.; Dagher, A. Uncontrolled eating: A unifying heritable trait linked with obesity, overeating, personality and the brain. Eur. J. Neurosci., 2019, 50(3), 2430-2445.
[http://dx.doi.org/10.1111/ejn.14352] [PMID: 30667547]
[31]
Lowe, C.J.; Reichelt, A.C.; Hall, P.A. The prefrontal cortex and obesity: A health neuroscience perspective. Trends Cogn. Sci., 2019, 23(4), 349-361.
[http://dx.doi.org/10.1016/j.tics.2019.01.005] [PMID: 30824229]
[32]
Minzenberg, M.J.; Laird, A.R.; Thelen, S.; Carter, C.S.; Glahn, D.C. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry, 2009, 66(8), 811-822.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.91] [PMID: 19652121]
[33]
Callicott, J.H.; Bertolino, A.; Mattay, V.S.; Langheim, F.J.; Duyn, J.; Coppola, R.; Goldberg, T.E.; Weinberger, D.R. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex, 2000, 10(11), 1078-1092.
[http://dx.doi.org/10.1093/cercor/10.11.1078] [PMID: 11053229]
[34]
Peterchev, A.V.; Wagner, T.A.; Miranda, P.C.; Nitsche, M.A.; Paulus, W.; Lisanby, S.H.; Pascual-Leone, A.; Bikson, M. Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimul., 2012, 5(4), 435-453.
[http://dx.doi.org/10.1016/j.brs.2011.10.001] [PMID: 22305345]
[35]
Ridding, M.C.; Rothwell, J.C. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat. Rev. Neurosci., 2007, 8(7), 559-567.
[http://dx.doi.org/10.1038/nrn2169] [PMID: 17565358]
[36]
Cho, S.S.; Strafella, A.P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One, 2009, 4(8), e6725.
[http://dx.doi.org/10.1371/journal.pone.0006725] [PMID: 19696930]
[37]
Su, H.; Zhong, N.; Gan, H.; Wang, J.; Han, H.; Chen, T.; Li, X.; Ruan, X.; Zhu, Y.; Jiang, H.; Zhao, M. High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: A randomised clinical trial. Drug Alcohol Depend., 2017, 175, 84-91.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.01.037] [PMID: 28410525]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy