Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Review on Pathophysiological Aspects of Sleep Deprivation

Author(s): Shelly Agrawal, Vishal Kumar, Vishesh Singh, Charan Singh and Arti Singh*

Volume 22, Issue 8, 2023

Published on: 09 September, 2022

Page: [1194 - 1208] Pages: 15

DOI: 10.2174/1871527321666220512092718

Price: $65

Abstract

Sleep deprivation (SD) (also referred as insomnia) is a condition in which individuals fail to get enough sleep due to excessive yawning, facing difficulty to learn new concepts, experiencing forgetfulness as well as depressed mood. This could occur due to several possible reasons, including medications and stress (caused by shift work). Despite the fact that sleep is important for normal physiology, it currently affects millions of people around the world, especially the US (70 million) and Europe (45 million). Due to increased work demand nowadays, lots of people are experiencing sleep deprivation hence, this could be the reason for several car accidents followed by death and morbidity. This review highlighted the impact of SD on neurotransmitter release and functions, theories (Flip-flop theory, oxidative stress theory, neuroinflammation theory, neurotransmitter theory, and hormonal theory) associated with SD pathogenesis; apart from this, it also demonstrates the molecular pathways underlying SD (PI3K and Akt, NF-κB, Nrf2, and adenosine pathway. However, this study also elaborates on the SD-induced changes in the level of neurotransmitters, hormonal, and mitochondrial functions. Along with this, it also covers several molecular aspects associated with SD as well. Through this study, a link is made between SD and associated causes, which will further help to develop a potential therapeutic strategy against SD.

Keywords: Sleep, sleep deprivation, neuroinflammation, oxidative stress, neurotransmitters, insomnia.

Graphical Abstract
[1]
Krause AJ, Simon EB, Mander BA, et al. The sleep-deprived human brain. Nat Rev Neurosci 2017; 18(7): 404-18.
[http://dx.doi.org/10.1038/nrn.2017.55] [PMID: 28515433]
[2]
Kumar A, Chanana P. Sleep reduction: A link to other neurobiological diseases. Sleep Biol Rhythms 2014; 12(3): 150-61.
[http://dx.doi.org/10.1111/sbr.12066]
[3]
Short MA, Centofanti S, Hilditch C, Banks S, Lushington K, Dorrian J. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness. Appl Ergon 2016; 54: 72-82.
[http://dx.doi.org/10.1016/j.apergo.2015.12.004] [PMID: 26851466]
[4]
Magnavita N, Garbarino S. Sleep, health and wellness at work: A scoping review. Int J Environ Res Public Health 2017; 14(11): 1347.
[http://dx.doi.org/10.3390/ijerph14111347] [PMID: 29113118]
[5]
Hauglund NL, Pavan C, Nedergaard M. Cleaning the sleeping brain-the potential restorative function of the glymphatic system. Curr Opin Physiol 2020; 15: 1-6.
[http://dx.doi.org/10.1016/j.cophys.2019.10.020]
[6]
Luppi P-H, Billwiller F, Fort P. Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: Evidence and function. Curr Opin Neurobiol 2017; 44: 59-64.
[http://dx.doi.org/10.1016/j.conb.2017.03.002] [PMID: 28347885]
[7]
Luppi P-H, Fort P. Sleep-wake physiology. Handb Clin Neurol 2019; 160: 359-70.
[http://dx.doi.org/10.1016/B978-0-444-64032-1.00023-0] [PMID: 31277860]
[8]
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45(1): 6-20.
[http://dx.doi.org/10.1038/s41386-019-0444-2] [PMID: 31216564]
[9]
Caldwell BA, Ordway MR, Sadler LS, Redeker NS. Parent perspectives on sleep and sleep habits among young children living with economic adversity. J Pediatr Health Care 2020; 34(1): 10-22.
[http://dx.doi.org/10.1016/j.pedhc.2019.06.006] [PMID: 31477491]
[10]
Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep 2017; 9: 151-61.
[http://dx.doi.org/10.2147/NSS.S134864] [PMID: 28579842]
[11]
Fehnel S, Zografos L, Curtice T, Shah H, McLeod L. The burden of restless legs syndrome. The Patient. Patient 2008; 1(3): 201-10.
[http://dx.doi.org/10.2165/1312067-200801030-00007]
[12]
Smolensky MH, Sackett-Lundeen LL, Portaluppi F. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 2015; 32(8): 1029-48.
[13]
Boivin DB, Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris) 2014; 62(5): 292-301.
[http://dx.doi.org/10.1016/j.patbio.2014.08.001] [PMID: 25246026]
[14]
Bandyopadhyay A, Sigua NL. What is sleep deprivation? Am J Respir Crit Care Med 2019; 199(6): 11-P12.
[http://dx.doi.org/10.1164/rccm.1996P11] [PMID: 30874458]
[15]
Morin CM, Benca R. Chronic insomnia. Lancet 2012; 379(9821): 1129-41.
[http://dx.doi.org/10.1016/S0140-6736(11)60750-2] [PMID: 22265700]
[16]
Berthelsen M. Effects of shift work and psychological and social work factors on mental distress Studies of onshore/offshore workers and nurses in Norway 2017.
[17]
Pinheiro-da-Silva J, Tran S, Luchiari AC. Sleep deprivation impairs cognitive performance in zebrafish: A matter of fact? Behav Processes 2018; 157: 656-63.
[http://dx.doi.org/10.1016/j.beproc.2018.04.004] [PMID: 29656092]
[18]
van Leeuwen WM, Lehto M, Karisola P, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 2009; 4(2): e4589.
[http://dx.doi.org/10.1371/journal.pone.0004589] [PMID: 19240794]
[19]
Kim B, Kocsis B, Hwang E, et al. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation. Proc Natl Acad Sci USA 2017; 114(9): E1727-36.
[http://dx.doi.org/10.1073/pnas.1615230114] [PMID: 28193862]
[20]
Pires GN, Bezerra AG, Tufik S, Andersen ML. Effects of acute sleep deprivation on state anxiety levels: A systematic review and meta-analysis. Sleep Med 2016; 24: 109-18.
[http://dx.doi.org/10.1016/j.sleep.2016.07.019] [PMID: 27810176]
[21]
Misrani A, Tabassum S, Chen X, et al. Differential effects of citalopram on sleep-deprivation-induced depressive-like behavior and memory impairments in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88: 102-11.
[http://dx.doi.org/10.1016/j.pnpbp.2018.07.013] [PMID: 30017777]
[22]
Wadhwa M, Kumari P, Chauhan G, et al. Sleep deprivation induces spatial memory impairment by altered hippocampus neuroinflammatory responses and glial cells activation in rats. J Neuroimmunol 2017; 312: 38-48.
[http://dx.doi.org/10.1016/j.jneuroim.2017.09.003] [PMID: 28912034]
[23]
Bohnen NI, Hu MTM. Sleep disturbance as potential risk and progression factor for Parkinson’s disease. J Parkinsons Dis 2019; 9(3): 603-14.
[http://dx.doi.org/10.3233/JPD-191627] [PMID: 31227656]
[24]
Ju YS, Zangrilli MA, Finn MB, Fagan AM, Holtzman DM. Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. Ann Neurol 2019; 85(2): 291-5.
[http://dx.doi.org/10.1002/ana.25408] [PMID: 30597615]
[25]
Razavi B, Fisher R. Sleep and epilepsy. In: Miglis MG, Ed. Sleep and Neurologic Disease. Cambridge, Massachusetts: Elsevier 2017; pp. 129-40.
[http://dx.doi.org/10.1016/B978-0-12-804074-4.00007-8]
[26]
Al-Abri MA, Jaju D, Al-Sinani S, et al. Habitual sleep deprivation is associated with type 2 diabetes: A case-control study. Oman Med J 2016; 31(6): 399-403.
[http://dx.doi.org/10.5001/omj.2016.81] [PMID: 27974953]
[27]
Thomas SJ, Calhoun D. Sleep, insomnia, and hypertension: Current findings and future directions. J Am Soc Hypertens 2017; 11(2): 122-9.
[http://dx.doi.org/10.1016/j.jash.2016.11.008] [PMID: 28109722]
[28]
Chaput J-P, Dutil C. Lack of sleep as a contributor to obesity in adolescents: Impacts on eating and activity behaviors. Int J Behav Nutr Phys Act 2016; 13(1): 103.
[http://dx.doi.org/10.1186/s12966-016-0428-0] [PMID: 27669980]
[29]
George PT. The psycho-sensory wake drive-a power source for power naps and other common sleep-wake phenomena: A hypothesis. Sleep Breath 2018; 22(1): 41-8.
[http://dx.doi.org/10.1007/s11325-017-1505-6] [PMID: 28456884]
[30]
Tagusari J, Matsui T. A neurophysiological approach for evaluating noise-induced sleep disturbance: Calculating the time constant of the dynamic characteristics in the brainstem. Int J Environ Res Public Health 2016; 13(4): 369.
[http://dx.doi.org/10.3390/ijerph13040369] [PMID: 27023587]
[31]
Hudson AN, Van Dongen HPA, Honn KA. Sleep deprivation, vigilant attention, and brain function: A review. Neuropsychopharmacology 2020; 45(1): 21-30.
[http://dx.doi.org/10.1038/s41386-019-0432-6] [PMID: 31176308]
[32]
Yang D-P, McKenzie-Sell L, Karanjai A, Robinson PA. Wake-sleep transition as a noisy bifurcation. Phys Rev E 2016; 94(2-1): 022412.
[http://dx.doi.org/10.1103/PhysRevE.94.022412] [PMID: 27627340]
[33]
Chanana P, Kumar A. GABA-BZD receptor modulating mechanism of panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: Possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci 2016; 10: 84.
[http://dx.doi.org/10.3389/fnins.2016.00084] [PMID: 27013946]
[34]
Assadzadeh S, Robinson PA. Necessity of the sleep-wake cycle for synaptic homeostasis: System-level analysis of plasticity in the corticothalamic system. R Soc Open Sci 2018; 5(10): 171952.
[http://dx.doi.org/10.1098/rsos.171952] [PMID: 30473798]
[35]
O'Leary LA. Orexin and melanin-concentrating hormone neurons: A hypothalamic interface for sleep and feeding regulation. Biosci Horiz 2014; 7: hzu008.
[http://dx.doi.org/10.1093/biohorizons/hzu008]
[36]
Medeiros DC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep disorders in rodent models of Parkinson’s disease. Front Pharmacol 2019; 10: 1414.
[http://dx.doi.org/10.3389/fphar.2019.01414] [PMID: 31827439]
[37]
Aston-Jones G, Gonzalez M, Doran S. Role of the locus coeruleus-norepinephrine system in arousal and circadian regulation of the sleep-wake cycle. In: Norepinephrine B, Ed. Ordway GA, Schwartz MA, Frazer A. Cambridge: Cambridge University Press 2007.
[http://dx.doi.org/10.1017/CBO9780511544156.007]
[38]
Hofman WF, Talamini LM. Normal sleep and its neurophysiological regulation. In: Watson RR, Ed. Modulation of Sleep by Obesity, Diabetes, Age, and Diet. Cambridge, Massachusetts: Elsevier 2015; pp. 25-32.
[http://dx.doi.org/10.1016/B978-0-12-420168-2.00004-1]
[39]
Hubbard J, Ruppert E, Gropp C-M, Bourgin P. Non-circadian direct effects of light on sleep and alertness: Lessons from transgenic mouse models. Sleep Med Rev 2013; 17(6): 445-52.
[http://dx.doi.org/10.1016/j.smrv.2012.12.004] [PMID: 23602126]
[40]
Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep 2004; 27(1): 27-35.
[http://dx.doi.org/10.1093/sleep/27.1.27] [PMID: 14998234]
[41]
Zhang L, Guo H-L, Zhang H-Q, et al. Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: Role of oxidative stress and balance between GABAergic and glutamatergic transmission. Am J Transl Res 2017; 9(5): 2231-42.
[PMID: 28559974]
[42]
Kumar A, Singh A. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine 2008; 15(8): 577-86.
[http://dx.doi.org/10.1016/j.phymed.2008.02.003] [PMID: 18586477]
[43]
Kumar V, Singh C, Singh A. Zebrafish an experimental model of Huntington’s disease: Molecular aspects, therapeutic targets and current challenges. Mol Biol Rep 2021; 48(12): 8181-94.
[http://dx.doi.org/10.1007/s11033-021-06787-y] [PMID: 34665402]
[44]
Villafuerte G, Miguel-Puga A, Rodríguez EM, Machado S, Manjarrez E, Arias-Carrión O. Sleep deprivation and oxidative stress in animal models: A systematic review. Oxid Med Cell Longev 2015; 2015: 234952.
[http://dx.doi.org/10.1155/2015/234952] [PMID: 25945148]
[45]
Atrooz F, Salim S. Sleep deprivation, oxidative stress and inflammation. Adv Protein Chem Struct Biol 2020; 119: 309-36.
[http://dx.doi.org/10.1016/bs.apcsb.2019.03.001] [PMID: 31997771]
[46]
Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 2000; 9(3): 207-31.
[http://dx.doi.org/10.1046/j.1365-2869.2000.00214.x] [PMID: 11012860]
[47]
Chittora R, Jain A, Suhalka P, Sharma C, Jaiswal N, Bhatnagar M. Sleep deprivation: Neural regulation and consequences. Sleep Biol Rhythms 2015; 13(3): 210-8.
[http://dx.doi.org/10.1111/sbr.12110]
[48]
Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol 2016; 53(6): 4094-125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[49]
Lima AMA, de Bruin VMS, Rios ERV, de Bruin PFC. Differential effects of paradoxical sleep deprivation on memory and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2014; 387(5): 399-406.
[http://dx.doi.org/10.1007/s00210-013-0955-z] [PMID: 24424716]
[50]
Kumar V, Singh A. Targeting N17 domain as a potential therapeutic target for the treatment of Huntington disease: An opinion. EXCLI J 2021; 20: 1086-90.
[PMID: 34267617]
[51]
Andreazza AC, Andersen ML, Alvarenga TA, et al. Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice. J Psychiatr Res 2010; 44(12): 775-80.
[http://dx.doi.org/10.1016/j.jpsychires.2010.01.015] [PMID: 20176368]
[52]
Cai W, Shen W-D. Anti-apoptotic mechanisms of acupuncture in neurological diseases: A review. Am J Chin Med 2018; 46(3): 515-35.
[http://dx.doi.org/10.1142/S0192415X1850026X] [PMID: 29595076]
[53]
Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell 2014; 54(2): 281-8.
[http://dx.doi.org/10.1016/j.molcel.2014.03.030] [PMID: 24766892]
[54]
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20(1): 158-78.
[PMID: 34151764]
[55]
Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: Gatekeepers of central nervous system immunology. J Leukoc Biol 2009; 85(3): 352-70.
[http://dx.doi.org/10.1189/jlb.0608385] [PMID: 19028958]
[56]
Wisor JP, Schmidt MA, Clegern WC. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 2011; 34(3): 261-72.
[http://dx.doi.org/10.1093/sleep/34.3.261] [PMID: 21358843]
[57]
Kim YS, Joh TH. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006; 38(4): 333-47.
[http://dx.doi.org/10.1038/emm.2006.40] [PMID: 16953112]
[58]
Xue R, Wan Y, Sun X, Zhang X, Gao W, Wu W. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front Immunol 2019; 10: 2546.
[http://dx.doi.org/10.3389/fimmu.2019.02546] [PMID: 31736967]
[59]
Kumar Rajendran N, George BP, Chandran R, Tynga IM, Houreld N, Abrahamse H. The influence of light on reactive oxygen species and NF-кB in disease progression. Antioxidants 2019; 8(12): 640.
[http://dx.doi.org/10.3390/antiox8120640] [PMID: 31842333]
[60]
Kuo T-H, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. Sleep 2014; 37(5): 859-69.
[http://dx.doi.org/10.5665/sleep.3648] [PMID: 24790264]
[61]
Serasanambati M, Chilakapati SR. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. South Indian J Biol Sci 2016; 2(4): 368-87.
[http://dx.doi.org/10.22205/sijbs/2016/v2/i4/103443]
[62]
Das MR, Banerjee A, Sarkar S, Majumder J, Chakrabarti S, Jana SS. Amino-alcohol bio-conjugate of naproxen exhibits anti-inflammatory activity through NF-κB signaling pathway. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.10.901223]
[63]
Bloom MJ, Saksena SD, Swain GP, Behar MS, Yankeelov TE, Sorace AG. The effects of IKK-beta inhibition on early NF-kappa-B activation and transcription of downstream genes. Cell Signal 2019; 55: 17-25.
[http://dx.doi.org/10.1016/j.cellsig.2018.12.004] [PMID: 30543861]
[64]
Chauveau F, Claverie D, Lardant E, et al. Neuropeptide S promotes wakefulness through the inhibition of sleep-promoting ventrolateral preoptic nucleus neurons. Sleep 2020; 43(1): zsz189.
[http://dx.doi.org/10.1093/sleep/zsz189] [PMID: 31403694]
[65]
Longordo F, Kopp C, Lüthi A. Consequences of sleep deprivation on neurotransmitter receptor expression and function. Eur J Neurosci 2009; 29(9): 1810-9.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06719.x] [PMID: 19492440]
[66]
Kim SY, Payne JD. Neural correlates of sleep, stress, and selective memory consolidation. Curr Opin Behav Sci 2020; 33: 57-64.
[http://dx.doi.org/10.1016/j.cobeha.2019.12.009]
[67]
Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5(7): 374-81.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[68]
Ray K, Dutta A, Panjwani U, Thakur L, Anand JP, Kumar S. Hypobaric hypoxia modulates brain biogenic amines and disturbs sleep architecture. Neurochem Int 2011; 58(1): 112-8.
[http://dx.doi.org/10.1016/j.neuint.2010.11.003] [PMID: 21075155]
[69]
Amar M, Singh A, Mallick BN. Noradrenergic β-adrenoceptor-mediated intracellular molecular mechanism of Na-K ATPase subunit expression in C6 cells. Cell Mol Neurobiol 2018; 38(2): 441-57.
[http://dx.doi.org/10.1007/s10571-017-0488-y] [PMID: 28353187]
[70]
Mallick BN, Majumdar S, Faisal M, Yadav V, Madan V, Pal D. Role of norepinephrine in the regulation of rapid eye movement sleep. J Biosci 2002; 27(5): 539-51.
[http://dx.doi.org/10.1007/BF02705052] [PMID: 12381879]
[71]
Huang H, Li Y, Liang J, Finkelman FD. Molecular regulation of histamine synthesis. Front Immunol 2018; 9: 1392.
[http://dx.doi.org/10.3389/fimmu.2018.01392] [PMID: 29973935]
[72]
He C, Luo F, Chen X, et al. Superficial layer-specific histaminergic modulation of medial entorhinal cortex required for spatial learning. Cereb Cortex 2016; 26(4): 1590-608.
[http://dx.doi.org/10.1093/cercor/bhu322] [PMID: 25595181]
[73]
Cozma S, Ghiciuc CM, Damian L, et al. Distinct activation of the sympathetic adreno-medullar system and hypothalamus pituitary adrenal axis following the caloric vestibular test in healthy subjects. PLoS One 2018; 13(3): e0193963.
[http://dx.doi.org/10.1371/journal.pone.0193963] [PMID: 29509800]
[74]
Qian S, Wang Y, Zhang X. Inhibiting histamine signaling ameliorates vertigo induced by sleep deprivation. J Mol Neurosci 2019; 67(3): 411-7.
[http://dx.doi.org/10.1007/s12031-018-1244-6] [PMID: 30644035]
[75]
Passani MB, Lin J-S, Hancock A, Crochet S, Blandina P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 2004; 25(12): 618-25.
[http://dx.doi.org/10.1016/j.tips.2004.10.003] [PMID: 15530639]
[76]
Vanni-Mercier G, Gigout S, Debilly G, Lin J-S. Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: An electrophysiological study in freely moving cats. Behav Brain Res 2003; 144(1-2): 227-41.
[http://dx.doi.org/10.1016/S0166-4328(03)00091-3] [PMID: 12946612]
[77]
Thakkar MM. Histamine in the regulation of wakefulness. Sleep Med Rev 2011; 15(1): 65-74.
[http://dx.doi.org/10.1016/j.smrv.2010.06.004] [PMID: 20851648]
[78]
Chegini H-R, Nasehi M, Zarrindast M-R. Differential role of the basolateral amygdala 5-HT3 and 5-HT4 serotonin receptors upon ACPA-induced anxiolytic-like behaviors and emotional memory deficit in mice. Behav Brain Res 2014; 261: 114-26.
[http://dx.doi.org/10.1016/j.bbr.2013.12.007] [PMID: 24333573]
[79]
Sato K. Why does serotonergic activity drastically decrease during REM sleep? Med Hypotheses 2013; 81(4): 734-7.
[http://dx.doi.org/10.1016/j.mehy.2013.07.041] [PMID: 23942031]
[80]
Lee S-H, Dan Y. Neuromodulation of brain states. Neuron 2012; 76(1): 209-22.
[http://dx.doi.org/10.1016/j.neuron.2012.09.012] [PMID: 23040816]
[81]
Prince T-M, Abel T. The impact of sleep loss on hippocampal function. Learn Mem 2013; 20(10): 558-69.
[http://dx.doi.org/10.1101/lm.031674.113] [PMID: 24045505]
[82]
Langlois M, Fischmeister R. 5-HT4 receptor ligands: Applications and new prospects. J Med Chem 2003; 46(3): 319-44.
[http://dx.doi.org/10.1021/jm020099f] [PMID: 12540230]
[83]
McCorvy JD, Roth BL. Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 2015; 150: 129-42.
[http://dx.doi.org/10.1016/j.pharmthera.2015.01.009] [PMID: 25601315]
[84]
Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017; 44: 101-9.
[http://dx.doi.org/10.1016/j.conb.2017.03.018] [PMID: 28433001]
[85]
Villano I, Messina A, Valenzano A, et al. Basal forebrain cholinergic system and orexin neurons: Effects on attention. Front Behav Neurosci 2017; 11: 10.
[http://dx.doi.org/10.3389/fnbeh.2017.00010] [PMID: 28197081]
[86]
Cissé Y, Toossi H, Ishibashi M, et al. Discharge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recording in mice. eNeuro 2018; 5(4): 5.
[http://dx.doi.org/10.1523/ENEURO.0270-18.2018] [PMID: 30225352]
[87]
Teles-Grilo Ruivo LM, Baker KL, Conway MW, et al. Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Rep 2017; 18(4): 905-17.
[http://dx.doi.org/10.1016/j.celrep.2016.12.085] [PMID: 28122241]
[88]
Zant JC, Kim T, Prokai L, et al. Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: An opto-dialysis study. J Neurosci 2016; 36(6): 2057-67.
[http://dx.doi.org/10.1523/JNEUROSCI.3318-15.2016] [PMID: 26865627]
[89]
Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behav Brain Res 2011; 221(2): 412-23.
[http://dx.doi.org/10.1016/j.bbr.2010.11.047] [PMID: 21129408]
[90]
Benedito MA, Camarini R. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions. Braz J Med Biol Res 2001; 34(1): 103-9.
[http://dx.doi.org/10.1590/S0100-879X2001000100012] [PMID: 11151034]
[91]
Power AE, Vazdarjanova A, McGaugh JL. Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 2003; 80(3): 178-93.
[http://dx.doi.org/10.1016/S1074-7427(03)00086-8] [PMID: 14521862]
[92]
Gold PE. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 2003; 80(3): 194-210.
[http://dx.doi.org/10.1016/j.nlm.2003.07.003] [PMID: 14521863]
[93]
Power AE. Slow-wave sleep, acetylcholine, and memory consolidation. Proc Natl Acad Sci USA 2004; 101(7): 1795-6.
[http://dx.doi.org/10.1073/pnas.0400237101] [PMID: 14769926]
[94]
Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 2016; 19(10): 1356-66.
[http://dx.doi.org/10.1038/nn.4377] [PMID: 27595385]
[95]
Maloney KJ, Mainville L, Jones BE. c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 2002; 15(4): 774-8.
[http://dx.doi.org/10.1046/j.1460-9568.2002.01907.x] [PMID: 11886456]
[96]
Vetrivelan R, Lu J. Neural circuitry regulating REM sleep and its implication in REM sleep behavior disorder. In: Rapid-Eye-Movement SBD, Ed. Schenck C, Högl B, Videnovic A. Cham: Springer 2019; pp. 559-77.
[97]
Vaudano AE, Azzi N, Trippi I. Normal sleep EEG. In: Mecarelli O, Ed. Clinical Electroencephalography. Cham: Springer 2019; pp. 153-75.
[http://dx.doi.org/10.1007/978-3-030-04573-9_10]
[98]
Yu X, Li W, Ma Y, et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019; 22(1): 106-19.
[http://dx.doi.org/10.1038/s41593-018-0288-9] [PMID: 30559475]
[99]
Crowley T, Cryan JF, Downer EJ, O’Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260-77.
[http://dx.doi.org/10.1016/j.bbi.2016.02.001] [PMID: 26851553]
[100]
Su J, Yin J, Qin W, Sha S, Xu J, Jiang C. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res 2015; 40(3): 621-7.
[http://dx.doi.org/10.1007/s11064-014-1504-y] [PMID: 25708016]
[101]
Wisden W, Yu X, Franks N. GABA receptors and the pharmacology of sleep. In: Landolt HP, Dijk DJ, Eds. Sleep-Wake Neurobiology and Pharmacology Handbook of Experimental Pharmacology. Cham: Springer 2017; pp. 279-304.
[http://dx.doi.org/10.1007/164_2017_56]
[102]
Saper CB, Fuller PM. Wake-sleep circuitry: An overview. Curr Opin Neurobiol 2017; 44: 186-92.
[http://dx.doi.org/10.1016/j.conb.2017.03.021] [PMID: 28577468]
[103]
Mignot E, Taheri S, Nishino S. Sleeping with the hypothalamus: Emerging therapeutic targets for sleep disorders. Nat Neurosci 2002; 5 (Suppl. 11): 1071-5.
[http://dx.doi.org/10.1038/nn944] [PMID: 12403989]
[104]
Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron 2017; 93(4): 747-65.
[http://dx.doi.org/10.1016/j.neuron.2017.01.014] [PMID: 28231463]
[105]
Schöne C, Burdakov D. Orexin/hypocretin and organizing principles for a diversity of wake-promoting neurons in the brain. Curr Top Behav Neurosci 2017; 33: 51-74.
[106]
Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005; 46(5): 787-98.
[http://dx.doi.org/10.1016/j.neuron.2005.04.035] [PMID: 15924864]
[107]
Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 2013; 255: 64-74.
[http://dx.doi.org/10.1016/j.bbr.2013.05.021] [PMID: 23707248]
[108]
Frau R, Traccis F, Bortolato M. Neurobehavioural complications of sleep deprivation: Shedding light on the emerging role of neuroactive steroids. J Neuroendocrinol 2020; 32(1): e12792.
[http://dx.doi.org/10.1111/jne.12792] [PMID: 31505075]
[109]
Shechter A, Boivin DB. Sleep, hormones, and circadian rhythms throughout the menstrual cycle in healthy women and women with premenstrual dysphoric disorder. Int J Endocrinol 2010; 2010: 259345.
[http://dx.doi.org/10.1155/2010/259345] [PMID: 20145718]
[110]
Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol 2006; 38(3): 313-6.
[http://dx.doi.org/10.1016/j.biocel.2005.08.020] [PMID: 16219483]
[111]
Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci 2017; 173: 94-106.
[http://dx.doi.org/10.1016/j.lfs.2017.02.008] [PMID: 28214594]
[112]
Barclay JL, Husse J, Bode B, et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 2012; 7(5): e37150.
[http://dx.doi.org/10.1371/journal.pone.0037150] [PMID: 22629359]
[113]
Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA 2014; 111(29): 10761-6.
[http://dx.doi.org/10.1073/pnas.1402663111] [PMID: 25002497]
[114]
Honma A, Revell VL, Gunn PJ, et al. Effect of acute total sleep deprivation on plasma melatonin, cortisol and metabolite rhythms in females. Eur J Neurosci 2020; 51(1): 366-78.
[http://dx.doi.org/10.1111/ejn.14411] [PMID: 30929284]
[115]
Ackermann K, Revell VL, Lao O, Rombouts EJ, Skene DJ, Kayser M. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep 2012; 35(7): 933-40.
[http://dx.doi.org/10.5665/sleep.1954] [PMID: 22754039]
[116]
Deboer T, Détári L, Meijer JH. Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 2007; 30(3): 257-62.
[http://dx.doi.org/10.1093/sleep/30.3.257] [PMID: 17425221]
[117]
Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 2005; 53(2): 129-39.
[http://dx.doi.org/10.1016/j.neures.2005.06.008] [PMID: 16024125]
[118]
Jurič DM, Lončar D, Čarman-Kržan M. Noradrenergic stimulation of BDNF synthesis in astrocytes: Mediation via α1- and β1/β2-adrenergic receptors. Neurochem Int 2008; 52(1-2): 297-306.
[http://dx.doi.org/10.1016/j.neuint.2007.06.035] [PMID: 17681645]
[119]
Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004; 55(7): 708-14.
[http://dx.doi.org/10.1016/j.biopsych.2003.12.011] [PMID: 15038999]
[120]
Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med 2016; 48(1-2): 42-51.
[http://dx.doi.org/10.3109/07853890.2015.1131327] [PMID: 26758201]
[121]
Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histol Histopathol 2010; 25(2): 237-58.
[PMID: 20017110]
[122]
Huang EJ, Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 2003; 72(1): 609-42.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[123]
Jeon SW, Kim Y-K. Molecular neurobiology and promising new treatment in depression. Int J Mol Sci 2016; 17(3): 381.
[http://dx.doi.org/10.3390/ijms17030381] [PMID: 26999106]
[124]
Zhang L, Zhang H-Q, Liang X-Y, Zhang H-F, Zhang T, Liu F-E. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: Role of oxidative stress, BDNF and CaMKII. Behav Brain Res 2013; 256: 72-81.
[http://dx.doi.org/10.1016/j.bbr.2013.07.051] [PMID: 23933144]
[125]
Almeida RD, Manadas BJ, Melo CV, et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 2005; 12(10): 1329-43.
[http://dx.doi.org/10.1038/sj.cdd.4401662] [PMID: 15905876]
[126]
Dąbek J, Kułach A, Gąsior Z. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB): A new potential therapeutic target in atherosclerosis? Pharmacol Rep 2010; 62(5): 778-83.
[http://dx.doi.org/10.1016/S1734-1140(10)70338-8] [PMID: 21098861]
[127]
Schmitz ML. Function and activation of the transcription factor NF-kappa B in the response to toxins and pathogens. Toxicol Lett 1995; 82-83: 407-11.
[http://dx.doi.org/10.1016/0378-4274(95)03491-9] [PMID: 8597085]
[128]
Cuninkova L, Brown SA. Peripheral circadian oscillators: Interesting mechanisms and powerful tools. Ann N Y Acad Sci 2008; 1129(1): 358-70.
[http://dx.doi.org/10.1196/annals.1417.005] [PMID: 18591495]
[129]
Huang WY, Zou X, Lu FE, et al. Jiao-tai-wan up-regulates hypothalamic and peripheral circadian clock gene cryptochrome and activates PI3K/AKT signaling in partially sleep-deprived rats. Curr Med Sci 2018; 38(4): 704-13.
[http://dx.doi.org/10.1007/s11596-018-1934-x] [PMID: 30128882]
[130]
Brandt JA, Churchill L, Rehman A, et al. Sleep deprivation increases the activation of nuclear factor kappa B in lateral hypothalamic cells. Brain Res 2004; 1004(1-2): 91-7.
[http://dx.doi.org/10.1016/j.brainres.2003.11.079] [PMID: 15033423]
[131]
Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA 2012; 109(31): 12662-7.
[http://dx.doi.org/10.1073/pnas.1209965109] [PMID: 22778400]
[132]
Kim J, Cha Y-N, Surh Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 2010; 690(1-2): 12-23.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.007] [PMID: 19799917]
[133]
Davies TG, Wixted WE, Coyle JE, et al. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) protein-protein interaction with high cell potency identified by fragment-based discovery. J Med Chem 2016; 59(8): 3991-4006.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00228] [PMID: 27031670]
[134]
Seidner G, Robinson JE, Wu M, et al. Identification of neurons with a privileged role in sleep homeostasis in Drosophila melanogaster. Curr Biol 2015; 25(22): 2928-38.
[http://dx.doi.org/10.1016/j.cub.2015.10.006] [PMID: 26526372]
[135]
Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen species. Hypertension 2009; 53(6): 885-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.130054] [PMID: 19398655]
[136]
Sun Z, Huang Z, Zhang DD. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 2009; 4(8): e6588.
[http://dx.doi.org/10.1371/journal.pone.0006588] [PMID: 19668370]
[137]
Li KR, Yang SQ, Gong YQ, et al. 3H-1,2-dithiole-3-thione protects retinal pigment epithelium cells against Ultra-violet radiation via activation of Akt-mTORC1-dependent Nrf2-HO-1 signaling. Sci Rep 2016; 6(1): 25525.
[http://dx.doi.org/10.1038/srep25525] [PMID: 27151674]
[138]
Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 2015; 225(3): R83-99.
[http://dx.doi.org/10.1530/JOE-14-0662] [PMID: 25918130]
[139]
Rodrigues NR, Macedo GE, Martins IK, et al. Short-term sleep deprivation with exposure to nocturnal light alters mitochondrial bioenergetics in Drosophila. Free Radic Biol Med 2018; 120: 395-406.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.549] [PMID: 29655867]
[140]
Calkins MJ, Johnson DA, Townsend JA, et al. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 2009; 11(3): 497-508.
[http://dx.doi.org/10.1089/ars.2008.2242] [PMID: 18717629]
[141]
Rodrigues RJ, Canas PM, Lopes LV, Oliveira CR, Cunha RA. Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiol Aging 2008; 29(10): 1597-601.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.03.025] [PMID: 17481781]
[142]
Boison D. Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 2008; 8(1): 2-7.
[http://dx.doi.org/10.1016/j.coph.2007.09.002] [PMID: 17942368]
[143]
Fredholm BB, Chen J-F, Masino SA, Vaugeois J-M. Actions of adenosine at its receptors in the CNS: Insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 2005; 45(1): 385-412.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095731] [PMID: 15822182]
[144]
Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004; 73(6): 379-96.
[http://dx.doi.org/10.1016/j.pneurobio.2004.06.004] [PMID: 15313333]
[145]
Kalinchuk AV, Urrila AS, Alanko L, et al. Local energy depletion in the basal forebrain increases sleep. Eur J Neurosci 2003; 17(4): 863-9.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02532.x] [PMID: 12603276]
[146]
Huang Z-L, Urade Y, Hayaishi O. The role of adenosine in the regulation of sleep. Curr Top Med Chem 2011; 11(8): 1047-57.
[http://dx.doi.org/10.2174/156802611795347654] [PMID: 21401496]
[147]
Wang G, Grone B, Colas D, Appelbaum L, Mourrain P. Synaptic plasticity in sleep: Learning, homeostasis and disease. Trends Neurosci 2011; 34(9): 452-63.
[http://dx.doi.org/10.1016/j.tins.2011.07.005] [PMID: 21840068]
[148]
Havekes R, Vecsey CG, Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal 2012; 24(6): 1251-60.
[http://dx.doi.org/10.1016/j.cellsig.2012.02.010] [PMID: 22570866]
[149]
Liu AM, Wong YH. G16-mediated activation of nuclear factor kappaB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 2004; 279(51): 53196-204.
[http://dx.doi.org/10.1074/jbc.M410196200] [PMID: 15485865]
[150]
Ramesh V, Thatte HS, McCarley RW, Basheer R. Adenosine and sleep deprivation promote NF-kappaB nuclear translocation in cholinergic basal forebrain. J Neurochem 2007; 100(5): 1351-63.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04314.x] [PMID: 17316404]
[151]
Eugene AR, Masiak J. The neuroprotective aspects of sleep. MEDtube Sci 2015; 3(1): 35-40.
[PMID: 26594659]
[152]
Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342: 373-7.
[153]
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: A beginner’s guide. Neurochem Res 2015; 40(12): 2583-99.
[http://dx.doi.org/10.1007/s11064-015-1581-6] [PMID: 25947369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy