Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Medicinal Plants with Anti-dengue and Immunomodulatory Activity

Author(s): Bandt-Pulido Juan-Pablo, Pedroza-Escobar David*, Salas-Rojas Mónica, Sharma Ashutosh, Nuñez-Avellaneda Daniel, Delgadillo-Guzmán Dealmy, García-Garza Rubén, Velázquez-Gauna Sergio-Everardo, Ramirez-Moreno Agustina, Vega-Menchaca María-Del-Carmen, Hernández-Herrera Alejandro-David and Castillo-Maldonado Irais*

Volume 24, Issue 4, 2023

Published on: 14 September, 2022

Page: [486 - 494] Pages: 9

DOI: 10.2174/1389201023666220520110204

Price: $65

Abstract

Dengue fever is a disease with a high mortality rate around the world, which is an important issue for the health authorities of many countries. As a result of this, the search for new drugs that are effective to combat this disease has become necessary. Medicinal plants have been used since ancient times to treat a wide list of diseases, including dengue fever. In this mini-review, 12 medicinal plants with known pharmacological properties are presented, which have been used in studies to evaluate their antiviral activity in vitro tests. Among the chemical agents involved in the antiviral response, found in the alcoholic extracts of these plants, are flavonoids, terpenes and alkaloids, which within the mechanism of action in blocking viral replication are considered entry inhibitors, fusion inhibitors, translation inhibitors and protease inhibitors. The present work shows whether these plants possess antiviral activity and the chemical compounds involved in this response.

Keywords: Dengue virus, antiviral activities, immunomodulatory activity, medicine plants, RNA, population.

Graphical Abstract
[1]
Behnam, M.A.; Nitsche, C.; Boldescu, V.; Klein, C.D. The medicinal chemistry of dengue virus. J. Med. Chem., 2016, 59(12), 5622-5649.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01653] [PMID: 26771861]
[2]
Sutherland, M.R.; Simon, A.Y.; Serrano, K.; Schubert, P.; Acker, J.P.; Pryzdial, E.L. Dengue virus persists and replicates during storage of platelet and red blood cell units. Transfusion, 2016, 56(5), 1129-1137.
[http://dx.doi.org/10.1111/trf.13454] [PMID: 26779802]
[3]
Pizarro, D. Dengue, dengue hemorrágico. Acta Pediátrica Costarricense, 2009, 21(1), 08-17.
[4]
Villar, L.; Dayan, G.H.; Arredondo-García, J.L.; Rivera, D.M.; Cunha, R.; Deseda, C.; Reynales, H.; Costa, M.S.; Morales-Ramírez, J.O.; Carrasquilla, G.; Rey, L.C.; Dietze, R.; Luz, K.; Rivas, E.; Miranda Montoya, M.C.; Cortés Supelano, M.; Zambrano, B.; Langevin, E.; Boaz, M.; Tornieporth, N.; Saville, M.; Noriega, F. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med., 2015, 372(2), 113-123.
[http://dx.doi.org/10.1056/NEJMoa1411037] [PMID: 25365753]
[5]
Tongluan, N.; Ramphan, S.; Wintachai, P.; Jaresitthikunchai, J.; Khongwichit, S.; Wikan, N.; Rajakam, S.; Yoksan, S.; Wongsiriroj, N.; Roytrakul, S.; Smith, D.R. Involvement of fatty acid synthase in dengue virus infection. Virol. J., 2017, 14(1), 28.
[http://dx.doi.org/10.1186/s12985-017-0685-9] [PMID: 28193229]
[6]
Choy, M.M.; Zhang, S.L.; Costa, V.V.; Tan, H.C.; Horrevorts, S.; Ooi, E.E. Proteasome inhibition suppresses dengue virus egress in antibody dependent infection. PLoS Negl. Trop. Dis., 2015, 9(11), e0004058.
[http://dx.doi.org/10.1371/journal.pntd.0004058] [PMID: 26565697]
[7]
Endy, T.P.; Yoon, I.K.; Mammen, M.P. Prospective cohort studies of dengue viral transmission and severity of disease. Curr. Top. Microbiol. Immunol., 2010, 338, 1-13.
[http://dx.doi.org/10.1007/978-3-642-02215-9_1] [PMID: 19802574]
[8]
Velandia, M.L.; Castellanos, J.E. Dengue virus: structure and viral cycle. Infection, 2011, 15(1), 33-43.
[http://dx.doi.org/10.1016/S0123-9392(11)70074-1]
[9]
Qaddir, I.; Rasool, N.; Hussain, W.; Mahmood, S. Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies. J. Vector Borne Dis., 2017, 54(3), 255-262.
[http://dx.doi.org/10.4103/0972-9062.217617] [PMID: 29097641]
[10]
Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990, 44(1), 649-688.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.003245] [PMID: 2174669]
[11]
Kyle, J.L.; Harris, E. Global spread and persistence of dengue. Annu. Rev. Microbiol., 2008, 62, 71-92.
[http://dx.doi.org/10.1146/annurev.micro.62.081307.163005] [PMID: 18429680]
[12]
McBride, W.J.; Bielefeldt-Ohmann, H. Dengue viral infections; pathogenesis and epidemiology. Microbes Infect., 2000, 2(9), 1041-1050.
[http://dx.doi.org/10.1016/S1286-4579(00)01258-2] [PMID: 10967284]
[13]
Holmes, E.C. The Evolution and Emergence of RNA Viruses; Oxford University Press 2009, 16(5), 254.
[14]
Malagon, J.N.; Padilla, J.C.; Alvarez, D.P.R. guide comprehensive clinical care of patients with dengue. Infectio., 2012, 15(4), 293-301.
[http://dx.doi.org/10.1016/S0123-9392(11)70744-5]
[15]
Lok, S.M. The interplay of dengue virus morphological diversity and human antibodies. Trends Microbiol., 2016, 24(4), 284-293.
[http://dx.doi.org/10.1016/j.tim.2015.12.004] [PMID: 26747581]
[16]
Lei, H.Y.; Yeh, T.M.; Liu, H.S.; Lin, Y.S.; Chen, S.H.; Liu, C.C. Immunopathogenesis of dengue virus infection. J. Biomed. Sci., 2001, 8(5), 377-388.
[http://dx.doi.org/10.1007/BF02255946] [PMID: 11549879]
[17]
Gan, C.S.; Chong, S.Y.; Lum, L.C.S.; Lee, W.S. Regular paracetamol in severe dengue: A lethal combination? Singapore Med. J., 2013, 54(2), e35-e37.
[http://dx.doi.org/10.11622/smedj.2013037] [PMID: 23462840]
[18]
Paessler, S.; Walker, D.H. Pathogenesis of the viral hemorrhagic fevers. Annual review of pathology. Mech. of Dis., 2013, 8, 411-440.
[http://dx.doi.org/10.1146/annurev-pathol-020712-164041]
[19]
Thomas, S.J.; Yoon, I.K. A review of Dengvaxia®: Development to deployment. Hum. Vaccin. Immunother., 2019, 15(10), 2295-2314.
[http://dx.doi.org/10.1080/21645515.2019.1658503] [PMID: 31589551]
[20]
Reyna-Margarita, H.R.; Irais, C.M.; Mario-Alberto, R.G.; Agustina, R.M.; Luis-Benjamín, S.G.; David, P.E. Plant phenolics and lectins as vaccine adjuvants. Curr. Pharm. Biotechnol., 2019, 20(15), 1236-1243.
[http://dx.doi.org/10.2174/1389201020666190716110705] [PMID: 31333121]
[21]
Deng, S.Q.; Yang, X.; Wei, Y.; Chen, J.T.; Wang, X.J.; Peng, H.J. A review on dengue vaccine development. Vaccines, (Basel), 2020, 8(1), E63.
[http://dx.doi.org/10.3390/vaccines8010063] [PMID: 32024238]
[22]
Hong, L.; Guo, Z.; Huang, K.; Wei, S.; Liu, B.; Meng, S.; Long, C. Ethnobotanical study on medicinal plants used by Maonan people in China. J. Ethnobiol. Ethnomed., 2015, 11(1), 32.
[http://dx.doi.org/10.1186/s13002-015-0019-1] [PMID: 25925830]
[23]
Perera, S.D.; Jayawardena, U.A.; Jayasinghe, C.D. Potential use of Euphorbia hirta for dengue: A systematic review of scientific evidence. J. Trop. Med., 2018, 2018, 2048530.
[http://dx.doi.org/10.1155/2018/2048530] [PMID: 29849664]
[24]
Saraf, M.; Kavimandan, B. Dengue fever: Role of Carica papaya L. Int. J. Health Sci. Res., 2018, 8(1), 249-258.
[25]
Rosmalena, R.; Elya, B.; Dewi, B.E.; Fithriyah, F.; Desti, H.; Angelina, M.; Hanafi, M.; Lotulung, P.D.; Prasasty, V.D.; Seto, D. The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens, 2019, 8(2), 85.
[http://dx.doi.org/10.3390/pathogens8020085] [PMID: 31234495]
[26]
Tang, L.I.; Ling, A.P.; Koh, R.Y.; Chye, S.M.; Voon, K.G. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement. Altern. Med., 2012, 12(1), 3.
[http://dx.doi.org/10.1186/1472-6882-12-3] [PMID: 22244370]
[27]
Flechas, M.C.; Ocazionez, R.E.; Stashenko, E.E. Evaluation of in vitro antiviral activity of essential oil compounds against dengue virus. Pharmacogn. J., 2018, 10(1), 55-59.
[http://dx.doi.org/10.5530/pj.2018.1.11]
[28]
Prabha, B.; Neethu, S.; Krishnan, S.L.; Sherin, D.R.; Madhukrishnan, M.; Ananthakrishnan, R.; Rameshkumar, K.B.; Manojkumar, T.K.; Jayamurthy, P.; Radhakrishnan, K.V. Antidiabetic potential of phytochemicals isolated from the stem bark of Myristica fatua Houtt. var. magnifica (Bedd.). Sinclair. Bioorg. Med. Chem., 2018, 26(12), 3461-3467.
[http://dx.doi.org/10.1016/j.bmc.2018.05.020] [PMID: 29789207]
[29]
De Maio, F.A.; Risso, G.; Iglesias, N.G.; Shah, P.; Pozzi, B.; Gebhard, L.G.; Mammi, P.; Mancini, E.; Yanovsky, M.J.; Andino, R.; Krogan, N.; Srebrow, A.; Gamarnik, A.V. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog., 2016, 12(8), e1005841.
[http://dx.doi.org/10.1371/journal.ppat.1005841] [PMID: 27575636]
[30]
Oladeji, O.S.; Adelowo, F.E.; Ayodele, D.T.; Odelade, K.A. Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci. Am., 2019, 6e00137.
[31]
Khwairakpam, A.D.; Damayenti, Y.D.; Deka, A.; Monisha, J.; Roy, N.K.; Padmavathi, G.; Kunnumakkara, A.B. Acorus calamus: A bio-reserve of medicinal values. J. Basic Clin. Physiol. Pharmacol., 2018, 29(2), 107-122.
[http://dx.doi.org/10.1515/jbcpp-2016-0132] [PMID: 29389665]
[32]
Kim, H.; Han, T.H.; Lee, S.G. Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. J. Ethnopharmacol., 2009, 122(1), 149-156.
[http://dx.doi.org/10.1016/j.jep.2008.12.011] [PMID: 19146941]
[33]
Dai, Y.; Chen, S.-R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. in Food Sci. and Nutr., 2019, 59(sup1), S17-S29.
[34]
Mussard, E.; Cesaro, A.; Lespessailles, E.; Legrain, B.; Berteina-Raboin, S.; Toumi, H. Andrographolide, a natural antioxidant: An update. Antioxidants, 2019, 8(12), 571.
[http://dx.doi.org/10.3390/antiox8120571] [PMID: 31756965]
[35]
Chao, W.W.; Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med., 2010, 5(1), 17.
[http://dx.doi.org/10.1186/1749-8546-5-17] [PMID: 20465823]
[36]
Burgos, R.A.; Seguel, K.; Perez, M.; Meneses, A.; Ortega, M.; Guarda, M.I.; Loaiza, A.; Hancke, J.L. Andrographolide inhibits IFN-γ and IL-2 cytokine production and protects against cell apoptosis. Planta Med., 2005, 71(5), 429-434.
[http://dx.doi.org/10.1055/s-2005-864138] [PMID: 15931581]
[37]
Semiz, A.; Ozgun Acar, O.; Cetin, H.; Semiz, G.; Sen, A. Suppression of inflammatory cytokines expression with bitter melon (Momordica charantia) in TNBS-instigated ulcerative colitis. J. Transl. Int. Med., 2020, 8(3), 177-187.
[http://dx.doi.org/10.2478/jtim-2020-0027] [PMID: 33062594]
[38]
Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process., 2011, 89(3), 217-233.
[http://dx.doi.org/10.1016/j.fbp.2010.04.008]
[39]
Grover, J.K.; Yadav, S.P. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol., 2004, 93(1), 123-132.
[http://dx.doi.org/10.1016/j.jep.2004.03.035] [PMID: 15182917]
[40]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[41]
Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon-A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants, 2020, 9(1), 119.
[http://dx.doi.org/10.3390/plants9010119] [PMID: 31963590]
[42]
Gitaari, N.; Kareru, P.; Githua, M. Formulation of paint and detergent with Pelargonium citrosum & Rosmarinus officinalis extracts as Musca domestica repellent agent. Chem. Sci. Int. J., 2019, 26(3), 1-7.
[43]
Armenta, I. M.; Torres, M. O.; Zamora, K. The perception of Pelargonium citrosum (Lin) and Ocimum basilicum (Lin) as mosquito repellent plants. 2018.
[44]
Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod., 2018, 118, 367-382.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.048]
[45]
Goel, A.; Kumar, S.; Bhatia, A.K. Effect of Ocimum sanctum on the development of protective immunity against Salmonella typhimurium infection through cytokines. Asian Pac. J. Trop. Med., 2010, 3(9), 682-686.
[http://dx.doi.org/10.1016/S1995-7645(10)60165-4]
[46]
Kumar, V.; Andola, H.C.; Lohani, H.; Chauhan, N. Pharmacological review on Ocimum sanctum Linnaeus: A queen of herbs. J. Pharm. Res., 2011, 4, 366-368.
[47]
Mahmood, M.S.; Amir, H.W.; Abbas, R.Z.; Rafique, A.; Aslam, B. Evaluation of antiviral activity of Azadirachta indica (Neem) bark extract against Newcastle disease virus. Pak. Vet. J., 2018, 38(1), 25-28.
[http://dx.doi.org/10.29261/pakvetj/2018.005]
[48]
Parida, M.M.; Upadhyay, C.; Pandya, G.; Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J. Ethnopharmacol., 2002, 79(2), 273-278.
[http://dx.doi.org/10.1016/S0378-8741(01)00395-6] [PMID: 11801392]
[49]
Lee, Y.R.; Yeh, S.F.; Ruan, X.M.; Zhang, H.; Hsu, S.D.; Huang, H.D.; Hsieh, C.C.; Lin, Y.S.; Yeh, T.M.; Liu, H.S.; Gan, D.D. Honeysuckle aqueous extract and induced let-7a suppress dengue virus type 2 replication and pathogenesis. J. Ethnopharmacol., 2017, 198, 109-121.
[http://dx.doi.org/10.1016/j.jep.2016.12.049] [PMID: 28052239]
[50]
Muliawan, S.Y. Effect of Dillenia suffruticosa extract on dengue virus type 2 replication. Universa Medicina, 2008, 27(1), 1-5.
[51]
Sharma, N.; Mishra, K.P.; Chanda, S.; Bhardwaj, V.; Tanwar, H.; Ganju, L.; Kumar, B.; Singh, S.B. Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation. Arch. Virol., 2019, 164(4), 1095-1110.
[http://dx.doi.org/10.1007/s00705-019-04179-z] [PMID: 30790105]
[52]
Pandey, S.; Cabot, P.J.; Shaw, P.N.; Hewavitharana, A.K. Anti-inflammatory and immunomodulatory properties of Carica papaya. J. Immunotoxicol., 2016, 13(4), 590-602.
[http://dx.doi.org/10.3109/1547691X.2016.1149528] [PMID: 27416522]
[53]
Zhou, X.; Dong, Q.; Kan, X.; Peng, L.; Xu, X.; Fang, Y.; Yang, J. Immunomodulatory activity of a novel polysaccharide from Lonicera japonica in immunosuppressed mice induced by cyclophosphamide. PLoS One, 2018, 13(10), e0204152.
[http://dx.doi.org/10.1371/journal.pone.0204152] [PMID: 30296293]
[54]
Castillo-Maldonado, I.; Moreno-Altamirano, M.M.B.; Serrano-Gallardo, L.B. Anti-dengue serotype-2 activity effect of Sambucus nigra leaves-and flowers-derived compounds. Virol Res Rev, 2017, 1(3), 1-5.
[http://dx.doi.org/10.15761/VRR.1000117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy