Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction

Author(s): Amita Pandey*, Shifa Chaudhary and Binu Bhat

Volume 23, Issue 4, 2022

Published on: 15 June, 2022

Page: [289 - 298] Pages: 10

DOI: 10.2174/1389202923666220513111643

Price: $65

Abstract

Background: Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment.

Methods: This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log10 and range PCN log10 values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples.

Results: Observation of lower range PCN log10 values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log10 values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log10 values for RS (3.09) versus RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log10 values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log10 values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log10 values compared to non-oil seeds such as SS (1.96).

Conclusion: In conclusion, it was observed that PCN log10 values calculated from RT-qPCR assays were specific to plant species and the range of PCN log10 values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.

Keywords: Plastids, plastome, plastome copy number, real-time qPCR, biomarker, plant product quality.

« Previous
Graphical Abstract
[1]
Gray, M.W. The endosymbiont hypothesis revisited. Int. Rev. Cytol., 1992, 141, 233-357.
[http://dx.doi.org/10.1016/S0074-7696(08)62068-9] [PMID: 1452433]
[2]
Galili, G. Regulation of lysine and threonine synthesis. Plant Cell, 1995, 7(7), 899-906.
[http://dx.doi.org/10.2307/3870045] [PMID: 12242392]
[3]
Ohlrogge, J.; Browse, J. Lipid biosynthesis. Plant Cell, 1995, 7(7), 957-970.
[PMID: 7640528]
[4]
Rolland, N.; Bouchnak, I.; Moyet, L.; Salvi, D.; Kuntz, M. The main functions of plastids. Methods Mol. Biol., 2018, 1829, 73-85.
[http://dx.doi.org/10.1007/978-1-4939-8654-5_5] [PMID: 29987715]
[5]
Waters, M.; Pyke, K. Plastid development and differentiation. Plastids; Møller, S.G., Ed.; Blackwell: Oxford, UK, 2004, pp. 30-59.
[6]
Renner, O. Die pflanzlichen plastiden als selbstandige elemente der genetischen konstitution. Ber. math.-phys. Klasse S€achs. Akad. Wiss. Leipzig, 1934, 86, 241-266.
[7]
de Vries, J.; Archibald, J.M. Plastid genomes. Curr. Biol., 2018, 28(8), R336-R337.
[http://dx.doi.org/10.1016/j.cub.2018.01.027] [PMID: 29689202]
[8]
Fernández, A.P.; Strand, A. Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr. Opin. Plant Biol., 2008, 11(5), 509-513.
[http://dx.doi.org/10.1016/j.pbi.2008.06.002] [PMID: 18639482]
[9]
Jarvis, P.; López-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol., 2013, 14(12), 787-802.
[http://dx.doi.org/10.1038/nrm3702] [PMID: 24263360]
[10]
Rekhter, D.; Lüdke, D.; Ding, Y.; Feussner, K.; Zienkiewicz, K.; Lipka, V.; Wiermer, M.; Zhang, Y.; Feussner, I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 2019, 365(6452), 498-502.
[http://dx.doi.org/10.1126/science.aaw1720] [PMID: 31371615]
[11]
León, J. Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell. Biochem., 2013, 69, 299-313.
[http://dx.doi.org/10.1007/978-94-007-6889-5_16] [PMID: 23821155]
[12]
Seo, M.; Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci., 2002, 7(1), 41-48.
[http://dx.doi.org/10.1016/S1360-1385(01)02187-2] [PMID: 11804826]
[13]
Lu, Y.; Yao, J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int. J. Mol. Sci., 2018, 19(12), 3900.
[http://dx.doi.org/10.3390/ijms19123900] [PMID: 30563149]
[14]
Zechmann, B. Ultrastructure of plastids serves as reliable abiotic and biotic stress marker. PLoS One, 2019, 14(4), e0214811.
[http://dx.doi.org/10.1371/journal.pone.0214811] [PMID: 30946768]
[15]
Woodson, J.D. Chloroplast stress signals: Regulation of cellular degradation and chloroplast turnover. Curr. Opin. Plant Biol., 2019, 52, 30-37.
[http://dx.doi.org/10.1016/j.pbi.2019.06.005] [PMID: 31442733]
[16]
Oldenburg, D.J.; Bendich, A.J. DNA maintenance in plastids and mitochondria of plants. Front. Plant Sci., 2015, 6, 883.
[http://dx.doi.org/10.3389/fpls.2015.00883] [PMID: 26579143]
[17]
Greiner, S.; Golczyk, H.; Malinova, I.; Pellizzer, T.; Bock, R.; Börner, T.; Herrmann, R.G. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant J., 2020, 102(4), 730-746.
[http://dx.doi.org/10.1111/tpj.14658] [PMID: 31856320]
[18]
Price, C.A.; Hadjeb, N.; Newman, L.A.; Reardon, E.M. Chromoplasts. Methods Cell Biol., 1995, 50, 189-207.
[http://dx.doi.org/10.1016/S0091-679X(08)61031-6] [PMID: 8531794]
[19]
Otegui, M.E.; Slafer, A. Increasing cereal yield potential by modifying developmental traits. Proceedings for the 4th International Crop Science Congress, 26 September - 1 October 2004Brisbane, Australia
[20]
Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol., 2017, 8, 1014.
[http://dx.doi.org/10.3389/fmicb.2017.01014] [PMID: 28676790]
[21]
McDonald, M.B. Seed deterioration: Physiology, repair and assessment. Seed Sci. Technol., 1999, 27, 177-237.
[22]
Waterworth, W.M.; Bray, C.M.; West, C.E. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot., 2015, 66(12), 3549-3558.
[http://dx.doi.org/10.1093/jxb/erv080] [PMID: 25750428]
[23]
Kurek, K.; Plitta-Michalak, B.; Ratajczak, E. Reactive Oxygen species as potential drivers of the seed aging process. Plants, 2019, 8(6), 174.
[http://dx.doi.org/10.3390/plants8060174] [PMID: 31207940]
[24]
Thierry, M.; Chatet, A.; Fournier, E.; Tharreau, D.; Ioos, R.A. PCR, qPCR, and LAMP toolkit for the detection of the wheat blast pathogen in seeds. Plants, 2020, 9(2), 277.
[http://dx.doi.org/10.3390/plants9020277] [PMID: 32098075]
[25]
Kamber, T.; Malpica-López, N.; Messmer, M.M.; Oberhänsli, T.; Arncken, C.; Alkemade, J.A.; Hohmann, P. A qPCR Assay for the Fast Detection and Quantification of Colletotrichum lupini. Plants, 2021, 10(8), 1548.
[http://dx.doi.org/10.3390/plants10081548] [PMID: 34451593]
[26]
Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol., 1991, 17(5), 1105-1109.
[http://dx.doi.org/10.1007/BF00037152] [PMID: 1932684]
[27]
Su, S-H.; Gibbs, N.M.; Jancewicz, A.L.; Masson, P.H. Molecular mechanisms of root gravitropism. Curr. Biol., 2017, 27(17), R964-R972.
[http://dx.doi.org/10.1016/j.cub.2017.07.015] [PMID: 28898669]
[28]
Beltrán, J.; Wamboldt, Y.; Sanchez, R.; LaBrant, E.W.; Kundariya, H.; Virdi, K.S.; Elowsky, C.; Mackenzie, S.A. Specialized plastids trigger tissue-specific signaling for systemic stress response in plants. Plant Physiol., 2018, 178(2), 672-683.
[http://dx.doi.org/10.1104/pp.18.00804] [PMID: 30135097]
[29]
Solymosi, K.; Lethin, J.; Aronsson, H. Diversity and plasticity of plastids in land plants. Methods Mol. Biol., 2018, 1829, 55-72.
[http://dx.doi.org/10.1007/978-1-4939-8654-5_4] [PMID: 29987714]
[30]
Sadali, N.M.; Sowden, R.G.; Ling, Q.; Jarvis, R.P. Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep., 2019, 38(7), 803-818.
[http://dx.doi.org/10.1007/s00299-019-02420-2] [PMID: 31079194]
[31]
Baumgartner, B.J.; Rapp, J.C.; Mullet, J.E. Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol., 1989, 89(3), 1011-1018.
[http://dx.doi.org/10.1104/pp.89.3.1011] [PMID: 16666609]
[32]
Sakamoto, W.; Takami, T. Chloroplast DNA dynamics: Copy number, quality control and degradation. Plant Cell Physiol., 2018, 59(6), 1120-1127.
[http://dx.doi.org/10.1093/pcp/pcy084] [PMID: 29860378]
[33]
Jensen, P.E.; Scharff, L.B. Engineering of plastids to optimize the production of high-value metabolites and proteins. Curr. Opin. Biotechnol., 2019, 59, 8-15.
[http://dx.doi.org/10.1016/j.copbio.2019.01.009] [PMID: 30798145]
[34]
Sameeullah, M.; Yildirim, M.; Aslam, N. Baloğlu, M.C.; Yucesan, B.; Lössl, A.G.; Saba, K.; Waheed, M.T.; Gurel, E. Plastidial Expression of 3β-Hydroxysteroid Dehydrogenase and Progesterone 5β-Reductase genes confer enhanced salt tolerance in tobacco. Int. J. Mol. Sci., 2021, 22(21), 11736.
[http://dx.doi.org/10.3390/ijms222111736] [PMID: 34769166]
[35]
Magdy, M.; Ou, L.; Yu, H.; Chen, R.; Zhou, Y.; Hassan, H.; Feng, B.; Taitano, N.; van der Knaap, E.; Zou, X.; Li, F.; Ouyang, B. Pan-plastome approach empowers the assessment of genetic variation in cultivated Capsicum species. Hortic. Res., 2019, 6, 108.
[http://dx.doi.org/10.1038/s41438-019-0191-x] [PMID: 31645963]
[36]
Gulsen, O.; Ceylan, A. Elucidating polyploidization of bermudagrasses as assessed by organelle and nuclear DNA markers. OMICS, 2011, 15(12), 903-912.
[http://dx.doi.org/10.1089/omi.2011.0100] [PMID: 22106951]
[37]
Woo, H-J.; Lim, M-H.; Shin, K-S.; Martins, B.; Lee, B-K.; Cho, H-S.; Mallory-Smith, C.A. Development of a chloroplast DNA marker for monitoring of transgene introgression in Brassica napus L. Biotechnol. Lett., 2013, 35(9), 1533-1539.
[http://dx.doi.org/10.1007/s10529-013-1236-0] [PMID: 23690044]
[38]
Mallott, E.K.; Garber, P.A.; Malhi, R.S. trnL outperforms rbcL as a DNA metabarcoding marker when compared with the observed plant component of the diet of wild white-faced capuchins (Cebus capucinus, Primates). PLoS One, 2018, 13(6), e0199556.
[http://dx.doi.org/10.1371/journal.pone.0199556] [PMID: 29944686]
[39]
Zhang, Q.; Zhao, L.; Folk, R.A.; Zhao, J-L.; Zamora, N.A.; Yang, S-X.; Soltis, D.E.; Soltis, P.S.; Gao, L-M.; Peng, H. Yu, X-Q Phylotranscriptomics of Theaceae: generic level relationships, reticulation and whole-genome duplication. Ann. Bot., 2022, mcac007.
[http://dx.doi.org/10.1093/aob/mcac007]
[40]
Miflin, B.J.; Beevers, H. Isolation of intact plastids from a range of plant tissues. Plant Physiol., 1974, 53(6), 870-874.
[http://dx.doi.org/10.1104/pp.53.6.870] [PMID: 16658807]
[41]
Martin, W.; Rujan, T.; Richly, E.; Hansen, A.; Cornelsen, S.; Lins, T.; Leister, D.; Stoebe, B.; Hasegawa, M.; Penny, D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12246-12251.
[http://dx.doi.org/10.1073/pnas.182432999] [PMID: 12218172]
[42]
Zoschke, R.; Liere, K.; Börner, T. From seedling to mature plant: arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J., 2007, 50(4), 710-722.
[http://dx.doi.org/10.1111/j.1365-313X.2007.03084.x] [PMID: 17425718]
[43]
Wang, W.; He, A.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The effect of storage condition and duration on the deterioration of primed rice seeds. Front. Plant Sci., 2018, 9, 172.
[http://dx.doi.org/10.3389/fpls.2018.00172] [PMID: 29487612]
[44]
Wijewardana, C.; Reddy, K.R.; Krutz, L.J.; Gao, W.; Bellaloui, N. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS One, 2019, 14(9), e0214977.
[http://dx.doi.org/10.1371/journal.pone.0214977] [PMID: 31498795]
[45]
Li, N.; Meng, H.; Li, S.; Zhang, Z.; Zhao, X.; Wang, S.; Liu, A.; Li, Q.; Song, Q.; Li, X.; Guo, L.; Li, H.; Zuo, J.; Luo, K. Two plastid fatty acid exporters contribute to seed oil accumulation in arabidopsis. Plant Physiol., 2020, 182(4), 1910-1919.
[http://dx.doi.org/10.1104/pp.19.01344] [PMID: 32019874]
[46]
Piacenza, M.; Zambianchi, M.; Barbarella, G.; Gigli, G.; Della Sala, F. Theoretical study on oligothiophene N-succinimidyl esters: Size and push-pull effects. Phys. Chem. Chem. Phys., 2008, 10(35), 5363-5373.
[http://dx.doi.org/10.1039/b803963a] [PMID: 18766232]
[47]
Wong, B.M.; Piacenza, M.; Della Sala, F. Absorption and fluorescence properties of oligothiophene biomarkers from long-range-corrected time-dependent density functional theory. Phys. Chem. Chem. Phys., 2009, 11(22), 4498-4508.
[http://dx.doi.org/10.1039/b901743g] [PMID: 19475168]
[48]
Huang, X.; Lin, X.; Zeng, J.; Wang, L.; Yin, P.; Zhou, L.; Hu, C.; Yao, W. A computational method of defining potential biomarkers based on differential sub-networks. Sci. Rep., 2017, 7(1), 14339.
[http://dx.doi.org/10.1038/s41598-017-14682-5] [PMID: 29085035]
[49]
Boffey, S.A.; Leech, R.M. Chloroplast DNA levels and the control of chloroplast division in light-grown wheat leaves. Plant Physiol., 1982, 69(6), 1387-1391.
[http://dx.doi.org/10.1104/pp.69.6.1387] [PMID: 16662409]
[50]
Shaver, J.M.; Oldenburg, D.J.; Bendich, A.J. Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta, 2006, 224(1), 72-82.
[http://dx.doi.org/10.1007/s00425-005-0195-7] [PMID: 16362324]
[51]
Oldenburg, D.J.; Rowan, B.A.; Zhao, L.; Walcher, C.L.; Schleh, M.; Bendich, A.J. Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta, 2006, 225(1), 41-55.
[http://dx.doi.org/10.1007/s00425-006-0329-6] [PMID: 16941116]
[52]
Rowan, B.A.; Oldenburg, D.J.; Bendich, A.J. A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis. BMC Plant Biol., 2009, 9(9), 3.
[http://dx.doi.org/10.1186/1471-2229-9-3] [PMID: 19128504]
[53]
Rauwolf, U.; Golczyk, H.; Greiner, S.; Herrmann, R.G. Variable amounts of DNA related to the size of chloroplasts III. Biochemical determinations of DNA amounts per organelle. Mol. Genet. Genomics, 2010, 283(1), 35-47.
[http://dx.doi.org/10.1007/s00438-009-0491-1] [PMID: 19911199]
[54]
Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B.L. Effects of salinity stress on chloroplast structure and function. Cells, 2021, 10(8), 2023.
[http://dx.doi.org/10.3390/cells10082023] [PMID: 34440792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy