Generic placeholder image

Current Chemical Biology


ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

General Research Article

The Effect of Substituents and Functional Groups on Enhancing the Antioxidant Activity of Benzoin Derivatives

Author(s): Thanuja Balasundaram*, Kavasseri Ganesan Kripa, Thiyagarajan Bhavadharani and Charles Kanagam

Volume 16, Issue 1, 2022

Published on: 05 July, 2022

Page: [70 - 80] Pages: 11

DOI: 10.2174/2212796816666220517103230

Price: $65


Background: 2-phenyl hydrazine-1-hydroxy, 1-[2-chlorophenyl] -2-4’-methoxyphenyl] ethane and 2-oxime-1-hydroxy, 1-[2-chlorophenyl] -2-4’-methoxyphenyl] ethane derivatives of benzoin have been synthesized from 2’chloro-4-methoxy benzoin by addition reaction. Structural elucidation of the synthesized compounds was carried out through FT-IR, FT-NMR studies. The presence of electron-withdrawing and electron-donating groups enhanced the antioxidant activity, which was analyzed by 2,2-diphenyl-1-picrylhydrazyl assay, 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) scavenging assay, hydrogen peroxide radical scavenging assay, and Ferric reducing antioxidant power assay methods. The effect of functional groups and substituents in the core structure was studied and compared with its parent compound.

Aim and Objective: In this manuscript, two derivatives of benzoin viz. 2-phenyl hydrazine-1-hydroxy, 1-[2-chlorophenyl] -2-[4’-methoxyphenyl] ethane and 2-oxime-1-hydroxy, 1-[2-chlorophenyl]-2-[4’- methoxyphenyl] ethane (HA) derivatives were synthesized by benzoin condensation and followed by addition reaction to find a potential anti-oxidant agent.

Materials and Methods: Qualitative analyses were determined by FT-IR and FT-NMR studies. Antioxidant activities were tested by DPPH assay, ABTS assay, and FRAP assay H2O2 methods.

Results: From the obtained results, it is confirmed that the effect of withdrawing and electron releasing groups as a substituent in the core structure of parent compounds enhances the activity of antioxidant. The role of substituents is discussed in detail.

Conclusion: The results of the biochemical assay reveal that the synthesized compounds serve as good free radical inhibitors and scavengers, which inhibit the oxidative reactions, and are responsible for cell damage, food spoilage, etc. The promising anti-oxidant activities are because of the effective substituents which play a prominent role in the drug industries.

Keywords: FT-IR, FT-NMR, DPPH, ABTS, FRAP assay, benzoin derivatives.

« Previous
Graphical Abstract
Percival, M. Antioxidants. Clinical Nutrition Insights; Advanced Nutrition Publications, Inc., 1998.
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
Komeri, R.; Thankam, F.G.; Muthu, J. Free radical scavenging injectable hydrogels for regenerative therapy. Mater. Sci. Eng. C, 2017, 71, 100-110.
[] [PMID: 27987653]
Ismail, A.; Marjan, Z.M.; Foong, C.W. Total antioxidant activity and phenolic content in selected vegetables. Food Chem., 2004, 87, 581-586.
Hatanaka, M.; Takahashi, K.; Nakamura, S.; Mashino, T. Preparation and antioxidant activity of alpha-pyridoin and its derivatives. Bioorg. Med. Chem., 2005, 13(24), 6763-6770.
[] [PMID: 16125390]
Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst (Lond.), 2002, 127(1), 183-198.
[] [PMID: 11827390]
Augustyniak, A.; Bartosz, G.; Cipak, A.; Duburs, G.; Horáková, L.; Luczaj, W.; Majekova, M.; Odysseos, A.D.; Rackova, L.; Skrzydlewska, E.; Stefek, M.; Strosová, M.; Tirzitis, G.; Venskutonis, P.R.; Viskupicova, J.; Vraka, P.S.; Zarković, N. Natural and synthetic antioxidants: An updated overview. Free Radic. Res., 2010, 44(10), 1216-1262.
[] [PMID: 20836663]
Mulukken, K.; Shimellis, A. Application of antioxidants in food processing industry: Options to improve the extraction yields and market value of natural products. Food Tech. Nutr. Sci., 2019, 5, 38-49.
Zineb, H.; Fatima, K.; Ibrahim, H.; Zaouia, K.; Zineb, D. Evaluation of antibacterial and antioxidant activities of three types of benzoin resin. Eur. J. Chem., 2018, 9, 408-411.
Wollinger, A.; Perrin, E.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kunz, W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. C. R. Chim., 2016, 19, 754-765.
Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 2007, 12(7), 1496-1547.
[] [PMID: 17909504]
Thanuja, B. Kanakam, C.C. Synthesis, characterization, in vivo and silico studies of antidepressant activity of 2-chloro-4’methoxy benzoin. Curr. Chem. Biol., 2014, 8, 17-26.
Buck, J.S.; Ide, W.S. Org. Synth., 1948, 4, 269-304.
Vogel, A.I. Textbook of Practical Organic Chemistry, 3rd ed; Longman: London, 1974, pp. 343-344.
Vogel, A.I. Textbook of Practical Organic Chemistry, 5th ed; Longman: London, 1989.
Ahmed, H.Z. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A, 2000, 104, 5660-5694.
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatachell, A.R. Vogel′s Text Book of Practical Organic Chemistry, 5th ed; English Language Book Society, 1996.
Negin, P.G.; Davood, S. Synthesis of oximes from the corresponding organic carbonyl compounds with NH2OH.HCL and Oxalic acid. Orient. J. Chem., 1995, 31, 1823-1825.
Oyedemi, S.O.; Afolayan, A.J. In vitro and in vivo antioxidant activity of aqueous leaves extract of Leonotis leonurus (L) R. Br. J. Pharmacol., 2011, 7, 248-256.
Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. (Lond.), 2003, 91(Spec No), 179-194.
[] [PMID: 12509339]
Surajdevprakash, B.; Dhiman, P.; Kamat, J.; Devidas, N.B. Antioxidant activity and free radical scavenging reactions of hydroxy benzyl alcohols. Biochemical and pulse radiolysis studies. Chem. Biol. Interact., 2009, 182, 119-127.
[] [PMID: 19665455]
Somaveh, K.; Foroogh, M.; Mahdi, M.F. Antioxidant activity,total flavonoin and phenolic contents of three different extracts of Hyrcanian reishi. Curr. Bioact. Compd., 2019, 15, 109-113.
Pracheta, P.; Sharma, V.; Singh, L.; Paliwal, R.; Sharma, S.; Yadav, S.; Sharma, S. Chemopreventive effect of hydroethanolic extract of Euphorbia neriifolia leaves against DENA-induced renal carcinogenesis in mice. Asian Pac. J. Cancer Prev., 2011, 12(3), 677-683.
[PMID: 21627363]
Anvari, D.; Jamei, R. Evaluation of antioxidant capacity and phenolic content in ethanolic extracts of leaves and flowers of some Asteraceae species. Recent Pat. Food Nutr. Agric., 2018, 9(1), 42-49.
[] [PMID: 29065850]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[] [PMID: 8660627]
Garima, M.; Narsingh, S.; Pooja, C. Synthesis and evaluation of thiazolidone-coumarin adducts as antidiatetic, ant-inflammatory and antioxidant agents. Lett. Org. Chem., 2015, 12, 429-445.
Suchita, V.; Ghumre, G.; Mrunal Sawant, M.; Varsha Jadhav, J.; Vilasrao, K. Assessment of in vitro anti-inflammatory activity of Cynodon dactylon and Acyclovir showing synergistic. Effect by albumin denaturation and membrane stabilization assay. Mod. Appro.Drug Des., 2017, 1, 1-5.
Sudha, R.; Kanakam, C.C.; Nithya, G. In vitro antioxidant activity of different substituted benzilic acid using 2,2-diphenyl-1-picryl hydrazyl radical, ABTS assay method. Asian J. Pharm. Clin. Res., 2016, 9, 127-130.
Soltani, S.S.; Farnia, S.M.F.; Foroumadi, A. Synthesis and antibacterial activity of new chalcones bearing an imidazo[1,2-a] pyridine moiety. Curr. Chem. Biol., 2021, 15, 163-170.
Fan, H.; Yang, G.Z.; Zheng, T.; Mei, Z.N.; Liu, X-M. Chemical constituents with free radical scavenging activities from the stem of Microcospaniculata. Molecules, 2010, 15, 5547-5560.
Belkov, G.A.; Ksenzova, T.F.; Raichyonok, V.; Skomyakov Sorkin, V.L.; Tolstorzhey, G.B.; Shadyro, O.L. Electronic absorption spectra of antiviral aminophenol derivatives. J. Appl. Spectrocopy, 2011, 78, 1-5.
Jeremić, S.; Radenković, S.; Filipović, M.; Antić, M.; Amić, A.; Marković, Z. Importance of hydrogen bonding and aromaticity indices in QSAR modeling of the antioxidative capacity of selected (poly)phenolic antioxidants. J. Mol. Graph. Model., 2017, 72, 240-245.
[] [PMID: 28129594]
Amorati, R.; Lucarini, M.; Mugnaini, V.; Pedulli, G.F. Antioxidant activity of o-bisphenols: The role of intramolecular hydrogen bonding. J. Org. Chem., 2003, 68(13), 5198-5204.
[] [PMID: 12816477]
Orallo, F. Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr. Med. Chem., 2006, 13(1), 87-98.
[] [PMID: 16457641]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy