Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Gasdermins: Pore-forming Proteins as a Potential Therapeutic Target

Author(s): Kripa Jain, Kalyani Barve and Lokesh Kumar Bhatt*

Volume 23, Issue 3, 2022

Published on: 27 May, 2022

Page: [133 - 151] Pages: 19

DOI: 10.2174/1389203723666220510123740

Price: $65

Abstract

Gasdermins are novel pore forming proteins that comprise Gasdermin A, Gasdermin B, Gasdermin C, Gasdermin D, Gasdermin E and Pejvakin (DFNB59). Recently, pyroptosis has been redefined as "Gasdermin mediated necrosis", as gasdermins are key regulators of apoptosis, necrosis, and pyroptosis. The discovery of the gasdermin family has broadened the field of pyroptosis studies. Studies have correlated gasdermins with several diseases. This review summarizes the physiological roles and signal transduction of gasdermins. It further highlights the role of gasdermins in pathological conditions like autoimmune disease, kidney diseases, and central nervous system diseases.

Keywords: Gasdermins, pyroptosis, autoimmune disease, kidney diseases, CNS diseases, gasdermin mediated necrosis.

Graphical Abstract
[1]
Watabe, K.; Ito, A.; Asada, H.; Endo, Y.; Kobayashi, T.; Nakamoto, K.; Itami, S.; Takao, S.; Shinomura, Y.; Aikou, T.; Yoshikawa, K.; Matsuzawa, Y.; Kitamura, Y.; Nojima, H. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn. J. Cancer Res., 2001, 92(2), 140-151.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01076.x] [PMID: 11223543]
[2]
Liu, Z.; Wang, C.; Yang, J.; Zhou, B.; Yang, R.; Ramachandran, R.; Abbott, D.W.; Xiao, T.S. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity, 2019, 51(1), 43-49.e4.
[http://dx.doi.org/10.1016/j.immuni.2019.04.017] [PMID: 31097341]
[3]
Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665.
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[4]
Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D-C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610), 111-116.
[http://dx.doi.org/10.1038/nature18590] [PMID: 27281216]
[5]
Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V.G.; Wu, H.; Lieberman, J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610), 153-158.
[http://dx.doi.org/10.1038/nature18629] [PMID: 27383986]
[6]
Sborgi, L; Rühl, S; Mulvihill, E; Pipercevic, J; Heilig, R; Stahlberg, H; Farady, CJ; Müller, DJ; Broz, P; Hiller, S GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. 2016, 35(16), 1766-1778.
[http://dx.doi.org/10.15252/embj.201694696]
[7]
Tamura, M.; Tanaka, S.; Fujii, T.; Aoki, A.; Komiyama, H.; Ezawa, K.; Sumiyama, K.; Sagai, T.; Shiroishi, T. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics, 2007, 89(5), 618-629.
[http://dx.doi.org/10.1016/j.ygeno.2007.01.003] [PMID: 17350798]
[8]
Saeki, N.; Kuwahara, Y.; Sasaki, H.; Satoh, H.; Shiroishi, T. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm. Genome, 2000, 11(9), 718-724.
[http://dx.doi.org/10.1007/s003350010138] [PMID: 10967128]
[9]
Saeki, N.; Kim, D.H.; Usui, T.; Aoyagi, K.; Tatsuta, T.; Aoki, K.; Yanagihara, K.; Tamura, M.; Mizushima, H.; Sakamoto, H.; Ogawa, K.; Ohki, M.; Shiroishi, T.; Yoshida, T.; Sasaki, H. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene, 2007, 26(45), 6488-6498.
[http://dx.doi.org/10.1038/sj.onc.1210475] [PMID: 17471240]
[10]
Runkel, F.; Marquardt, A.; Stoeger, C.; Kochmann, E.; Simon, D.; Kohnke, B.; Korthaus, D.; Wattler, F.; Fuchs, H.; Hrabé de Angelis, M.; Stumm, G.; Nehls, M.; Wattler, S.; Franz, T.; Augustin, M. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics, 2004, 84(5), 824-835.
[http://dx.doi.org/10.1016/j.ygeno.2004.07.003] [PMID: 15475261]
[11]
Panganiban, R.A.; Sun, M.; Dahlin, A.; Park, H-R.; Kan, M.; Himes, B.E.; Mitchel, J.A.; Iribarren, C.; Jorgenson, E.; Randell, S.H.; Israel, E.; Tantisira, K.; Shore, S.; Park, J-A.; Weiss, S.T.; Wu, A.C.; Lu, Q. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol., 2018, 142(5), 1469-1478.e2.
[http://dx.doi.org/10.1016/j.jaci.2017.11.040] [PMID: 29330013]
[12]
Saeki, N.; Usui, T.; Aoyagi, K.; Kim, D.H.; Sato, M.; Mabuchi, T.; Yanagihara, K.; Ogawa, K.; Sakamoto, H.; Yoshida, T.; Sasaki, H. Dis-tinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer, 2009, 48(3), 261-271.
[http://dx.doi.org/10.1002/gcc.20636] [PMID: 19051310]
[13]
Kang, M-J.; Yu, H-S.; Seo, J-H.; Kim, H-Y.; Jung, Y-H.; Kim, Y-J.; Kim, H-J.; Lee, S-Y.; Hong, S-J. GSDMB/ORMDL3 variants contribute to asthma susceptibility and eosinophil-mediated bronchial hyperresponsiveness. Hum. Immunol., 2012, 73(9), 954-959.
[http://dx.doi.org/10.1016/j.humimm.2012.06.009] [PMID: 22732088]
[14]
Katoh, M.; Katoh, M. Identification and characterization of human DFNA5L, mouse Dfna5l, and rat Dfna5l genes in silico. Int. J. Oncol., 2004, 25(3), 765-770.
[http://dx.doi.org/10.3892/ijo.25.3.765] [PMID: 15289881]
[15]
Delmaghani, S.; del Castillo, F.J.; Michel, V.; Leibovici, M.; Aghaie, A.; Ron, U.; Van Laer, L.; Ben-Tal, N.; Van Camp, G.; Weil, D.; Langa, F.; Lathrop, M.; Avan, P.; Petit, C. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet., 2006, 38(7), 770-778.
[http://dx.doi.org/10.1038/ng1829] [PMID: 16804542]
[16]
Liu, X.; Xia, S.; Zhang, Z.; Wu, H.; Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov., 2021, 20(5), 384-405.
[http://dx.doi.org/10.1038/s41573-021-00154-z] [PMID: 33692549]
[17]
Yang, J.; Liu, Z.; Wang, C.; Yang, R.; Rathkey, J.K.; Pinkard, O.W.; Shi, W.; Chen, Y.; Dubyak, G.R.; Abbott, D.W.; Xiao, T.S. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc. Natl. Acad. Sci. USA, 2018, 115(26), 6792-6797.
[http://dx.doi.org/10.1073/pnas.1800562115] [PMID: 29891674]
[18]
Liu, Z.; Wang, C.; Yang, J.; Chen, Y.; Zhou, B.; Abbott, D.W.; Xiao, T.S. Caspase-1 engages full-length gasdermin d through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity, 2020, 53(1), 106-114.e5.
[http://dx.doi.org/10.1016/j.immuni.2020.06.007] [PMID: 32553275]
[19]
Place, D.E.; Kanneganti, T-D. Metabolic regulation of pyroptotic cell death expands the therapeutic landscape for treating inflammatory disease. Signal Transduct. Target. Ther., 2021, 6(1), 37.
[http://dx.doi.org/10.1038/s41392-021-00467-w] [PMID: 33514689]
[20]
Shao, F. Gasdermins: making pores for pyroptosis. Nat. Rev. Immunol., 2021, 21(10), 620-621.
[http://dx.doi.org/10.1038/s41577-021-00602-2] [PMID: 34580452]
[21]
Rathinam, V.A.K.; Jiang, Z.; Waggoner, S.N.; Sharma, S.; Cole, L.E.; Waggoner, L.; Vanaja, S.K.; Monks, B.G.; Ganesan, S.; Latz, E.; Hor-nung, V.; Vogel, S.N.; Szomolanyi-Tsuda, E.; Fitzgerald, K.A. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol., 2010, 11(5), 395-402.
[http://dx.doi.org/10.1038/ni.1864] [PMID: 20351692]
[22]
Heilig, R.; Broz, P. Function and mechanism of the pyrin inflammasome. Eur. J. Immunol., 2018, 48(2), 230-238.
[http://dx.doi.org/10.1002/eji.201746947] [PMID: 29148036]
[23]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[24]
Broz, P.; Dixit, V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 2016, 16(7), 407-420.
[http://dx.doi.org/10.1038/nri.2016.58] [PMID: 27291964]
[25]
Aachoui, Y.; Sagulenko, V.; Miao, E.A.; Stacey, K.J. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol., 2013, 16(3), 319-326.
[http://dx.doi.org/10.1016/j.mib.2013.04.004] [PMID: 23707339]
[26]
Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and pro-cessing of proIL-beta. Mol. Cell, 2002, 10(2), 417-426.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[27]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040] [PMID: 20303873]
[28]
Swanson, K.V.; Deng, M.; Ting, J.P-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol., 2019, 19(8), 477-489.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[29]
Hornung, V.; Ablasser, A.; Charrel-Dennis, M.; Bauernfeind, F.; Horvath, G.; Caffrey, D.R.; Latz, E.; Fitzgerald, K.A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458(7237), 514-518.
[http://dx.doi.org/10.1038/nature07725] [PMID: 19158675]
[30]
Kanneganti, T-D.; Ozören, N.; Body-Malapel, M.; Amer, A.; Park, J-H.; Franchi, L.; Whitfield, J.; Barchet, W.; Colonna, M.; Vandenabeele, P.; Bertin, J.; Coyle, A.; Grant, E.P.; Akira, S.; Núñez, G. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopy-rin/Nalp3. Nature, 2006, 440(7081), 233-236.
[http://dx.doi.org/10.1038/nature04517] [PMID: 16407888]
[31]
Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[32]
Sharma, B.R.; Kanneganti, T-D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 2021, 22(5), 550-559.
[http://dx.doi.org/10.1038/s41590-021-00886-5] [PMID: 33707781]
[33]
Zhao, Y.; Shao, F. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr. Opin. Microbiol., 2016, 29, 37-42.
[http://dx.doi.org/10.1016/j.mib.2015.10.003] [PMID: 26562791]
[34]
He, W.T.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z-H.; Zhong, C-Q.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res., 2015, 25(12), 1285-1298.
[http://dx.doi.org/10.1038/cr.2015.139] [PMID: 26611636]
[35]
Aachoui, Y; Leaf, IA; Hagar, JA; Fontana, MF; Campos, CG; Zak, DE; Tan, MH; Cotter, PA; Vance, RE; Aderem, A; Miao, EA Caspase-11 protects against bacteria that escape the vacuole. 2013, 339(6122), 975-978.
[36]
Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192.
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[37]
Ng, T.M.; Monack, D.M. Revisiting caspase-11 function in host defense. Cell Host Microbe, 2013, 14(1), 9-14.
[http://dx.doi.org/10.1016/j.chom.2013.06.009] [PMID: 23870309]
[38]
Yang, D.; He, Y.; Muñoz-Planillo, R.; Liu, Q.; Núñez, G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5), 923-932.
[http://dx.doi.org/10.1016/j.immuni.2015.10.009] [PMID: 26572062]
[39]
Viganò, E.; Diamond, C.E.; Spreafico, R.; Balachander, A.; Sobota, R.M.; Mortellaro, A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun., 2015, 6(1), 8761.
[http://dx.doi.org/10.1038/ncomms9761] [PMID: 26508369]
[40]
Kayagaki, N; Wong, MT; Stowe, IB; Ramani, SR; Gonzalez, LC; Akashi-Takamura, S; Miyake, K; Zhang, J; Lee, WP Muszyński, A; Forsberg, LS; Carlson, RW; Dixit, VM Noncanonical inflammasome activation by intracellular lps independent of TLR4. 2013, 341(6151), 1246-1249.
[http://dx.doi.org/10.1126/science.1240248]
[41]
Broz, P.; Monack, D.M. Noncanonical inflammasomes: Caspase-11 activation and effector mechanisms. PLoS Pathog., 2013, 9(2), e1003144.
[42]
Hagar, JA; Powell, DA; Aachoui, Y; Ernst, RK; Miao, EA Cytoplasmic LPS activates caspase-11: Implications in TLR4- independent endotoxic shock. 2013, 341(6151), 1250-1253.
[43]
Aglietti, R.A.; Estevez, A.; Gupta, A.; Ramirez, M.G.; Liu, P.S.; Kayagaki, N.; Ciferri, C.; Dixit, V.M.; Dueber, E.C. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl. Acad. Sci. USA, 2016, 113(28), 7858-7863.
[http://dx.doi.org/10.1073/pnas.1607769113] [PMID: 27339137]
[44]
Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671.
[http://dx.doi.org/10.1038/nature15541] [PMID: 26375259]
[45]
Cheng, K.T.; Xiong, S.; Ye, Z.; Hong, Z.; Di, A.; Tsang, K.M.; Gao, X.; An, S.; Mittal, M.; Vogel, S.M.; Miao, E.A.; Rehman, J.; Malik, A.B. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Invest., 2017, 127(11), 4124-4135.
[http://dx.doi.org/10.1172/JCI94495] [PMID: 28990935]
[46]
de Gassart, A.; Martinon, F. Pyroptosis: Caspase-11 unlocks the gates of death. Immunity, 2015, 43(5), 835-837.
[http://dx.doi.org/10.1016/j.immuni.2015.10.024] [PMID: 26588774]
[47]
Zhao, H.; Chen, Y.; Feng, H. P2X7 receptor-associated programmed cell death in the pathophysiology of hemorrhagic stroke. Curr. Neuropharmacol., 2018, 16(9), 1282-1295.
[http://dx.doi.org/10.2174/1570159X16666180516094500] [PMID: 29766811]
[48]
Rühl, S.; Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur. J. Immunol., 2015, 45(10), 2927-2936.
[http://dx.doi.org/10.1002/eji.201545772] [PMID: 26173909]
[49]
Orning, P.; Weng, D.; Starheim, K.; Ratner, D.; Best, Z.; Lee, B.; Brooks, A.; Xia, S.; Wu, H.; Kelliher, M.A.; Berger, S.B.; Gough, P.J.; Bertin, J.; Proulx, M.M.; Goguen, J.D.; Kayagaki, N.; Fitzgerald, K.A.; Lien, E. Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science, 2018, 362(6418), 1064-1069.
[http://dx.doi.org/10.1126/science.aau2818]
[50]
Demarco, B.; Grayczyk, J.P.; Bjanes, E.; Le Roy, D.; Tonnus, W.; Assenmacher, C-A.; Radaelli, E.; Fettrelet, T.; Mack, V.; Linkermann, A.; Roger, T.; Brodsky, I.E.; Chen, K.W.; Broz, P. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv., 2020, 6(47), eabc3465.
[http://dx.doi.org/10.1126/sciadv.abc3465] [PMID: 33208362]
[51]
Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M-C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; Lamkanfi, M.; Krönke, M.; Pasparakis, M.; Kashkar, H. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyropto-sis. Nature, 2019, 575(7784), 683-687.
[http://dx.doi.org/10.1038/s41586-019-1770-6] [PMID: 31748744]
[52]
Sarhan, J.; Liu, B.C.; Muendlein, H.I.; Li, P.; Nilson, R.; Tang, A.Y.; Rongvaux, A.; Bunnell, S.C.; Shao, F.; Green, D.R.; Poltorak, A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl. Acad. Sci. USA, 2018, 115(46), E10888-E10897.
[http://dx.doi.org/10.1073/pnas.1809548115] [PMID: 30381458]
[53]
Santa Cruz Garcia, A.B.; Schnur, K.P.; Malik, A.B.; Mo, G.C.H. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat. Commun., 2022, 13(1), 52.
[http://dx.doi.org/10.1038/s41467-021-27692-9] [PMID: 35013201]
[54]
Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced py-roptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol., 2010, 11(12), 1136-1142.
[http://dx.doi.org/10.1038/ni.1960] [PMID: 21057511]
[55]
Ruan, J.; Xia, S.; Liu, X.; Lieberman, J.; Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature, 2018, 557(7703), 62-67.
[http://dx.doi.org/10.1038/s41586-018-0058-6] [PMID: 29695864]
[56]
De Schutter, E.; Ramon, J.; Pfeuty, B.; De Tender, C.; Stremersch, S.; Raemdonck, K.; de Beeck, K.O.; Declercq, W.; Riquet, F.B.; Braeck-mans, K.; Vandenabeele, P. Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis. Cell. Mol. Life Sci., 2021, 79(1), 19.
[http://dx.doi.org/10.1007/s00018-021-04078-0] [PMID: 34971436]
[57]
Rogers, C.; Erkes, D.A.; Nardone, A.; Aplin, A.E.; Fernandes-Alnemri, T.; Alnemri, E.S. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun., 2019, 10(1), 1689.
[http://dx.doi.org/10.1038/s41467-019-09397-2] [PMID: 30976076]
[58]
Monteleone, M.; Stanley, A.C.; Chen, K.W.; Brown, D.L.; Bezbradica, J.S.; von Pein, J.B.; Holley, C.L.; Boucher, D.; Shakespear, M.R.; Kapetanovic, R.; Rolfes, V.; Sweet, M.J.; Stow, J.L.; Schroder, K. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep., 2018, 24(6), 1425-1433.
[http://dx.doi.org/10.1016/j.celrep.2018.07.027] [PMID: 30089254]
[59]
Xia, S.; Zhang, Z.; Magupalli, V.G.; Pablo, J.L.; Dong, Y.; Vora, S.M.; Wang, L.; Fu, T-M.; Jacobson, M.P.; Greka, A.; Lieberman, J.; Ru-an, J.; Wu, H. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860), 607-611.
[http://dx.doi.org/10.1038/s41586-021-03478-3] [PMID: 33883744]
[60]
Karmakar, M.; Minns, M.; Greenberg, E.N.; Diaz-Aponte, J.; Pestonjamasp, K.; Johnson, J.L.; Rathkey, J.K.; Abbott, D.W.; Wang, K.; Shao, F.; Catz, S.D.; Dubyak, G.R.; Pearlman, E. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun., 2020, 11(1), 2212.
[http://dx.doi.org/10.1038/s41467-020-16043-9] [PMID: 32371889]
[61]
Schlame, M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res., 2008, 49(8), 1607-1620.
[http://dx.doi.org/10.1194/jlr.R700018-JLR200] [PMID: 18077827]
[62]
Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleav-age of a gasdermin. Nature, 2017, 547(7661), 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[63]
Chao, K.L.; Kulakova, L.; Herzberg, O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sul-fatide and phosphoinositide binding protein. Proc. Natl. Acad. Sci. USA, 2017, 114(7), E1128-E1137.
[http://dx.doi.org/10.1073/pnas.1616783114] [PMID: 28154144]
[64]
Zanoni, I.; Tan, Y.; Di Gioia, M.; Springstead, J.R.; Kagan, J.C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity, 2017, 47(4), 697-709.e3.
[http://dx.doi.org/10.1016/j.immuni.2017.09.010] [PMID: 29045901]
[65]
Evavold, C.L.; Ruan, J.; Tan, Y.; Xia, S.; Wu, H.; Kagan, J.C. The pore-forming protein gasdermin d regulates interleukin-1 secretion from living macrophages. Immunity, 2018, 48(1), 35-44.e6.
[http://dx.doi.org/10.1016/j.immuni.2017.11.013] [PMID: 29195811]
[66]
Zanoni, I; Tan, Y; Di Gioia, M; Broggi, A; Ruan, J; Shi, J; Donado, CA; Shao, F; Wu, H; Springstead, JR; Kagan, JC An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. 2016, 352(6290), 1232-1236.
[http://dx.doi.org/10.1126/science.aaf3036]
[67]
Heilig, R.; Dick, M.S.; Sborgi, L.; Meunier, E.; Hiller, S.; Broz, P. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol., 2018, 48(4), 584-592.
[http://dx.doi.org/10.1002/eji.201747404] [PMID: 29274245]
[68]
Carty, M.; Kearney, J.; Shanahan, K.A.; Hams, E.; Sugisawa, R.; Connolly, D.; Doran, C.G.; Muñoz-Wolf, N.; Gürtler, C.; Fitzgerald, K.A.; Lavelle, E.C.; Fallon, P.G.; Bowie, A.G. Cell survival and cytokine release after inflammasome activation is regulated by the Toll-IL-1R protein SARM. Immunity, 2019, 50(6), 1412-1424.e6.
[http://dx.doi.org/10.1016/j.immuni.2019.04.005] [PMID: 31076360]
[69]
Gaidt, M.M.; Ebert, T.S.; Chauhan, D.; Schmidt, T.; Schmid-Burgk, J.L.; Rapino, F.; Robertson, A.A.B.; Cooper, M.A.; Graf, T.; Hornung, V. Human monocytes engage an alternative inflammasome pathway. Immunity, 2016, 44(4), 833-846.
[http://dx.doi.org/10.1016/j.immuni.2016.01.012] [PMID: 27037191]
[70]
Chen, K.W.; Groß, C.J.; Sotomayor, F.V.; Stacey, K.J.; Tschopp, J.; Sweet, M.J.; Schroder, K. The neutrophil NLRC4 inflammasome selec-tively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep., 2014, 8(2), 570-582.
[http://dx.doi.org/10.1016/j.celrep.2014.06.028] [PMID: 25043180]
[71]
Rühl, S; Shkarina, K; Demarco, B; Heilig, R; Santos, JC Broz, P ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. 2018, 362(6417), 956-960.
[http://dx.doi.org/10.1126/science.aar7607]
[72]
McNeil, P.L.; Kirchhausen, T. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol., 2005, 6(6), 499-505.
[http://dx.doi.org/10.1038/nrm1665] [PMID: 15928713]
[73]
Li, S.; Wu, Y.; Yang, D.; Wu, C.; Ma, C.; Liu, X.; Moynagh, P.N.; Wang, B.; Hu, G.; Yang, S. Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis. J. Exp. Med., 2019, 216(11), 2562-2581.
[http://dx.doi.org/10.1084/jem.20190377] [PMID: 31467036]
[74]
Olcum, M.; Tastan, B.; Kiser, C.; Genc, S.; Genc, K. Microglial NLRP3 inflammasome activation in multiple sclerosis. 2020, 247-308.
[http://dx.doi.org/10.1016/bs.apcsb.2019.08.007]
[75]
Lin, C-C.; Edelson, B.T. New insights into the role of IL-1β in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Immunol., 2017, 198(12), 4553-4560.
[http://dx.doi.org/10.4049/jimmunol.1700263] [PMID: 28583987]
[76]
McKenzie, B.A.; Fernandes, J.P.; Doan, M.A.L.; Schmitt, L.M.; Branton, W.G.; Power, C. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis. J. Neuroinflammation, 2020, 17(1), 253.
[http://dx.doi.org/10.1186/s12974-020-01902-5] [PMID: 32861242]
[77]
Humphries, F.; Shmuel-Galia, L.; Ketelut-Carneiro, N.; Li, S.; Wang, B.; Nemmara, V.V.; Wilson, R.; Jiang, Z.; Khalighinejad, F.; Muneeruddin, K.; Shaffer, S.A.; Dutta, R.; Ionete, C.; Pesiridis, S.; Yang, S.; Thompson, P.R.; Fitzgerald, K.A. Succination inactivates gasdermin D and blocks pyroptosis. Science, 2020, 369(6511), 1633-1637.
[http://dx.doi.org/10.1126/science.abb9818]
[78]
Bambouskova, M.; Potuckova, L.; Paulenda, T.; Kerndl, M.; Mogilenko, D.A.; Lizotte, K.; Swain, A.; Hayes, S.; Sheldon, R.D.; Kim, H.; Kapadnis, U.; Ellis, A.E.; Isaguirre, C.; Burdess, S.; Laha, A.; Amarasinghe, G.K.; Chubukov, V.; Roddy, T.P.; Diamond, M.S.; Jones, R.G.; Simons, D.M.; Artyomov, M.N. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep., 2021, 34(10), 108756.
[http://dx.doi.org/10.1016/j.celrep.2021.108756] [PMID: 33691097]
[79]
Dopkins, N.; Miranda, K.; Wilson, K.; Holloman, B.L.; Nagarkatti, P.; Nagarkatti, M. Effects of orally administered cannabidiol on neu-roinflammation and intestinal inflammation in the attenuation of experimental autoimmune encephalomyelitis. J. Neuroimmune Pharmacol., 2021. Epub ahead of print
[http://dx.doi.org/10.1007/s11481-021-10023-6] [PMID: 34757526]
[80]
Zhen, Y.; Zhang, H. NLRP3 inflammasome and inflammatory bowel disease. Front. Immunol., 2019, 10, 276.
[http://dx.doi.org/10.3389/fimmu.2019.00276] [PMID: 30873162]
[81]
Chen, X.; Liu, G.; Yuan, Y.; Wu, G.; Wang, S.; Yuan, L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis., 2019, 10(12), 906.
[http://dx.doi.org/10.1038/s41419-019-2157-1] [PMID: 31787755]
[82]
Wu, X.; Pan, S.; Luo, W.; Shen, Z.; Meng, X.; Xiao, M.; Tan, B.; Nie, K.; Tong, T.; Wang, X. Roseburia intestinalis-derived flagellin ame-liorates colitis by targeting miR-223-3p-mediated activation of NLRP3 inflammasome and pyroptosis. Mol. Med. Rep., 2020, 22(4), 2695-2704.
[http://dx.doi.org/10.3892/mmr.2020.11351]
[83]
Jie, F.; Xiao, S.; Qiao, Y.; You, Y.; Feng, Y.; Long, Y.; Li, S.; Wu, Y.; Li, Y.; Du, Q. Kuijieling decoction suppresses NLRP3-Mediated pyroptosis to alleviates inflammation and experimental colitis in vivo and in vitro. J. Ethnopharmacol., 2021, 264, 113243.
[http://dx.doi.org/10.1016/j.jep.2020.113243] [PMID: 32781258]
[84]
Tan, G.; Huang, C.; Chen, J.; Chen, B.; Zhi, F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn’s disease by promoting intestinal inflammation. Cell Rep., 2021, 35(11), 109265.
[http://dx.doi.org/10.1016/j.celrep.2021.109265] [PMID: 34133932]
[85]
Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[86]
Karmakar, S.; Kay, J.; Gravallese, E.M. Bone damage in rheumatoid arthritis: Mechanistic insights and approaches to prevention. Rheum. Dis. Clin. North Am., 2010, 36(2), 385-404.
[http://dx.doi.org/10.1016/j.rdc.2010.03.003] [PMID: 20510240]
[87]
Wu, X.Y.; Li, K.T.; Yang, H.X.; Yang, B.; Lu, X.; Zhao, L.D.; Fei, Y.Y.; Chen, H.; Wang, L.; Li, J.; Peng, L.Y.; Zheng, W.J.; Hou, Y.; Jiang, Y.; Shi, Q.; Zhang, W.; Zhang, F.C.; Zhang, J.M.; Huang, B.; He, W.; Zhang, X. Complement C1q synergizes with PTX3 in promot-ing NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis. J. Autoimmun., 2020, 106, 102336.
[http://dx.doi.org/10.1016/j.jaut.2019.102336] [PMID: 31601476]
[88]
Thalayasingam, N.; Nair, N.; Skelton, A.J.; Massey, J.; Anderson, A.E.; Clark, A.D.; Diboll, J.; Lendrem, D.W.; Reynard, L.N.; Cordell, H.J.; Eyre, S.; Isaacs, J.D.; Barton, A.; Pratt, A.G. CD4+ and B lymphocyte expression quantitative traits at rheumatoid arthritis risk loci in patients with untreated early arthritis: Implications for causal gene identification. Arthritis Rheumatol., 2018, 70(3), 361-370.
[http://dx.doi.org/10.1002/art.40393] [PMID: 29193869]
[89]
Zhai, Z.; Yang, F.; Xu, W.; Han, J.; Luo, G.; Li, Y.; Zhuang, J.; Jie, H.; Li, X.; Shi, X.; Han, X.; Luo, X.; Song, R.; Chen, Y.; Liang, J.; Wu, S.; He, Y.; Sun, E. Attenuation of rheumatoid arthritis through the inhibition of caspase3/GSDME-mediated pyroptosis induced by TNF-α. Arthritis Rheumatol., 2022, 74(3), 427-440.
[90]
Tian, J.; Zhou, D.; Xiang, L.; Liu, X.; Zhang, H.; Wang, B.; Xie, B. MiR-223-3p inhibits inflammation and pyroptosis in monosodium urate-induced rats and fibroblast-like synoviocytes by targeting NLRP3. Clin. Exp. Immunol., 2021, 204(3), 396-410.
[http://dx.doi.org/10.1111/cei.13587] [PMID: 33608866]
[91]
Sönmez, H.E.; Batu, E.D.; Özen, S. Familial Mediterranean fever: Current perspectives. J. Inflamm. Res., 2016, 9, 13-20.
[PMID: 27051312]
[92]
Moghaddas, F.; Llamas, R.; De Nardo, D.; Martinez-Banaclocha, H.; Martinez-Garcia, J.J.; Mesa-Del-Castillo, P.; Baker, P.J.; Gargallo, V.; Mensa-Vilaro, A.; Canna, S.; Wicks, I.P.; Pelegrin, P.; Arostegui, J.I.; Masters, S.L. A novel pyrin-associated autoinflammation with neu-trophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial mediterranean fever. Ann. Rheum. Dis., 2017, 76(12), 2085-2094.
[http://dx.doi.org/10.1136/annrheumdis-2017-211473] [PMID: 28835462]
[93]
Ozdogan, H.; Ugurlu, S. Familial mediterranean fever. Presse Med., 2019, 48(1 Pt 2), e61-e76.
[http://dx.doi.org/10.1016/j.lpm.2018.08.014] [PMID: 30686512]
[94]
Park, Y.H.; Wood, G.; Kastner, D.L.; Chae, J.J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol., 2016, 17(8), 914-921.
[http://dx.doi.org/10.1038/ni.3457] [PMID: 27270401]
[95]
Kanneganti, A.; Malireddi, R.K.S.; Saavedra, P.H.V.; Vande Walle, L.; Van Gorp, H.; Kambara, H.; Tillman, H.; Vogel, P.; Luo, H.R.; Xa-vier, R.J.; Chi, H.; Lamkanfi, M. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J. Exp. Med., 2018, 215(6), 1519-1529.
[http://dx.doi.org/10.1084/jem.20172060] [PMID: 29793924]
[96]
Magnotti, F.; Lefeuvre, L.; Benezech, S.; Malsot, T.; Waeckel, L.; Martin, A.; Kerever, S.; Chirita, D.; Desjonqueres, M.; Duquesne, A.; Gerfaud-Valentin, M.; Laurent, A.; Sève, P.; Popoff, M.R.; Walzer, T.; Belot, A.; Jamilloux, Y.; Henry, T. Pyrin dephosphorylation is suf-ficient to trigger inflammasome activation in familial Mediterranean fever patients. EMBO Mol. Med., 2019, 11(11), e10547.
[http://dx.doi.org/10.15252/emmm.201910547] [PMID: 31589380]
[97]
Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol., 2017, 12(12), 2032-2045.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[98]
Falkevall, A.; Mehlem, A.; Palombo, I.; Heller Sahlgren, B.; Ebarasi, L.; He, L.; Ytterberg, A.J.; Olauson, H.; Axelsson, J.; Sundelin, B.; Patrakka, J.; Scotney, P.; Nash, A.; Eriksson, U. Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease. Cell Metab., 2017, 25(3), 713-726.
[http://dx.doi.org/10.1016/j.cmet.2017.01.004] [PMID: 28190774]
[99]
El-Horany, H.E-S.; Abd-Ellatif, R.N.; Watany, M.; Hafez, Y.M.; Okda, H.I. NLRP3 expression and urinary HSP72 in relation to bi-omarkers of inflammation and oxidative stress in diabetic nephropathy patients. IUBMB Life, 2017, 69(8), 623-630.
[http://dx.doi.org/10.1002/iub.1645] [PMID: 28631886]
[100]
Qiu, Y.Y.; Tang, L.Q. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol. Res., 2016, 114, 251-264.
[http://dx.doi.org/10.1016/j.phrs.2016.11.004] [PMID: 27826011]
[101]
Wen, H.; Gris, D.; Lei, Y.; Jha, S.; Zhang, L.; Huang, M.T-H.; Brickey, W.J.; Ting, J.P-Y. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol., 2011, 12(5), 408-415.
[http://dx.doi.org/10.1038/ni.2022] [PMID: 21478880]
[102]
Wu, M.; Han, W.; Song, S.; Du, Y.; Liu, C.; Chen, N.; Wu, H.; Shi, Y.; Duan, H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol. Cell. Endocrinol., 2018, 478, 115-125.
[http://dx.doi.org/10.1016/j.mce.2018.08.002] [PMID: 30098377]
[103]
Zhan, J-F.; Huang, H-W.; Huang, C.; Hu, L-L.; Xu, W-W. Long Non-Coding RNA NEAT1 Regulates Pyroptosis in Diabetic Nephropathy via Mediating the miR-34c/NLRP3 Axis. Kidney Blood Press. Res., 2020, 45(4), 589-602.
[http://dx.doi.org/10.1159/000508372] [PMID: 32721950]
[104]
Li, X.; Zeng, L.; Cao, C.; Lu, C.; Lian, W.; Han, J.; Zhang, X.; Zhang, J.; Tang, T.; Li, M. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res., 2017, 350(2), 327-335.
[http://dx.doi.org/10.1016/j.yexcr.2016.12.006] [PMID: 27964927]
[105]
Ke, R.; Wang, Y.; Hong, S.; Xiao, L. Endoplasmic reticulum stress related factor IRE1α; regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy. Exp. Cell Res., 2020, 396(2), 112293.
[http://dx.doi.org/10.1016/j.yexcr.2020.112293] [PMID: 32950473]
[106]
Wang, Y.; Zhu, X.; Yuan, S.; Wen, S.; Liu, X.; Wang, C.; Qu, Z.; Li, J.; Liu, H.; Sun, L.; Liu, F. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front. Endocrinol. (Lausanne), 2019, 10, 10.
[http://dx.doi.org/10.3389/fendo.2019.00603]
[107]
Li, H.; Zhao, K.; Li, Y.; Gasdermin, D. Gasdermin D protects mouse podocytes against high-glucose-induced inflammation and apoptosis via the C-Jun N-terminal kinase (JNK) pathway. Med. Sci. Monit., 2021, 27, e928411.
[http://dx.doi.org/10.12659/MSM.928411] [PMID: 33690262]
[108]
Cheng, Q.; Pan, J.; Zhou, Z.L.; Yin, F.; Xie, H.Y.; Chen, P.P.; Li, J.Y.; Zheng, P.Q.; Zhou, L.; Zhang, W.; Liu, J.; Lu, L.M. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol. Sin., 2021, 42(6), 954-963.
[http://dx.doi.org/10.1038/s41401-020-00525-z] [PMID: 32968210]
[109]
Liu, Y. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int., 2006, 69(2), 213-217.
[http://dx.doi.org/10.1038/sj.ki.5000054] [PMID: 16408108]
[110]
Miao, N.J.; Xie, H.Y.; Xu, D.; Yin, J.Y.; Wang, Y.Z.; Wang, B.; Yin, F.; Zhou, Z.L.; Cheng, Q.; Chen, P.P.; Zhou, L.; Xue, H.; Zhang, W.; Wang, X.X.; Liu, J.; Lu, L.M. Caspase-11 promotes renal fibrosis by stimulating IL-1β maturation via activating caspase-1. Acta Pharmacol. Sin., 2019, 40(6), 790-800.
[http://dx.doi.org/10.1038/s41401-018-0177-5] [PMID: 30382182]
[111]
Guo, H.; Bi, X.; Zhou, P.; Zhu, S.; Ding, W. NLRP3 Deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediators Inflamm., 2017, 2017, 8316560.
[http://dx.doi.org/10.1155/2017/8316560] [PMID: 28348462]
[112]
Vilaysane, A.; Chun, J.; Seamone, M.E.; Wang, W.; Chin, R.; Hirota, S.; Li, Y.; Clark, S.A.; Tschopp, J.; Trpkov, K.; Hemmelgarn, B.R.; Beck, P.L.; Muruve, D.A. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol., 2010, 21(10), 1732-1744.
[http://dx.doi.org/10.1681/ASN.2010020143] [PMID: 20688930]
[113]
Li, Y.; Yuan, Y.; Huang, Z.X.; Chen, H.; Lan, R.; Wang, Z.; Lai, K.; Chen, H.; Chen, Z.; Zou, Z.; Ma, H.B.; Lan, H-Y.; Mak, T.W.; Xu, Y. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy. Cell Death Differ., 2021, 28(8), 2333-2350.
[http://dx.doi.org/10.1038/s41418-021-00755-6] [PMID: 33664482]
[114]
Song, Z.; Gong, Q.; Guo, J. Pyroptosis: Mechanisms and links with fibrosis. Cells, 2021, 10(12), 3509.
[http://dx.doi.org/10.3390/cells10123509] [PMID: 34944017]
[115]
Zhang, Y.; Zhang, R.; Han, X. Disulfiram inhibits inflammation and fibrosis in a rat unilateral ureteral obstruction model by inhibiting gasdermin D cleavage and pyroptosis. Inflamm. Res., 2021, 70(5), 543-552.
[http://dx.doi.org/10.1007/s00011-021-01457-y] [PMID: 33851234]
[116]
Wu, M.; Xia, W.; Jin, Q.; Zhou, A.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Li, Y.; Jia, Z.; Gasdermin, E. Gasdermin E deletion attenuates ureteral obstruction- and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction. Front. Cell Dev. Biol., 2021, 9, 754134.
[http://dx.doi.org/10.3389/fcell.2021.754134] [PMID: 34746148]
[117]
Linkermann, A.; Chen, G.; Dong, G.; Kunzendorf, U.; Krautwald, S.; Dong, Z. Regulated cell death in AKI. J. Am. Soc. Nephrol., 2014, 25(12), 2689-2701.
[http://dx.doi.org/10.1681/ASN.2014030262] [PMID: 24925726]
[118]
Yang, J-R.; Yao, F-H.; Zhang, J-G.; Ji, Z-Y.; Li, K-L.; Zhan, J.; Tong, Y-N.; Lin, L-R.; He, Y-N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol., 2014, 306(1), F75-F84.
[http://dx.doi.org/10.1152/ajprenal.00117.2013] [PMID: 24133119]
[119]
Miao, N.; Yin, F.; Xie, H.; Wang, Y.; Xu, Y.; Shen, Y.; Xu, D.; Yin, J.; Wang, B.; Zhou, Z.; Cheng, Q.; Chen, P.; Xue, H.; Zhou, L.; Liu, J.; Wang, X.; Zhang, W.; Lu, L. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 ex-cretion in acute kidney injury. Kidney Int., 2019, 96(5), 1105-1120.
[http://dx.doi.org/10.1016/j.kint.2019.04.035] [PMID: 31405732]
[120]
Shigeoka, A.A.; Mueller, J.L.; Kambo, A.; Mathison, J.C.; King, A.J.; Hall, W.F.; Correia, J da S.; Ulevitch, R.J.; Hoffman, H.M.; McKay, D.B. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J. Immunol., 2010, 185(10), 6277-6285.
[http://dx.doi.org/10.4049/jimmunol.1002330] [PMID: 20962258]
[121]
Yang, C-C.; Yao, C-A.; Yang, J-C.; Chien, C-T. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol. Sci., 2014, 141(1), 155-165.
[http://dx.doi.org/10.1093/toxsci/kfu121] [PMID: 24973090]
[122]
Zhang, Z.; Shao, X.; Jiang, N.; Mou, S.; Gu, L.; Li, S.; Lin, Q.; He, Y.; Zhang, M.; Zhou, W.; Ni, Z. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 983.
[http://dx.doi.org/10.1038/s41419-018-1023-x] [PMID: 30250284]
[123]
Xia, W.; Li, Y.; Wu, M.; Jin, Q.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Jia, Z. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis., 2021, 12(2), 139.
[http://dx.doi.org/10.1038/s41419-021-03431-2] [PMID: 33542198]
[124]
Pang, Y.; Zhang, P.C.; Lu, R.R.; Li, H.L.; Li, J.C.; Fu, H.X.; Cao, Y-W.; Fang, G.X.; Liu, B.H.; Wu, J.B.; Zhou, J.Y.; Zhou, Y. Andrade-oliveira salvianolic acid b modulates caspase-1-mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway. Front. Pharmacol., 2020, 11, 541426.
[http://dx.doi.org/10.3389/fphar.2020.541426] [PMID: 33013384]
[125]
Jiang, S.; Zhang, H.; Li, X.; Yi, B.; Huang, L.; Hu, Z.; Li, A.; Du, J.; Li, Y.; Zhang, W. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. J. Steroid Biochem. Mol. Biol., 2021, 206, 105789.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105789] [PMID: 33259938]
[126]
Chen, F.; Lu, J.; Yang, X.; Xiao, B.; Chen, H.; Pei, W.; Jin, Y.; Wang, M.; Li, Y.; Zhang, J.; Liu, F.; Gu, G.; Cui, W. Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. Biosci. Rep., 2020, 40(2), BSR20193253.
[http://dx.doi.org/10.1042/BSR20193253] [PMID: 31998952]
[127]
Deng, J.; Tan, W.; Luo, Q.; Lin, L.; Zheng, L.; Yang, J. Long non-coding RNA MEG3 promotes renal tubular epithelial cell pyroptosis by regulating the miR-18a-3p/GSDMD pathway in lipopolysaccharide-induced acute kidney injury. Front. Physiol., 2021, 12, 663216.
[http://dx.doi.org/10.3389/fphys.2021.663216] [PMID: 34012408]
[128]
Freeman, L.C.; Ting, J.P-Y. The pathogenic role of the inflammasome in neurodegenerative diseases. J. Neurochem., 2016, 136(Suppl. 1), 29-38.
[http://dx.doi.org/10.1111/jnc.13217] [PMID: 26119245]
[129]
McKenzie, B.A.; Dixit, V.M.; Power, C. Fiery cell death: Pyroptosis in the central nervous system. Trends Neurosci., 2020, 43(1), 55-73.
[http://dx.doi.org/10.1016/j.tins.2019.11.005] [PMID: 31843293]
[130]
He, N.; Zheng, X.; He, T.; Shen, G.; Wang, K.; Hu, J.; Zheng, M.; Ding, Y.; Song, X.; Zhong, J.; Chen, Y-Y.; Wang, L-L.; Yueliang, S. MCC950 Reduces neuronal apoptosis in spinal cord injury in mice. CNS Neurol. Disord. Drug Targets, 2021, 20(3), 298-308.
[http://dx.doi.org/10.2174/1871527319666201005170659] [PMID: 33023460]
[131]
Adamczak, S.; Dale, G.; de Rivero Vaccari, J.P.; Bullock, M.R.; Dietrich, W.D.; Keane, R.W. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: Clinical article. J. Neurosurg., 2012, 117(6), 1119-1125.
[http://dx.doi.org/10.3171/2012.9.JNS12815] [PMID: 23061392]
[132]
Adamczak, S.E.; de Rivero Vaccari, J.P.; Dale, G.; Brand, F.J., III; Nonner, D.; Bullock, M.R.; Dahl, G.P.; Dietrich, W.D.; Keane, R.W. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cereb. Blood Flow Metab., 2014, 34(4), 621-629.
[http://dx.doi.org/10.1038/jcbfm.2013.236] [PMID: 24398937]
[133]
Xu, S.; Wang, J.; Zhong, J.; Shao, M.; Jiang, J.; Song, J.; Zhu, W.; Zhang, F.; Xu, H.; Xu, G.; Zhang, Y.; Ma, X.; Lyu, F. CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin. Transl. Med., 2021, 11(1), e269.
[http://dx.doi.org/10.1002/ctm2.269] [PMID: 33463071]
[134]
Liu, Z.; Yao, X.; Jiang, W.; Li, W.; Zhu, S.; Liao, C.; Zou, L.; Ding, R.; Chen, J. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J. Neuroinflammation, 2020, 17(1), 90.
[http://dx.doi.org/10.1186/s12974-020-01751-2] [PMID: 32192500]
[135]
Musto, A.E.; Rosencrans, R.F.; Walker, C.P.; Bhattacharjee, S.; Raulji, C.M.; Belayev, L.; Fang, Z.; Gordon, W.C.; Bazan, N.G. Dysfunc-tional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Sci. Rep., 2016, 6(1), 30298.
[http://dx.doi.org/10.1038/srep30298] [PMID: 27444269]
[136]
Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of tem-poral lobe epilepsy. Neurobiol. Dis., 2013, 59, 183-193.
[http://dx.doi.org/10.1016/j.nbd.2013.07.015] [PMID: 23938763]
[137]
Vezzani, A.; Baram, T.Z. New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr., 2007, 7(2), 45-50.
[http://dx.doi.org/10.1111/j.1535-7511.2007.00165.x] [PMID: 17505552]
[138]
Tan, C-C.; Zhang, J-G.; Tan, M-S.; Chen, H.; Meng, D-W.; Jiang, T.; Meng, X-F.; Li, Y.; Sun, Z.; Li, M-M.; Yu, J-T.; Tan, L. NLRP1 in-flammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J. Neuroinflammation, 2015, 12(1), 18.
[http://dx.doi.org/10.1186/s12974-014-0233-0] [PMID: 25626361]
[139]
Morin-Brureau, M.; Milior, G.; Royer, J.; Chali, F.; Le Duigou, C.; Savary, E.; Blugeon, C.; Jourdren, L.; Akbar, D.; Dupont, S.; Navarro, V.; Baulac, M.; Bielle, F.; Mathon, B.; Clemenceau, S.; Miles, R. Microglial phenotypes in the human epileptic temporal lobe. Brain, 2018, 141(12), 3343-3360.
[http://dx.doi.org/10.1093/brain/awy276] [PMID: 30462183]
[140]
Li, X.; Lin, J.; Hua, Y.; Gong, J.; Ding, S.; Du, Y.; Wang, X.; Zheng, R.; Xu, H. Agmatine alleviates epileptic seizures and hippocampal neuronal damage by inhibiting gasdermin d-mediated pyroptosis. Front. Pharmacol., 2021, 12, 627557.
[http://dx.doi.org/10.3389/fphar.2021.627557] [PMID: 34421582]
[141]
Chen, S.; Mei, S.; Luo, Y.; Wu, H.; Zhang, J.; Zhu, J. Gasdermin family: A promising therapeutic target for stroke. Transl. Stroke Res., 2018, 9(6), 555-563.
[http://dx.doi.org/10.1007/s12975-018-0666-3] [PMID: 30280366]
[142]
George, P.M.; Steinberg, G.K. Novel stroke therapeutics: Unraveling stroke pathophysiology and its impact on clinical treatments. Neuron, 2015, 87(2), 297-309.
[http://dx.doi.org/10.1016/j.neuron.2015.05.041] [PMID: 26182415]
[143]
Benchoua, A.; Guégan, C.; Couriaud, C.; Hosseini, H.; Sampaïo, N.; Morin, D.; Onténiente, B. Specific caspase pathways are activated in the two stages of cerebral infarction. J. Neurosci., 2001, 21(18), 7127-7134.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07127.2001] [PMID: 11549723]
[144]
Xu, P.; Zhang, X.; Liu, Q.; Xie, Y.; Shi, X.; Chen, J.; Li, Y.; Guo, H.; Sun, R.; Hong, Y.; Liu, X.; Xu, G. Microglial TREM-1 receptor medi-ates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis., 2019, 10(8), 555.
[http://dx.doi.org/10.1038/s41419-019-1777-9] [PMID: 31324751]
[145]
Liang, Y-B.; Song, P-P.; Zhu, Y-H.; Xu, J-M.; Zhu, P-Z.; Liu, R-R.; Zhang, Y-S. TREM-1-targeting LP17 attenuates cerebral ischemia-induced neuronal injury by inhibiting oxidative stress and pyroptosis. Biochem. Biophys. Res. Commun., 2020, 529(3), 554-561.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.056] [PMID: 32736673]
[146]
Li, J.; Hao, J.H.; Yao, D.; Li, R.; Li, X.F.; Yu, Z.Y.; Luo, X.; Liu, X.H.; Wang, M.H.; Wang, W. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci. Ther., 2020, 26(9), 925-939.
[http://dx.doi.org/10.1111/cns.13384] [PMID: 32343048]
[147]
Wang, K.; Ru, J.; Zhang, H.; Chen, J.; Lin, X.; Lin, Z.; Wen, M.; Huang, L.; Ni, H.; Zhuge, Q.; Yang, S. Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-κB pathway. Front. Neurosci., 2020, 14, 14.
[http://dx.doi.org/10.3389/fnins.2020.00848]
[148]
Li, Y.; Zhao, Y.; Cheng, M.; Qiao, Y.; Wang, Y.; Xiong, W.; Yue, W. Suppression of microRNA-144-3p attenuates oxygen-glucose depri-vation/reoxygenation-induced neuronal injury by promoting Brg1/Nrf2/ARE signaling. J. Biochem. Mol. Toxicol., 2018, 32(4), e22044.
[http://dx.doi.org/10.1002/jbt.22044] [PMID: 29457851]
[149]
Li, X.; Zhang, W.; Xiao, M.; Wang, F.; Zhou, P.; Yang, J.; Chen, X. MicroRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4. Biochem. Biophys. Res. Commun., 2019, 513(4), 875-882.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.045] [PMID: 31003769]
[150]
Wang, B.; Lyu, Z.; Chan, Y.; Li, Q.; Zhang, L.; Liu, K.; Li, Y.; Yu, Z. Tongxinluo exerts inhibitory effects on pyroptosis and amyloid-β peptide accumulation after cerebral ischemia/reperfusion in rats; Evidence-Based Complement Altern Med, 2021, pp. 1-10.
[151]
Wang, K.; Sun, Z.; Ru, J.; Wang, S.; Huang, L.; Ruan, L.; Lin, X.; Jin, K.; Zhuge, Q.; Yang, S. Ablation of GSDMD improves outcome of ischemic stroke through blocking canonical and non-canonical inflammasomes dependent pyroptosis in microglia. Front. Neurol., 2020, 11, 577927.
[http://dx.doi.org/10.3389/fneur.2020.577927] [PMID: 33329317]
[152]
Huang, L.; Li, X.; Liu, Y.; Liang, X.; Ye, H.; Yang, C.; Hua, L.; Zhang, X. Curcumin alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1-dependent neuronal pyroptosis. Curr. Neurovasc. Res., 2021, 18(2), 189-196.
[http://dx.doi.org/10.2174/1567202618666210607150140] [PMID: 34109908]
[153]
Zhou, Y.; Gu, Y.; Liu, J. BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochem. Biophys. Res. Commun., 2019, 519(3), 481-488.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.097] [PMID: 31530390]
[154]
Gasser, T. Molecular pathogenesis of Parkinson disease: Insights from genetic studies. Expert Rev. Mol. Med., 2009, 11, e22.
[http://dx.doi.org/10.1017/S1462399409001148] [PMID: 19631006]
[155]
Schapira, A.H.V.; Bezard, E.; Brotchie, J.; Calon, F.; Collingridge, G.L.; Ferger, B.; Hengerer, B.; Hirsch, E.; Jenner, P.; Le Novère, N.; Obeso, J.A.; Schwarzschild, M.A.; Spampinato, U.; Davidai, G. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat. Rev. Drug Discov., 2006, 5(10), 845-854.
[http://dx.doi.org/10.1038/nrd2087] [PMID: 17016425]
[156]
Lang, A.E.; Lozano, A.M. Parkinson’s disease. First of two parts. N. Engl. J. Med., 1998, 339(15), 1044-1053.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[157]
Lotankar, S.; Prabhavalkar, K.S.; Bhatt, L.K. Biomarkers for Parkinson’s Disease: Recent advancement. Neurosci. Bull., 2017, 33(5), 585-597.
[http://dx.doi.org/10.1007/s12264-017-0183-5] [PMID: 28936761]
[158]
Zhang, X.; Zhang, Y.; Li, R.; Zhu, L.; Fu, B.; Yan, T. Salidroside ameliorates Parkinson’s disease by inhibiting NLRP3-dependent pyrop-tosis. Aging (Albany NY), 2020, 12(10), 9405-9426.
[http://dx.doi.org/10.18632/aging.103215] [PMID: 32432571]
[159]
Rui, W.; Li, S.; Xiao, H.; Xiao, M.; Shi, J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s Disease. Int. J. Neuropsychopharmacol., 2020, 23(11), 762-773.
[http://dx.doi.org/10.1093/ijnp/pyaa060] [PMID: 32761175]
[160]
Han, C.; Guo, L.; Yang, Y.; Guan, Q.; Shen, H.; Sheng, Y.; Jiao, Q. Mechanism of microRNA-22 in regulating neuroinflammation in Alz-heimer’s disease. Brain Behav., 2020, 10(6), e01627.
[http://dx.doi.org/10.1002/brb3.1627] [PMID: 32307887]
[161]
Tan, M-S.; Tan, L.; Jiang, T.; Zhu, X-C.; Wang, H-F.; Jia, C-D.; Yu, J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis., 2014, 5(8), e1382-e1382.
[http://dx.doi.org/10.1038/cddis.2014.348] [PMID: 25144717]
[162]
Zhao, Y.; Tian, Y.; Feng, T. Sodium houttuyfonate ameliorates β-amyloid1-42-induced memory impairment and neuroinflammation through inhibiting the NLRP3/GSDMD pathway in Alzheimer’s Disease. Mediators Inflamm., 2021, 1-11.
[163]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T-C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[164]
Hou, L.; Yang, J.; Li, S.; Huang, R.; Zhang, D.; Zhao, J.; Wang, Q. Glibenclamide attenuates 2,5-hexanedione-induced neurotoxicity in the spinal cord of rats through mitigation of NLRP3 inflammasome activation, neuroinflammation and oxidative stress. Toxicol. Lett., 2020, 331, 152-158.
[http://dx.doi.org/10.1016/j.toxlet.2020.06.002] [PMID: 32522579]
[165]
Yu, F.; Haas, M.; Glassock, R.; Zhao, M-H. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol., 2017, 13(8), 483-495.
[http://dx.doi.org/10.1038/nrneph.2017.85] [PMID: 28669995]
[166]
Fu, R.; Guo, C.; Wang, S.; Huang, Y.; Jin, O.; Hu, H.; Chen, J.; Xu, B.; Zhou, M.; Zhao, J.; Sung, S.J.; Wang, H.; Gaskin, F.; Yang, N.; Fu, S.M. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol., 2017, 69(8), 1636-1646.
[http://dx.doi.org/10.1002/art.40155] [PMID: 28544564]
[167]
Zhao, J.; Wang, H.; Dai, C.; Wang, H.; Zhang, H.; Huang, Y.; Wang, S.; Gaskin, F.; Yang, N.; Fu, S.M. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum., 2013, 65(12), 3176-3185.
[http://dx.doi.org/10.1002/art.38174] [PMID: 24022661]
[168]
Faust, J.; Menke, J.; Kriegsmann, J.; Kelley, V.R.; Mayet, W.J.; Galle, P.R.; Schwarting, A. Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis. Arthritis Rheum., 2002, 46(11), 3083-3095.
[http://dx.doi.org/10.1002/art.10563] [PMID: 12428253]
[169]
Lu, A.; Li, H.; Niu, J.; Wu, S.; Xue, G.; Yao, X.; Guo, Q.; Wan, N.; Abliz, P.; Yang, G.; An, L.; Meng, G. Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus. J. Immunol., 2017, 198(3), 1119-1129.
[http://dx.doi.org/10.4049/jimmunol.1600659] [PMID: 28039299]
[170]
Masumoto, J.; Zhou, W.; Chen, F.F.; Su, F.; Kuwada, J.Y.; Hidaka, E.; Katsuyama, T.; Sagara, J.; Taniguchi, S.; Ngo-Hazelett, P.; Postlethwait, J.H.; Núñez, G.; Inohara, N. Caspy, a zebrafish caspase, activated by ASC oligomerization is required for pharyngeal arch development. J. Biol. Chem., 2003, 278(6), 4268-4276.
[http://dx.doi.org/10.1074/jbc.M203944200] [PMID: 12464617]
[171]
Rieckmann, J.C.; Geiger, R.; Hornburg, D.; Wolf, T.; Kveler, K.; Jarrossay, D.; Sallusto, F.; Shen-Orr, S.S.; Lanzavecchia, A.; Mann, M.; Meissner, F. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol., 2017, 18(5), 583-593.
[http://dx.doi.org/10.1038/ni.3693] [PMID: 28263321]
[172]
Collin, R.W.J.; Kalay, E.; Oostrik, J.; Çaylan, R.; Wollnik, B.; Arslan, S.; den Hollander, A.I.; Birinci, Y.; Lichtner, P.; Strom, T.M.; Toraman, B.; Hoefsloot, L.H.; Cremers, C.W.R.J.; Brunner, H.G.; Cremers, F.P.M.; Karaguzel, A.; Kremer, H. Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment. Hum. Mutat., 2007, 28(7), 718-723.
[http://dx.doi.org/10.1002/humu.20510] [PMID: 17373699]
[173]
An, X.; Zhang, Y.; Cao, Y.; Chen, J.; Qin, H.; Yang, L. Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients, 2020, 12(5), 1516.
[http://dx.doi.org/10.3390/nu12051516] [PMID: 32456088]
[174]
Li, F.; Chen, Y.; Li, Y.; Huang, M.; Zhao, W. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur. J. Pharmacol., 2020, 886, 173449.
[http://dx.doi.org/10.1016/j.ejphar.2020.173449] [PMID: 32758570]
[175]
Chen, J.; Yang, Y.; Lv, Z.; Shu, A.; Du, Q.; Wang, W.; Chen, Y.; Xu, H. Study on the inhibitive effect of Catalpol on diabetic nephropathy. Life Sci., 2020, 257, 118120.
[http://dx.doi.org/10.1016/j.lfs.2020.118120] [PMID: 32693244]
[176]
Liu, B-H.; Tu, Y.; Ni, G-X.; Yan, J.; Yue, L.; Li, Z-L.; Wu, J-J.; Cao, Y-T.; Wan, Z-Y.; Sun, W.; Wan, Y-G. Total flavones of abelmoschus manihot ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting METTL3-dependent m6A modification-mediated NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling. Front. Pharmacol., 2021, 12, 667644.
[http://dx.doi.org/10.3389/fphar.2021.667644] [PMID: 34335245]
[177]
Li, N.; Zhao, T.; Cao, Y.; Zhang, H.; Peng, L.; Wang, Y.; Zhou, X.; Wang, Q.; Li, J.; Yan, M.; Dong, X.; Zhao, H.; Li, P. Tangshen formula attenuates diabetic kidney injury by imparting anti-pyroptotic effects via the TXNIP-NLRP3-GSDMD Axis. Front. Pharmacol., 2021, 11, 623489.
[http://dx.doi.org/10.3389/fphar.2020.623489] [PMID: 33584307]
[178]
Wang, J.; Zhao, S-M. LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sci., 2021, 264, 118728.
[http://dx.doi.org/10.1016/j.lfs.2020.118728] [PMID: 33160992]
[179]
Hao, Q.F. Wang, B.B.; Zhang, W.; Qiu, W.; Liu, Q.L.L.X. NF-κB Inhibitor parthenolide promotes renal tubules albumin uptake in type 2. Diabet. Nephrop., 2020, 1.
[180]
Wang, X.; Wu, T.; Ma, H.; Huang, X.; Huang, K.; Ye, C.; Zhu, S. VX-765 ameliorates inflammation and extracellular matrix accumulation by inhibiting the NOX1/ROS/NF-κB pathway in diabetic nephropathy. J. Pharm. Pharmacol., 2022, 74(3), 377-386.
[181]
Wen, S.; Wang, Z-H.; Zhang, C-X.; Yang, Y.; Fan, Q-L. Caspase-3 promotes diabetic kidney disease through gasdermin E-mediated pro-gression to secondary necrosis during apoptosis. Diabetes Metab. Syndr. Obes., 2020, 13, 313-323.
[http://dx.doi.org/10.2147/DMSO.S242136] [PMID: 32104028]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy