Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-based Drugs?

Author(s): Katrin Sak*

Volume 22, Issue 9, 2022

Published on: 05 July, 2022

Page: [741 - 748] Pages: 8

DOI: 10.2174/1568009622666220516102235

Price: $65

Abstract

Approval of the first boronic acid group-containing drug, bortezomib, in 2003 for the treatment of multiple myeloma sparked an increased interest of medicinal chemists in boronic acidbased therapeutics. As a result, another boronic acid moiety-harboring medication, ixazomib, was approved in 2015 as a second-generation proteasome inhibitor for multiple myeloma; and dutogliptin is under clinical investigation in combination therapy against myocardial infarction. Moreover, a large number of novel agents with boronic acid elements in their structure are currently in intensive preclinical studies, allowing us to suppose that at least some of them will enter clinical trials in the near future. On the other hand, only some years after bortezomib approval, direct interactions between its boronic acid group and catechol moiety of green tea catechins as well as some other common dietary flavonoids like quercetin and myricetin were discovered, leading to the formation of stable cyclic boronate esters and abolishing the anticancer activities. Although highly relevant, to date, no reports on possible co-effects of catechol group-containing flavonoids with new-generation boronic acidbased drugs can be found. However, this issue cannot be ignored, especially considering the abundance of catechol moiety-harboring flavonoids in both plant-derived food items as well as over-thecounter dietary supplements and herbal products. Therefore, in parallel with the intensified development of boronic acid-based drugs, their possible interactions with catechol groups of plant-derived flavonoids must also be clarified to provide dietary recommendations to patients for maximizing therapeutic benefits. If concurrently consumed flavonoids can indeed antagonize drug efficacy, it may pose a real risk to clinical outcomes.

Keywords: Flavonoids, catechol, boronic acid drugs, anticancer activity, proteasome inhibition, nutritional oncology, dietary counselling.

Graphical Abstract
[1]
Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[2]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[3]
Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev., 2014, 8(16), 122-146.
[http://dx.doi.org/10.4103/0973-7847.134247] [PMID: 25125885]
[4]
Kent, K.; Charlton, K.E.; Lee, S.; Mond, J.; Russell, J.; Mitchell, P.; Flood, V.M. Dietary flavonoid intake in older adults: how many days of dietary assessment are required and what is the impact of seasonality? Nutr. J., 2018, 17(1), 7.
[http://dx.doi.org/10.1186/s12937-017-0309-7] [PMID: 29329536]
[5]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[6]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci, 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[7]
Golden, E.B.; Lam, P.Y.; Kardosh, A.; Gaffney, K.J.; Cadenas, E.; Louie, S.G.; Petasis, N.A.; Chen, T.C.; Schönthal, A.H. Green tea poly-phenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood, 2009, 113(23), 5927-5937.
[http://dx.doi.org/10.1182/blood-2008-07-171389] [PMID: 19190249]
[8]
Pamu, S.; Chen, D.; Morin, F.; Huo, C.; Cui, Q.; Dou, Q.P.; Chan, T.H. Inhibitory effect of bortezomib on human multiple myeloma cells when combined with epigallocatechin-gallate (EGCG) analogs. MedChemComm, 2012, 3(2), 229-232.
[http://dx.doi.org/10.1039/C1MD00260K]
[9]
Glynn, S.J.; Gaffney, K.J.; Sainz, M.A.; Louie, S.G.; Petasis, N.A. Molecular characterization of the boron adducts of the proteasome in-hibitor bortezomib with epigallocatechin-3-gallate and related polyphenols. Org. Biomol. Chem., 2015, 13(13), 3887-3899.
[http://dx.doi.org/10.1039/C4OB02512A] [PMID: 25669488]
[10]
Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep., 2015, 5(1), 15270.
[http://dx.doi.org/10.1038/srep15270] [PMID: 26471237]
[11]
Shah, J.J.; Kuhn, D.J.; Orlowski, R.Z. Bortezomib and EGCG: no green tea for you? Blood, 2009, 113(23), 5695-5696.
[http://dx.doi.org/10.1182/blood-2009-03-204776] [PMID: 19498025]
[12]
Liu, F.T.; Agrawal, S.G.; Movasaghi, Z.; Wyatt, P.B.; Rehman, I.U.; Gribben, J.G.; Newland, A.C.; Jia, L. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood, 2008, 112(9), 3835-3846.
[http://dx.doi.org/10.1182/blood-2008-04-150227] [PMID: 18633129]
[13]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M. Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[14]
Kim, T.Y.; Park, J.; Oh, B.; Min, H.J.; Jeong, T.S.; Lee, J.H.; Suh, C.; Cheong, J.W.; Kim, H.J.; Yoon, S.S.; Park, S.B.; Lee, D.S. Natural polyphenols antagonize the antimyeloma activity of proteasome inhibitor bortezomib by direct chemical interaction. Br. J. Haematol., 2009, 146(3), 270-281.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07752.x] [PMID: 19500098]
[15]
Jia, L.; Liu, F.T. Why bortezomib cannot go with ‘green’? Cancer Biol. Med., 2013, 10(4), 206-213.
[PMID: 24349830]
[16]
Prasain, J.K.; Carlson, S.H.; Wyss, J.M. Flavonoids and age-related disease: risk, benefits and critical windows. Maturitas, 2010, 66(2), 163-171.
[http://dx.doi.org/10.1016/j.maturitas.2010.01.010] [PMID: 20181448]
[17]
Bernstein, B.J.; Grasso, T. Prevalence of complementary and alternative medicine use in cancer patients. Oncology (Williston Park), 2001, 15(10), 1267-1272.
[PMID: 11702957]
[18]
Sak, K. Plant Flavonoids Affects Cancer Chemotherapeutic Efficacy: A Handbook for Doctors and Patients; Nova Science Publishers: New York, 2019.
[19]
Sak, K. Dietary Flavonoids Interfere with Cancer Radiotherapy; Nova Science Publishers: New York, 2019.
[20]
Sak, K. Radiosensitizing potential of curcumin in different cancer models. Nutr. Cancer, 2020, 72(8), 1276-1289.
[http://dx.doi.org/10.1080/01635581.2019.1681480] [PMID: 31648572]
[21]
Bannerman, B.; Xu, L.; Jones, M.; Tsu, C.; Yu, J.; Hales, P.; Monbaliu, J.; Fleming, P.; Dick, L.; Manfredi, M.; Claiborne, C.; Bolen, J.; Kupperman, E.; Berger, A. Preclinical evaluation of the antitumor activity of bortezomib in combination with vitamin C or with epigallo-catechin gallate, a component of green tea. Cancer Chemother. Pharmacol., 2011, 68(5), 1145-1154.
[http://dx.doi.org/10.1007/s00280-011-1591-2] [PMID: 21400028]
[22]
Lorand, J.P.; Edwards, J.O. Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem., 1959, 24(6), 769-774.
[http://dx.doi.org/10.1021/jo01088a011]
[23]
Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58(26), 5291-5300.
[http://dx.doi.org/10.1016/S0040-4020(02)00489-1]
[24]
Tobinai, K. Proteasome inhibitor, bortezomib, for myeloma and lymphoma. Int. J. Clin. Oncol., 2007, 12(5), 318-326.
[http://dx.doi.org/10.1007/s10147-007-0695-5] [PMID: 17929113]
[25]
Terpos, E.; Roussou, M.; Dimopoulos, M.A. Bortezomib in multiple myeloma. Expert Opin. Drug Metab. Toxicol., 2008, 4(5), 639-654.
[http://dx.doi.org/10.1517/17425255.4.5.639] [PMID: 18484921]
[26]
Dick, L.R.; Fleming, P.E. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov. Today, 2010, 15(5-6), 243-249.
[http://dx.doi.org/10.1016/j.drudis.2010.01.008] [PMID: 20116451]
[27]
Mujtaba, T.; Dou, Q.P. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov. Med., 2011, 12(67), 471-480.
[PMID: 22204764]
[28]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183-198.
[http://dx.doi.org/10.1039/c0md00119h]
[29]
Laubach, J.P.; Mitsiades, C.S.; Hideshima, T.; Schlossman, R.; Chauhan, D.; Munshi, N.; Ghobrial, I.; Carreau, N.; Anderson, K.C.; Rich-ardson, P.G. Bortezomib in the management of multiple myeloma. Cancer Manag. Res., 2009, 1, 107-117.
[http://dx.doi.org/10.2147/CMAR.S4555] [PMID: 21188129]
[30]
Xie, J.; Wan, N.; Liang, Z.; Zhang, T.; Jiang, J. Ixazomib - the first oral proteasome inhibitor. Leuk. Lymphoma, 2019, 60(3), 610-618.
[http://dx.doi.org/10.1080/10428194.2018.1523398] [PMID: 30614337]
[31]
Richardson, P.G.; Zweegman, S.; O’Donnell, E.K.; Laubach, J.P.; Raje, N.; Voorhees, P.; Ferrari, R.H.; Skacel, T.; Kumar, S.K.; Lonial, S. Ixazomib for the treatment of multiple myeloma. Expert Opin. Pharmacother., 2018, 19(17), 1949-1968.
[http://dx.doi.org/10.1080/14656566.2018.1528229] [PMID: 30422008]
[32]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[33]
Touzeau, C.; Moreau, P. Ixazomib in the management of relapsed multiple myeloma. Future Oncol., 2018, 14(20), 2013-2020.
[http://dx.doi.org/10.2217/fon-2017-0710] [PMID: 29469592]
[34]
Zanwar, S.; Abeykoon, J.P.; Kapoor, P. Ixazomib: a novel drug for multiple myeloma. Expert Rev. Hematol., 2018, 11(10), 761-771.
[http://dx.doi.org/10.1080/17474086.2018.1518129] [PMID: 30173621]
[35]
Vlachostergios, P.J.; Voutsadakis, I.A.; Papandreou, C.N. Mechanisms of proteasome inhibitor-induced cytotoxicity in malignant glioma. Cell Biol. Toxicol., 2013, 29(4), 199-211.
[http://dx.doi.org/10.1007/s10565-013-9248-z] [PMID: 23733249]
[36]
Befani, C.D.; Vlachostergios, P.J.; Hatzidaki, E.; Patrikidou, A.; Bonanou, S.; Simos, G.; Papandreou, C.N.; Liakos, P. Bortezomib repress-es HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J. Mol. Med. (Berl.), 2012, 90(1), 45-54.
[http://dx.doi.org/10.1007/s00109-011-0805-8] [PMID: 21909688]
[37]
Berkers, C.R.; Leestemaker, Y.; Schuurman, K.G.; Ruggeri, B.; Jones-Bolin, S.; Williams, M.; Ovaa, H. Probing the specificity and activity profiles of the proteasome inhibitors bortezomib and delanzomib. Mol. Pharm., 2012, 9(5), 1126-1135.
[http://dx.doi.org/10.1021/mp2004143] [PMID: 22432738]
[38]
Brayer, J.; Baz, R. The potential of ixazomib, a second-generation proteasome inhibitor, in the treatment of multiple myeloma. Ther. Adv. Hematol., 2017, 8(7), 209-220.
[http://dx.doi.org/10.1177/2040620717710171] [PMID: 28694935]
[39]
Plescia, J.; Moitessier, N. Design and discovery of boronic acid drugs. Eur. J. Med. Chem., 2020, 195, 112270.
[http://dx.doi.org/10.1016/j.ejmech.2020.112270] [PMID: 32302879]
[40]
Silva, M.P.; Saraiva, L.; Pinto, M.; Sousa, M.E. Boronic acids and their derivatives in medicinal chemistry: Synthesis and biological appli-cations. Molecules, 2020, 25(18), 4323.
[http://dx.doi.org/10.3390/molecules25184323] [PMID: 32967170]
[41]
Fernandes, G.F.S.; Denny, W.A.; Dos Santos, J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem., 2019, 179, 791-804.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.092] [PMID: 31288128]
[42]
Baker, S.J.; Ding, C.Z.; Akama, T.; Zhang, Y.K.; Hernandez, V.; Xia, Y. Therapeutic potential of boron-containing compounds. Future Med. Chem., 2009, 1(7), 1275-1288.
[http://dx.doi.org/10.4155/fmc.09.71] [PMID: 21426103]
[43]
Smolewski, P.; Rydygier, D. Ixazomib: an investigational drug for the treatment of lymphoproliferative disorders. Expert Opin. Investig. Drugs, 2019, 28(5), 421-433.
[http://dx.doi.org/10.1080/13543784.2019.1596258] [PMID: 30907163]
[44]
Shirley, M. Ixazomib: First global approval. Drugs, 2016, 76(3), 405-411.
[http://dx.doi.org/10.1007/s40265-016-0548-5] [PMID: 26846321]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy