Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Review Article

Advancements in Small Molecule PROTACs Containing Indole/Spiro-fused Oxindole Scaffolds: An Emerging Degrader Targeting Cancers

Author(s): Xiang Li, Yanqing Liu, Wei Huang, Xin Xie, Hongping Zhu, Cheng Peng* and Bo Han*

Volume 23, Issue 10, 2023

Published on: 15 July, 2022

Page: [1164 - 1173] Pages: 10

DOI: 10.2174/1871520622666220509175305

Price: $65

Abstract

Indole and spiro-fused oxindole frameworks widely exist in a variety of natural bioactive products, pharmaceuticals, and drug candidates, featuring unique functions in the regulation of proliferation, infiltration, and metastasis of cancer cells. In recent years, significant progress in proteolysis targeting chimeric (PROTAC) technology that employs ubiquitin-proteasome system (UPS) to eliminate disease-associated proteins has been witnessed, thus opening a promising avenue to the discovery of new indole-related drugs.

In this review, we focus on summarizing the achievements of small molecule PROTACs that involve indole/spirofused oxindole scaffolds in the part of ligands of the protein of interest (POI). Current challenges and future directions in this promising field are discussed at the end of this review. For the convenience of readers, our review is divided into five parts according to the types of target proteins. We hope this review could bring a quick look and some inspiration to researchers in relevant fields.

Keywords: Targeted protein degradation, PROTAC, Ubiquitin-proteasome system, Small molecule, Indole derivative, Spirocycle.

Graphical Abstract
[1]
Ruiz-Sanchis, P.; Savina, S.A.; Albericio, F.; Alvarez, M. Structure, Bioactivity and Synthesis of Natural Products with Hexahydropyrrolo[2,3-b] indole. Chem. - Eur. J., 2011, 17(5), 1388-1408.
[http://dx.doi.org/10.1002/chem.201001451] [PMID: 21268138]
[2]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[3]
Sidhu, J.S.; Singla, R. Mayank; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A Review. Anticancer. Agents Med. Chem., 2015, 16(2), 160-173.
[http://dx.doi.org/10.2174/1871520615666150520144217] [PMID: 25991424]
[4]
Zhao, Q.; Peng, C.; Zheng, C.; He, X-H.; Huang, W.; Han, B. Recent advances in characterizing natural products that regulate autophagy. Anticancer. Agents Med. Chem., 2019, 19(18), 2177-2196.
[http://dx.doi.org/10.2174/1871520619666191015104458] [PMID: 31749434]
[5]
Zheng, C.; You, S.L. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat. Prod. Rep., 2019, 36(11), 1589-1605.
[http://dx.doi.org/10.1039/C8NP00098K] [PMID: 30839047]
[6]
Devi, N.; Kaur, K.; Biharee, A.; Jaitak, V. Recent development in Indole derivatives as anticancer agent: Amechanistic approach. Anticancer. Agents Med. Chem., 2021, 21(14), 1802-1824.
[http://dx.doi.org/10.2174/1871520621999210104192644] [PMID: 33397272]
[7]
Chen, F.Y.; Li, X.; Zhu, H.P.; Huang, W. Regulation of the Ras-related signaling pathway by small molecules containing an indole core scaffold: A potential antitumor therapy. Front. Pharmacol., 2020, 11, 280.
[http://dx.doi.org/10.3389/fphar.2020.00280] [PMID: 32231571]
[8]
Han, B.; He, X.H.; Liu, Y.Q.; He, G.; Peng, C.; Li, J.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry. Chem. Soc. Rev., 2021, 50(3), 1522-1586.
[http://dx.doi.org/10.1039/D0CS00196A] [PMID: 33496291]
[9]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[10]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[11]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183111691
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[12]
Zhu, H.; Li, Y.; Liu, Y.; Han, B. Bivalent SMAC mimetics for treating cancer by antagonizing inhibitor of apoptosis proteins. ChemMedChem, 2019, 14(23), 1951-1962.
[http://dx.doi.org/10.1002/cmdc.201900410] [PMID: 31692274]
[13]
Wang, B.; Peng, F.; Huang, W.; Zhou, J.; Zhang, N.; Sheng, J.; Haruehanroengra, P.; He, G.; Han, B. Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharm. Sin. B, 2020, 10(8), 1492-1510.
[http://dx.doi.org/10.1016/j.apsb.2019.12.013] [PMID: 32963945]
[14]
Zhang, X.; Li, X.; Li, J-L.; Wang, Q-W.; Zou, W-L.; Liu, Y-Q.; Jia, Z-Q.; Peng, F.; Han, B. Regiodivergent construction of medium-sized heterocycles from vinylethylene carbonates and allylidenemalononitriles. Chem. Sci. (Camb.), 2020, 11(11), 2888-2894.
[http://dx.doi.org/10.1039/C9SC06377C] [PMID: 34122789]
[15]
Crom, W.R.; de Graaf, S.S.; Synold, T.; Uges, D.R.; Bloemhof, H.; Rivera, G.; Christensen, M.L.; Mahmoud, H.; Evans, W.E. Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J. Pediatr., 1994, 125(4), 642-649.
[http://dx.doi.org/10.1016/S0022-3476(94)70027-3] [PMID: 7931891]
[16]
Meschini, S.; Marra, M.; Condello, M.; Calcabrini, A.; Federici, E.; Dupuis, M.L.; Cianfriglia, M.; Arancia, G. Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells. Int. J. Oncol., 2005, 27(6), 1597-1603.
[PMID: 16273216]
[17]
Wang, S.; Sun, W.; Zhao, Y.; McEachern, D.; Meaux, I.; Barrière, C.; Stuckey, J.A.; Meagher, J.L.; Bai, L.; Liu, L.; Hoffman-Luca, C.G.; Lu, J.; Shangary, S.; Yu, S.; Bernard, D.; Aguilar, A.; Dos-Santos, O.; Besret, L.; Guerif, S.; Pannier, P.; Gorge-Bernat, D.; Debussche, L. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res., 2014, 74(20), 5855-5865.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0799] [PMID: 25145672]
[18]
Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; Kwiatkowski, D.J.; Rabin, M.S.; Paweletz, C.P.; Thress, K.S.; Jänne, P.A. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M–positive lung cancer and acquired resistance to osimertinib. JAMA Oncol., 2018, 4(11), 1527-1534.
[http://dx.doi.org/10.1001/jamaoncol.2018.2969] [PMID: 30073261]
[19]
McKeage, K. Alectinib: A review of its use in advanced ALK-rearranged non-small cell lung cancer. Drugs, 2015, 75(1), 75-82.
[http://dx.doi.org/10.1007/s40265-014-0329-y] [PMID: 25428710]
[20]
Ricci, S.; Antonuzzo, A.; Galli, L.; Ferdeghini, M.; Bodei, L.; Orlandini, C.; Conte, P.F. Octreotide acetate long-acting release in patients with metastatic neuroendocrine tumors pretreated with lanreotide. Ann. Oncol., 2000, 11(9), 1127-1130.
[http://dx.doi.org/10.1023/A:1008383132024] [PMID: 11061606]
[21]
Broder, M.S.; Beenhouwer, D.; Strosberg, J.R.; Neary, M.P.; Cherepanov, D. Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: A systematic literature review. World J. Gastroenterol., 2015, 21(6), 1945-1955.
[http://dx.doi.org/10.3748/wjg.v21.i6.1945] [PMID: 25684964]
[22]
Chu, E.; Sartorelli, A. Cancer chemotherapy. Basic Clin. Pharmacol., 2004, 9, 898-930.
[23]
Chabner, B.A.; Longo, D.L. Cancer chemotherapy and biotherapy: Principles and practice; Lippincott Williams & Wilkins, 2011.
[24]
Wang, Z.; Sun, H.; Yakisich, J.S. Overcoming the blood-brain barrier for chemotherapy: Limitations, challenges and rising problems. Anticancer. Agents Med. Chem., 2014, 14(8), 1085-1093.
[http://dx.doi.org/10.2174/18715206113139990029] [PMID: 23092271]
[25]
El-Hussein, A.; Manoto, S.L.; Ombinda-Lemboumba, S.; Alrowaili, Z.A.; Mthunzi-Kufa, P. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer. Agents Med. Chem., 2021, 21(2), 149-161.
[http://dx.doi.org/10.2174/1871520620666200403144945] [PMID: 32242788]
[26]
Li, X.; Zhang, C.T.; Ma, W.; Xie, X.; Huang, Q. Oridonin: A review of its pharmacology, pharmacokinetics and toxicity. Front. Pharmacol., 2021, 12645824
[http://dx.doi.org/10.3389/fphar.2021.645824] [PMID: 34295243]
[27]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[28]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[29]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[30]
Sun, T.M.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.X.; Xia, Y.N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364.
[31]
Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61.
[PMID: 25838373]
[32]
Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell, 2015, 161(2), 205-214.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[33]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[34]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[35]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[PMID: 28782480]
[36]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[37]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[38]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[39]
Lee, J.; Xu, Y.; Zhang, T.; Cui, L.; Saidi, L.; Ye, Y. Secretion of misfolded cytosolic proteins from mammalian cells is independent of chaperone-mediated autophagy. J. Biol. Chem., 2018, 293(37), 14359-14370.
[http://dx.doi.org/10.1074/jbc.RA118.003660] [PMID: 30072379]
[40]
Schneider, K.L.; Nyström, T.; Widlund, P.O. Studying spatial protein quality control, proteopathies, and aging using different model misfolding proteins in S. Cerevisiae. Front. Mol. Neurosci., 2018, 11, 249.
[http://dx.doi.org/10.3389/fnmol.2018.00249] [PMID: 30083092]
[41]
Ciechanover, A.; Kwon, Y.T. Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Exp. Mol. Med., 2015, 47(3), e147-e147.
[http://dx.doi.org/10.1038/emm.2014.117] [PMID: 25766616]
[42]
Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov., 2017, 16(2), 101-114.
[http://dx.doi.org/10.1038/nrd.2016.211] [PMID: 27885283]
[43]
Dissmeyer, N.; Rivas, S.; Graciet, E. Life and death of proteins after protease cleavage: Protein degradation by the N-end rule pathway. New Phytol., 2018, 218(3), 929-935.
[http://dx.doi.org/10.1111/nph.14619] [PMID: 28581033]
[44]
Wu, S-Y.; Lan, S-H.; Wu, S-R.; Chiu, Y-C.; Lin, X-Z.; Su, I-J.; Tsai, T-F.; Yen, C-J.; Lu, T-H.; Liang, F-W.; Li, C-Y.; Su, H-J.; Su, C-L.; Liu, H-S. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology, 2018, 68(1), 141-154.
[http://dx.doi.org/10.1002/hep.29781] [PMID: 29328502]
[45]
Karlgren, M.; Simoff, I.; Keiser, M.; Oswald, S.; Artursson, P. CRISPR-Cas9: A new addition to the drug metabolism and disposition tool box. Drug Metab. Dispos., 2018, 46(11), 1776-1786.
[http://dx.doi.org/10.1124/dmd.118.082842] [PMID: 30126863]
[46]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.027] [PMID: 28223226]
[47]
An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.005] [PMID: 30224312]
[48]
Bao, S-M.; Hu, Q-H.; Yang, W-T.; Wang, Y.; Tong, Y-P.; Bao, W-D. Targeting epidermal growth factor receptor in non-small-cell-lung cancer: Current state and future perspective. Anticancer. Agents Med. Chem., 2019, 19(8), 984-991.
[http://dx.doi.org/10.2174/1871520619666190313161009] [PMID: 30868964]
[49]
Paiva, S.L.; Crews, C.M. Targeted protein degradation: Elements of PROTAC design. Curr. Opin. Chem. Biol., 2019, 50, 111-119.
[http://dx.doi.org/10.1016/j.cbpa.2019.02.022] [PMID: 31004963]
[50]
Burslem, G.M.; Crews, C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell, 2020, 181(1), 102-114.
[http://dx.doi.org/10.1016/j.cell.2019.11.031] [PMID: 31955850]
[51]
Ding, Y.; Fei, Y.; Lu, B. Emerging new concepts of degrader technologies. Trends Pharmacol. Sci., 2020, 41(7), 464-474.
[http://dx.doi.org/10.1016/j.tips.2020.04.005] [PMID: 32416934]
[52]
Wang, Y.; Jiang, X.; Feng, F.; Liu, W.; Sun, H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B, 2020, 10(2), 207-238.
[http://dx.doi.org/10.1016/j.apsb.2019.08.001] [PMID: 32082969]
[53]
Martín-Acosta, P.; Xiao, X. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem., 2021, 210112993
[http://dx.doi.org/10.1016/j.ejmech.2020.112993] [PMID: 33189436]
[54]
Huang, X.; Dixit, V.M. Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res., 2016, 26(4), 484-498.
[http://dx.doi.org/10.1038/cr.2016.31] [PMID: 27002218]
[55]
Schlesiger, S.; Toure, M.; Wilke, K.E.; Huck, B.R. Accelerating the discovery of next-generation small-molecule protein degraders. Aldrichim Acta, 2019, 52(2), 35-49.
[56]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[57]
Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358.
[http://dx.doi.org/10.1074/mcp.T300009-MCP200] [PMID: 14525958]
[58]
Li, X.; Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol., 2020, 13(1), 50.
[http://dx.doi.org/10.1186/s13045-020-00885-3] [PMID: 32404196]
[59]
Liu, J.; Chen, H.; Ma, L.; He, Z.; Wang, D.; Liu, Y.; Lin, Q.; Zhang, T.; Gray, N.; Kaniskan, H.U.; Jin, J.; Wei, W. Light-induced control of protein destruction by opto-PROTAC. Sci. Adv., 2020, 6(8)eaay5154
[http://dx.doi.org/10.1126/sciadv.aay5154] [PMID: 32128407]
[60]
Wade, M.; Li, Y-C.; Wahl, G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer, 2013, 13(2), 83-96.
[http://dx.doi.org/10.1038/nrc3430] [PMID: 23303139]
[61]
Li, Y.; Yang, J.; Aguilar, A.; McEachern, D.; Przybranowski, S.; Liu, L.; Yang, C-Y.; Wang, M.; Han, X.; Wang, S. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem., 2019, 62(2), 448-466.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00909] [PMID: 30525597]
[62]
Yang, J.; Li, Y.; Aguilar, A.; Liu, Z.; Yang, C-Y.; Wang, S. Simple structural modifications converting a bona fide MDM2 PROTAC degrader into a molecular glue molecule: A cautionary tale in the design of PROTAC degraders. J. Med. Chem., 2019, 62(21), 9471-9487.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00846] [PMID: 31560543]
[63]
Wang, B.; Liu, J.; Tandon, I.; Wu, S.; Teng, P.; Liao, J.; Tang, W. Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. Eur. J. Med. Chem., 2021, 219113425
[http://dx.doi.org/10.1016/j.ejmech.2021.113425] [PMID: 33862513]
[64]
Doroshow, D.B.; Eder, J.P.; LoRusso, P.M. BET inhibitors: A novel epigenetic approach. Ann. Oncol., 2017, 28(8), 1776-1787.
[http://dx.doi.org/10.1093/annonc/mdx157] [PMID: 28838216]
[65]
Stathis, A.; Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov., 2018, 8(1), 24-36.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0605] [PMID: 29263030]
[66]
Zhou, B.; Hu, J.; Xu, F.; Chen, Z.; Bai, L.; Fernandez-Salas, E.; Lin, M.; Liu, L.; Yang, C-Y.; Zhao, Y.; McEachern, D.; Przybranowski, S.; Wen, B.; Sun, D.; Wang, S. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J. Med. Chem., 2018, 61(2), 462-481.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01816] [PMID: 28339196]
[67]
Bai, L.; Zhou, B.; Yang, C-Y.; Ji, J.; McEachern, D.; Przybranowski, S.; Jiang, H.; Hu, J.; Xu, F.; Zhao, Y.; Liu, L.; Fernandez-Salas, E.; Xu, J.; Dou, Y.; Wen, B.; Sun, D.; Meagher, J.; Stuckey, J.; Hayes, D.F.; Li, S.; Ellis, M.J.; Wang, S. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res., 2017, 77(9), 2476-2487.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2622] [PMID: 28209615]
[68]
Jiang, F.; Wei, Q.; Li, H.; Li, H.; Cui, Y.; Ma, Y.; Chen, H.; Cao, P.; Lu, T.; Chen, Y. Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorg. Med. Chem., 2020, 28(1)115181
[http://dx.doi.org/10.1016/j.bmc.2019.115181] [PMID: 31767403]
[69]
Carpenter, R.L.; Lo, H-W. STAT3 Target genes relevant to human cancers. Cancers (Basel), 2014, 6(2), 897-925.
[http://dx.doi.org/10.3390/cancers6020897] [PMID: 24743777]
[70]
Chai, E.Z.P.; Shanmugam, M.K.; Arfuso, F.; Dharmarajan, A.; Wang, C.; Kumar, A.P.; Samy, R.P.; Lim, L.H.K.; Wang, L.; Goh, B.C.; Ahn, K.S.; Hui, K.M.; Sethi, G. Targeting transcription factor STAT3 for cancer prevention and therapy. Pharmacol. Ther., 2016, 162, 86-97.
[http://dx.doi.org/10.1016/j.pharmthera.2015.10.004] [PMID: 26478441]
[71]
Zhou, H.; Bai, L.; Xu, R.; Zhao, Y.; Chen, J.; McEachern, D.; Chinnaswamy, K.; Wen, B.; Dai, L.; Kumar, P.; Yang, C-Y.; Liu, Z.; Wang, M.; Liu, L.; Meagher, J.L.; Yi, H.; Sun, D.; Stuckey, J.A.; Wang, S. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. J. Med. Chem., 2019, 62(24), 11280-11300.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01530] [PMID: 31747516]
[72]
Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Jiang, H.; Wen, B.; Kumar, P.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 2019, 36(5), 498-511.e17.
[http://dx.doi.org/10.1016/j.ccell.2019.10.002] [PMID: 31715132]
[73]
Zhou, H.; Bai, L.; Xu, R.; McEachern, D.; Chinnaswamy, K.; Li, R.; Wen, B.; Wang, M.; Yang, C-Y.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. SD-91 as a potent and selective STAT3 degrader capable of achieving complete and long-lasting tumor regression. ACS Med. Chem. Lett., 2021, 12(6), 996-1004.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00155] [PMID: 34141084]
[74]
Bertoli, C.; Skotheim, J.M.; de Bruin, R.A.M. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 518-528.
[http://dx.doi.org/10.1038/nrm3629] [PMID: 23877564]
[75]
Ishoey, M.; Chorn, S.; Singh, N.; Jaeger, M.G.; Brand, M.; Paulk, J.; Bauer, S.; Erb, M.A.; Parapatics, K.; Müller, A.C.; Bennett, K.L.; Ecker, G.F.; Bradner, J.E.; Winter, G.E. Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders. ACS Chem. Biol., 2018, 13(3), 553-560.
[http://dx.doi.org/10.1021/acschembio.7b00969] [PMID: 29356495]
[76]
Sancho, M.; Leiva, D.; Lucendo, E.; Orzáez, M. Understanding MCL1: From cellular function and regulation to pharmacological inhibition. FEBS J., 2021. febs.16136.
[http://dx.doi.org/10.1111/febs.16136] [PMID: 34310025]
[77]
Widden, H.; Placzek, W.J. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun. Biol., 2021, 4(1), 1029.
[http://dx.doi.org/10.1038/s42003-021-02564-6] [PMID: 34475520]
[78]
Papatzimas, J.W.; Gorobets, E.; Maity, R.; Muniyat, M.I.; MacCallum, J.L.; Neri, P.; Bahlis, N.J.; Derksen, D.J. From inhibition to degradation: Targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J. Med. Chem., 2019, 62(11), 5522-5540.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00455] [PMID: 31117518]
[79]
Spillantini, M.G.; Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol., 2013, 12(6), 609-622.
[http://dx.doi.org/10.1016/S1474-4422(13)70090-5] [PMID: 23684085]
[80]
Kovacs, G.G. Invited review: Neuropathology of tauopathies: Principles and practice. Neuropathol. Appl. Neurobiol., 2015, 41(1), 3-23.
[http://dx.doi.org/10.1111/nan.12208] [PMID: 25495175]
[81]
Silva, M.C.; Ferguson, F.M.; Cai, Q.; Donovan, K.A.; Nandi, G.; Patnaik, D.; Zhang, T.; Huang, H.T.; Lucente, D.E.; Dickerson, B.C.; Mitchison, T.J.; Fischer, E.S.; Gray, N.S.; Haggarty, S.J. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.45457] [PMID: 30907729]
[82]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[83]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[84]
He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X. Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg. Med. Chem. Lett., 2020, 30(12)127167
[http://dx.doi.org/10.1016/j.bmcl.2020.127167] [PMID: 32317208]
[85]
Xie, S.; Sun, Y.; Liu, Y.; Li, X.; Li, X.; Zhong, W.; Zhan, F.; Zhu, J.; Yao, H.; Yang, D-H.; Chen, Z-S.; Xu, J.; Xu, S. Development of alectinib-based PROTACs as novel potent degraders of anaplastic lymphoma kinase (ALK). J. Med. Chem., 2021, 64(13), 9120-9140.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00270] [PMID: 34176264]
[86]
Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700.
[http://dx.doi.org/10.1038/nrc3580] [PMID: 24060861]
[87]
Shaw, A.T.; Engelman, J.A. ALK in lung cancer: Past, present, and future. J. Clin. Oncol., 2013, 31(8), 1105-1111.
[http://dx.doi.org/10.1200/JCO.2012.44.5353] [PMID: 23401436]
[88]
Lin, J.J.; Riely, G.J.; Shaw, A.T. Targeting ALK: Precision medicine takes on drug resistance. Cancer Discov., 2017, 7(2), 137-155.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1123] [PMID: 28122866]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy