Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Structural and Functional Analyses of SARS COV-2 RNA-dependent RNA Polymerase Protein and Complementary vs. Synthetic Drugs against COVID-19 and the Exploration of Binding Sites for Docking, Molecular Dynamics Simulation, and Density Functional Theory Studies

Author(s): Ahsanullah Unar, Mahrukh Imtiaz, Truong Tan Trung, Maria Rafiq, Muhammad Qaiser Fatmi* and Tassadaq Hussain Jafar*

Volume 17, Issue 7, 2022

Published on: 27 August, 2022

Page: [632 - 656] Pages: 25

DOI: 10.2174/1574893617666220524112038

Price: $65

Abstract

Background: RNA-dependent RNA polymerase (RdRp) contributes to the transcription cycle of the SARS-CoV-2 virus with the possible assistance of nsp-7-8 cofactors.

Objective: The study aims to investigate the viral protective effects of complementary drugs in computational approaches that use viral proteins.

Methods: For the in silico studies, the identified compounds were subjected to molecular docking with RdRp protein followed by structural and functional analyses, density functional theory (DFT), and molecular dynamics (MD) simulation. The 3D structure of RdRp (6m71 PDB ID) was obtained from the protein databank as a target receptor. After reviewing the literature, 20 complementary and synthetic drugs were selected for docking studies. The top compounds were used for DFT and MD simulation at 200 ns. DFT of the compounds was calculated at B3LYP/6-311G (d, p) based on chemical properties, polarizability, and first-order hyperpolarizability. Results were analyzed using USCF Chimera, Discovery Studio, LigPlot, admetSAR, and mCule.

Results: Computational studies confirmed the potent interaction of the complementary drugs forsythiaside A, rhoifolin, and pectolinarin with RdRp. Common potential residues of RdRp (i.e., Thr-556, Tyr- 619, Lys-621, Arg-624, Asn-691, and Asp-760) were observed for all three docking complexes with hydrogen bonding. Docking analysis showed strong key interactions, hydrogen bonding, and binding affinities (-8.4 to −8.5 kcal/mol) for these ligands over the FDA-approved drugs (−7.4 to −7.6 kcal/mol). Docking and simulation studies showed these residues in the binding domains.

Conclusion: Significant outcomes of novel molecular interactions in docking, simulation, DFT, and binding domains in the structural and functional analyses of RdRp were observed.

Keywords: In silico, Coronavirus disease 2019, molecular docking, complementary drugs, food and drug administation– approved drugs, RNA-dependent RNA polymerase, density functional theory, molecular dynamics simulation, molecular mechanics poisson-boltzmann surface area binding energy.

Graphical Abstract
[1]
Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT. Host factors in positive-strand RNA virus genome replication. J Virol 2003; 77(15): 8181-6.
[http://dx.doi.org/10.1128/JVI.77.15.8181-8186.2003] [PMID: 12857886]
[2]
Salonen A, Ahola T, Kääriäinen L. Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 2005; 285: 139-73.
[http://dx.doi.org/10.1007/3-540-26764-6_5] [PMID: 15609503]
[3]
te Velthuis AJW, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 2010; 38(1): 203-14.
[http://dx.doi.org/10.1093/nar/gkp904] [PMID: 19875418]
[4]
Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 2002; 296(5571): 1270-3.
[http://dx.doi.org/10.1126/science.1069132] [PMID: 12016304]
[5]
Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 1998; 95(26): 15623-8.
[http://dx.doi.org/10.1073/pnas.95.26.15623] [PMID: 9861020]
[6]
den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 2010; 64(1): 241-56.
[http://dx.doi.org/10.1146/annurev.micro.112408.134012] [PMID: 20825348]
[7]
Welsch S, Miller S, Romero-Brey I, et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 2009; 5(4): 365-75.
[http://dx.doi.org/10.1016/j.chom.2009.03.007] [PMID: 19380115]
[8]
Bienz K, Egger D, Troxler M, Pasamontes L. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol 1990; 64(3): 1156-63.
[http://dx.doi.org/10.1128/jvi.64.3.1156-1163.1990] [PMID: 2154600]
[9]
Bienz K, Egger D, Pfister T, Troxler M. Structural and functional characterization of the poliovirus replication complex. J Virol 1992; 66(5): 2740-7.
[http://dx.doi.org/10.1128/jvi.66.5.2740-2747.1992] [PMID: 1313898]
[10]
Egger D, Teterina N, Ehrenfeld E, Bienz K. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 2000; 74(14): 6570-80.
[http://dx.doi.org/10.1128/JVI.74.14.6570-6580.2000] [PMID: 10864671]
[11]
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[12]
Chan JF-W, Yip CC, To KK, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol 2020; 58(5): e00310-20.
[http://dx.doi.org/10.1128/JCM.00310-20] [PMID: 32132196]
[13]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[14]
Subissi L, Posthuma CC, Collet A, et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc Natl Acad Sci USA 2014; 111(37): E3900-9.
[http://dx.doi.org/10.1073/pnas.1323705111] [PMID: 25197083]
[15]
Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, et al. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res 2015; 43(17): 8416-34.
[http://dx.doi.org/10.1093/nar/gkv838] [PMID: 26304538]
[16]
Gong P, Peersen OB. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 2010; 107(52): 22505-10.
[http://dx.doi.org/10.1073/pnas.1007626107] [PMID: 21148772]
[17]
Mayrose I, Graur D, Ben-Tal N, Pupko T. Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior. Mol Biol Evol 2004; 21(9): 1781-91.
[http://dx.doi.org/10.1093/molbev/msh194] [PMID: 15201400]
[18]
Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016; 44(W1): W344-50.
[http://dx.doi.org/10.1093/nar/gkw408] [PMID: 27166375]
[19]
Landau M, Mayrose I, Rosenberg Y, et al. ConSurf 2005: The projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 2005; 33(Web Server issue) (Suppl. 2): W299-302.
[http://dx.doi.org/10.1093/nar/gki370] [PMID: 15980475]
[20]
Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res 2015; 43(Database issue): D222-6.
[http://dx.doi.org/10.1093/nar/gku1221] [PMID: 25414356]
[21]
Kumar S, Mitnik C, Valente G, Floyd-Smith G. Expansion and molecular evolution of the interferon-induced 2′-5′ oligoadenylate synthetase gene family. Mol Biol Evol 2000; 17(5): 738-50.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a026352] [PMID: 10779534]
[22]
Nei M, Kumar S. Molecular evolution and phylogenetics. New York, NY: Oxford University Press 2000.
[23]
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406-25.
[PMID: 3447015]
[24]
Shimodaira H, Hasegawa M. CONSEL: For assessing the confidence of phylogenetic tree selection. Bioinformatics 2001; 17(12): 1246-7.
[http://dx.doi.org/10.1093/bioinformatics/17.12.1246] [PMID: 11751242]
[25]
Sussman JL, Lin D, Jiang J, et al. Protein data bank (PDB): Database of three-dimensional structural information of biological macromolecules Acta Crystallogr D Biol Crystallogr 1998; 54(Pt 6 Pt 1): 1078-84.
[http://dx.doi.org/10.1107/S0907444998009378] [PMID: 10089483]
[26]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[27]
Hinchliffe ACS. Chem3D Pro 3.5 and CS MOPAC Pro (Mac and Windows) UK. Electron J Theor Chem 1997; 2(1): 215-7.
[http://dx.doi.org/10.1002/ejtc.54]
[28]
Mills N. ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www. cambridgesoft. com. Commercial Price: 1910fordownload, 2150 for CD-ROM; Academic Price: 710fordownload, 800 for CD-ROM. 2006, ACS Publications 2006. Available from: www.cambridgesoft.com
[29]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[30]
Kiss R, Sandor M, Szalai FA. A public web service for drug discovery. J Cheminform 2012; 4(S1): 17. http://Mcule.com
[http://dx.doi.org/10.1186/1758-2946-4-S1-P17]
[31]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[32]
Gao Y, Yan L, Huang Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020; 368(6492): 779-82.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[33]
Biovia DS. Discovery studio visualizer. San Diego, CA, USA 2017; p. 936.
[34]
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988; 38(6): 3098-100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[35]
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988; 37(2): 785-9.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[36]
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Rev C01. Wallingford 2016. Available from: gaussian.com/Citation/
[37]
Dennington R, Keith TA, Millam JM. GaussView, version 60 16. Shawnee Mission, KS: J Semichem Inc. 2016.
[38]
Dani VS, Ramakrishnan C, Varadarajan R. MODIP revisited: Re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. Protein Eng 2003; 16(3): 187-93.
[http://dx.doi.org/10.1093/proeng/gzg024] [PMID: 12702798]
[39]
Anandakrishnan R, Aguilar B, Onufriev AV H. ++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012; 40(Web Server issue): W537-41.
[http://dx.doi.org/10.1093/nar/gks375] [PMID: 22570416]
[40]
Lee J, Cheng X, Swails JM, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 2016; 12(1): 405-13.
[http://dx.doi.org/10.1021/acs.jctc.5b00935] [PMID: 26631602]
[41]
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem 2008; 29(11): 1859-65.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[42]
Qureshi KA, Al Nasr I, Koko WS, et al. In vitro and in silico approaches for the antileishmanial activity evaluations of actinomycins isolated from novel streptomyces smyrnaeus strain UKAQ_23. Antibiotics (Basel) 2021; 10(8): 887.
[http://dx.doi.org/10.3390/antibiotics10080887] [PMID: 34438937]
[43]
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1: 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[44]
Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat Methods 2017; 14(1): 71-3.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[45]
Genheden S, Kuhn O, Mikulskis P, Hoffmann D, Ryde U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 2012; 52(8): 2079-88.
[http://dx.doi.org/10.1021/ci3001919] [PMID: 22817270]
[46]
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10(5): 449-61.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[47]
Fleming I. Frontier orbitals and organic chemical reactions. Wiley 1977, London, (249)
[48]
Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci USA 1986; 83(22): 8440-1.
[http://dx.doi.org/10.1073/pnas.83.22.8440] [PMID: 16578791]
[49]
Xavier S, Periandy S, Ramalingam S. NBO, conformational, NLO, HOMO–LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim Acta A Mol Biomol Spectrosc 2015; 137: 306-20.
[http://dx.doi.org/10.1016/j.saa.2014.08.039] [PMID: 25228039]
[49]
Xavier S, Periandy S, Ramalingam S. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim Acta A Mol Biomol Spectrosc 2015; 137: 306-20.
[http://dx.doi.org/10.1016/j.saa.2014.08.039] [PMID: 25228039]
[50]
Mohammad A, Al-Mulla F, Wei DQ, Abubaker J. Remdesivir MD simulations suggest a more favourable binding to SARS-CoV-2 RNA dependent RNA polymerase mutant P323L than wild-type. Biomolecules 2021; 11(7): 919.
[http://dx.doi.org/10.3390/biom11070919] [PMID: 34206274]
[51]
Wakchaure PD, Ghosh S, Ganguly B. Revealing the inhibition mechanism of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by remdesivir and nucleotide analogues: A molecular dynamics simulation study. J Phys Chem B 2020; 124(47): 10641-52.
[http://dx.doi.org/10.1021/acs.jpcb.0c06747] [PMID: 33190493]
[52]
Itoh SG, Tanimoto S, Okumura H. Dynamic properties of SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases studied by molecular dynamics simulations. Chem Phys Lett 2021; 778: 138819.
[http://dx.doi.org/10.1016/j.cplett.2021.138819] [PMID: 34127868]
[53]
Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020; 248: 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[54]
Elkarhat Z, Charoute H, Elkhattabi L, Barakat A, Rouba H. Potential inhibitors of SARS-cov-2 RNA dependent RNA polymerase protein: Molecular docking, molecular dynamics simulations and MM-PBSA analyses. J Biomol Struct Dyn 2022; 40(1): 361-74.
[http://dx.doi.org/10.1080/07391102.2020.1813628] [PMID: 32873176]
[55]
Myers S, Baker A. Drug discovery--an operating model for a new era. Nat Biotechnol 2001; 19(8): 727-30.
[http://dx.doi.org/10.1038/90765] [PMID: 11479559]
[56]
Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. Acta Pharmacol Sin 2012; 33(9): 1131-40.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[57]
Khan A, Khan M, Saleem S, et al. Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products. Interdiscip Sci 2020; 12(3): 335-48.
[http://dx.doi.org/10.1007/s12539-020-00381-9] [PMID: 32617855]
[58]
Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm 2013; 4: 17-31.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[59]
Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn 2021; 39(9): 3194-203.
[http://dx.doi.org/10.1080/07391102.2020.1761881] [PMID: 32340551]
[60]
Mirza SB, Ekhteiari Salmas R, Fatmi MQ, Durdagi S. Discovery of Klotho peptide antagonists against Wnt3 and Wnt3a target proteins using combination of protein engineering, protein-protein docking, peptide docking and molecular dynamics simulations. J Enzyme Inhib Med Chem 2017; 32(1): 84-98.
[http://dx.doi.org/10.1080/14756366.2016.1235569] [PMID: 27766889]
[61]
Fatmi MQ, Ai R, Chang CE. Synergistic regulation and ligand-induced conformational changes of tryptophan synthase. Biochemistry 2009; 48(41): 9921-31.
[http://dx.doi.org/10.1021/bi901358j] [PMID: 19764814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy