Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Development of a Novel Pomegranate Polysaccharide Nanoemulsion Formulation with Anti-Inflammatory, Antioxidant, and Antitumor Properties

Author(s): Samah S. Hoseny, Amel M. Soliman, Sohair R. Fahmy and Shimaa A. Sadek*

Volume 20, Issue 5, 2023

Published on: 22 July, 2022

Page: [575 - 586] Pages: 12

DOI: 10.2174/1567201819666220509161548

Price: $65

Abstract

Background: Colorectal cancer is one of the most serious gastrointestinal cancers in Africa and its prevention is a pronounced challenge in contemporary medicine worldwide.

Objective: The present study aimed to develop nanoemulsion drug delivery system using pomegranate polysaccharides (PGPs) as an alternative cancer remedy, and then the evaluated its biological activities.

Methods: The PGPs yield and chemical composition were evaluated, and then a PGPs nanoemulsion (PGPs-NE) was prepared using the self-emulsification technique with an oil phase. The physicochemical characterization of PGPs-NE was then analyzed. The in vitro antioxidant, anti-inflammatory activities, and antitumor potency of PGPs and PGPs-NE were also evaluated.

Results: The PGPs yield was 10%. The total sugar and protein content of PGPs was 44.66 mg/dl and 19.83μg/ml, respectively. PGPs were mainly composed of five monosaccharides including fructose, glucose, galactose, rhamnose, and arabinose. Concerning physiochemical characterization, the formulated PGPs-NE had three optical absorption bands at 202, 204, and 207nm and a transmittance of 80%. Its average hydrodynamic particle size was 9.5nm, with a PDI of less than 0.2 and a negative zeta potential (-30.6 mV). The spherical shape of PGPs-NE was confirmed by a transmission electron microscope study, with an average size of less than 50 nm. Additionally, the method used to prepare the PGPs-NE formulation provided high entrapment efficiency (92.82%). The current study disclosed that PGPs-NE exhibited strong antioxidant, anti-inflammatory, and antitumor agent potency compared to that of free PGPs.

Conclusion: These promising current findings provide evidence for the possible efficacy of novel PGPs-NE as an alternative treatment for CRC.

Keywords: Colorectal cancer, drug delivery system, nanoemulsion, pomegranate polysaccharides, antioxidant, antiinflammatory.

Graphical Abstract
[1]
Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Todkar, S.S.; Mulla, A.S.; Jadhav, N.R. Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: Their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J. Mater. Sci. Mater. Med., 2021, 32(2), 19.
[http://dx.doi.org/10.1007/s10856-021-06489-8] [PMID: 33576907]
[2]
Shirode, A.B.; Bharali, D.J.; Nallanthighal, S.; Coon, J.K.; Mousa, S.A.; Reliene, R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int. J. Nanomedicine, 2015, 10(1), 475-484.
[PMID: 25624761]
[3]
Rahmani, A.H.; Alsahli, M.A.; Almatroodi, S.A. Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacogn. J., 2017, 9(5), 689-695.
[http://dx.doi.org/10.5530/pj.2017.5.109]
[4]
Jaganathan, S.K.; Vellayappan, M.V.; Narasimhan, G.; Supriyanto, E. Role of pomegranate and citrus fruit juices in colon cancer prevention. World J. Gastroenterol., 2014, 20(16), 4618-4625.
[http://dx.doi.org/10.3748/wjg.v20.i16.4618] [PMID: 24782614]
[5]
Nicolson, G.L.; Veljkovic, V.; Glisic, S.; Perovic, V.; Veljkovic, N. Pomegranate (Punica granatum): A natural source for the development of therapeutic compositions of food supplements with anticancer activities based on electron acceptor molecular characteristics. Funct. Food Health Dis., 2016, 6(10), 769-787.
[http://dx.doi.org/10.31989/ffhd.v6i12.289]
[6]
Bassiri-Jahromi, S. Punica granatum (Pomegranate) activity in health promotion and cancer prevention. Oncol. Rev., 2018, 12(1), 345.
[http://dx.doi.org/10.4081/oncol.2018.345] [PMID: 29441150]
[7]
Joseph, M.M.; Aravind, S.R.; Varghese, S.; Mini, S.; Sreelekha, T.T. Evaluation of antioxidant, antitumor and immunomodulatory properties of polysaccharide isolated from fruit rind of Punica granatum. Mol. Med. Rep., 2012, 5(2), 489-496.
[PMID: 22012001]
[8]
Morittu, V.M.; Mastellone, V.; Tundis, R.; Loizzo, M.R.; Tudisco, R.; Figoli, A.; Cassano, A.; Musco, N.; Britti, D.; Infascelli, F.; Lombardi, P. Antioxidant, biochemical, and in-life effects of Punica granatum L. natural juice vs. clarified juice by polyvinylidene fluoride membrane. Foods, 2020, 9(2), 242.
[http://dx.doi.org/10.3390/foods9020242] [PMID: 32102311]
[9]
Koosha, S.; Alshawsh, M.A.; Looi, C.Y.; Seyedan, A.; Mohamed, Z. An association map on the effect of flavonoids on the signalling pathways in colorectal cancer. Int. J. Med. Sci., 2016, 13(5), 374-385.
[http://dx.doi.org/10.7150/ijms.14485] [PMID: 27226778]
[10]
Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[11]
Jass, J.R. Pathogenesis of colorectal cancer. Surg. Clin. North Am., 2002, 82(5), 891-904.
[http://dx.doi.org/10.1016/S0039-6109(02)00047-6] [PMID: 12507199]
[12]
Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol., 2014, 2014, 437971.
[http://dx.doi.org/10.1155/2014/437971] [PMID: 25328522]
[13]
Vargas, A.J.; Thompson, P.A. Diet and nutrient factors in colorectal cancer risk. Nutr. Clin. Pract., 2012, 27(5), 613-623.
[http://dx.doi.org/10.1177/0884533612454885] [PMID: 22892274]
[14]
Kumar, V.L.; Verma, S.; Das, P. Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. Drug Dev. Res., 2019, 80(8), 1089-1097.
[http://dx.doi.org/10.1002/ddr.21590] [PMID: 31471932]
[15]
Basak, D.; Uddin, M.N.; Hancock, J. The Role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers (Basel), 2020, 12(11), 3336.
[http://dx.doi.org/10.3390/cancers12113336] [PMID: 33187272]
[16]
Rezaie, A.; Parker, R.D.; Abdollahi, M. Oxidative stress and pathogenesis of inflammatory bowel disease: An epiphenomenon or the cause? Dig. Dis. Sci., 2007, 52(9), 2015-2021.
[http://dx.doi.org/10.1007/s10620-006-9622-2] [PMID: 17404859]
[17]
Long, A.G.; Lundsmith, E.T.; Hamilton, K.E. Inflammation and colorectal cancer. Curr. Colorectal Cancer Rep., 2017, 13(4), 341-351.
[http://dx.doi.org/10.1007/s11888-017-0373-6] [PMID: 29129972]
[18]
Fishbein, A.; Hammock, B.D.; Serhan, C.N.; Panigrahy, D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol. Ther., 2021, 218, 107670.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107670] [PMID: 32891711]
[19]
Kamarudin, M.N.A.; Sarker, M.M.R.; Zhou, J.R.; Parhar, I. Metformin in colorectal cancer: Molecular mechanism, preclinical and clinical aspects. J. Exp. Clin. Cancer Res., 2019, 38(1), 491.
[http://dx.doi.org/10.1186/s13046-019-1495-2] [PMID: 31831021]
[20]
Hammond, W.A.; Swaika, A.; Mody, K. Pharmacologic resistance in colorectal cancer: A review. Ther. Adv. Med. Oncol., 2016, 8(1), 57-84.
[http://dx.doi.org/10.1177/1758834015614530] [PMID: 26753006]
[21]
Fajardo, A.M.; Piazza, G.A. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(2), G59-G70.
[http://dx.doi.org/10.1152/ajpgi.00101.2014] [PMID: 26021807]
[22]
Ganta, S.; Talekar, M.; Singh, A.; Coleman, T.P.; Amiji, M.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech, 2014, 15(3), 694-708.
[http://dx.doi.org/10.1208/s12249-014-0088-9] [PMID: 24510526]
[23]
Souto, E.B.; Nayak, A.P.; Murthy, R.S.R. Lipid nanoemulsions for anti-cancer drug therapy. Pharmazie, 2011, 66(7), 473-478.
[PMID: 21812320]
[24]
Thakur, N.; Garg, G.; Sharma, P.K.; Kumar, N. Nanoemulsions: A review on various pharmaceutical application. Glob. J. Pharmacol., 2012, 6, 222-225.
[25]
Tiwari, S.; Tan, Y.M.; Amiji, M. Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery. J. Biomed. Nanotechnol., 2006, 2(3-4), 217-224.
[http://dx.doi.org/10.1166/jbn.2006.038]
[26]
Zhu, C.; Liu, X. Optimization of extraction process of crude polysaccharides from Pomegranate peel by response surface methodology. Carbohydr. Polym., 2013, 92(2), 1197-1202.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.073] [PMID: 23399146]
[27]
Varkhade, C.B.; Pawar, H.A. Spectrophotometric estimation of total polysaccharides in Plantago ovata Husk Mucilage. Int. J. Chem. Pharm. Anal., 2014, 1(1), 2-4.
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Shang, H.M.; Chen, S.; Li, R.; Zhou, H.; Wu, H.; Song, H. Influences of extraction methods on physicochemical characteristics and activities of Astragalus cicer L. polysaccharides. Process Biochem., 2018, 73, 220-227.
[http://dx.doi.org/10.1016/j.procbio.2018.07.016]
[30]
Rachmawati, H.; Yee, C.W.; Rahma, A. Formulation of tablet containing curcumin nanoemulsion. Int. J. Pharm. Pharm. Sci., 2014, 6, 115-120.
[31]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Abdur Rub, R.; Ahmad, F.J. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 717-729.
[http://dx.doi.org/10.1080/21691401.2017.1337024] [PMID: 28604104]
[32]
Shofia, S.I.; Jayakumar, K.; Mukherjee, A.; Chandrasekaran, N. Efficiency of brown seaweed (Sargassum longifolium) polysaccharides encapsulated in nanoemulsion and nanostructured lipid carrier against colon cancer cell lines HCT 116. RSC Advances, 2018, 8(29), 15973-15984.
[http://dx.doi.org/10.1039/C8RA02616E]
[33]
Brand, W.W.; Cuvelier, H.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. (Campinas), 1995, 82, 25-30.
[34]
Gandhisan, R.; Thamaraichelvan, A. Baburaj. Anti-inflammatory action of Lannea coromandelica by HRBC membrane stabilization. Fitotherapia, 1991, 62, 82-83.
[35]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[36]
Medhin, L.B.; Achila, O.O.; Abrham, A.T.; Efrem, B.; Hailu, K.; Abraha, D.M.; Gilazghi, L.; Meresie, A.; Said, S.M. Incidence of colorectal cancer in Eritrea: Data from the National Health Laboratory, 2011-2017. PLoS One, 2019, 14(11), e0224045.
[http://dx.doi.org/10.1371/journal.pone.0224045] [PMID: 31721763]
[37]
Hussein, S.A.; Abdel-Aal, S.A.; Mady, H.A. Chemopreventive effect of curcumin on oxidative stress, antioxidant status, DNA fragmentation and caspase-9 gene expression in 1, 2-dimethylhydrazine-induced colon cancer in rats. Am. J. Biochem. Mol. Biol., 2014, 4(2), 22-34.
[38]
Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci., 2010, 75(1), R50-R57.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01457.x] [PMID: 20492195]
[39]
Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res., 2014, 3(1), 100.
[http://dx.doi.org/10.4103/2277-9175.129371] [PMID: 24800189]
[40]
Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int., 2019, 115, 167-176.
[http://dx.doi.org/10.1016/j.foodres.2018.08.044] [PMID: 30599929]
[41]
Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng., 2021, 5(9), 951-967.
[http://dx.doi.org/10.1038/s41551-021-00698-w] [PMID: 33795852]
[42]
Aljabali, A.A.A.; Bakshi, H.A.; Hakkim, F.L.; Haggag, Y.A.; Al-Batanyeh, K.M.; Al Zoubi, M.S.; Al-Trad, B.; Nasef, M.M.; Satija, S.; Mehta, M.; Pabreja, K.; Mishra, V.; Khan, M.; Abobaker, S.; Azzouz, I.M.; Dureja, H.; Pabari, R.M.; Dardouri, A.A.K.; Kesharwani, P.; Gupta, G.; Dhar Shukla, S.; Prasher, P.; Charbe, N.B.; Negi, P.; Kapoor, D.N.; Chellappan, D.K.; Webba da Silva, M.; Thompson, P.; Dua, K.; McCarron, P.; Tambuwala, M.M. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel), 2020, 12(1), 113.
[http://dx.doi.org/10.3390/cancers12010113] [PMID: 31906321]
[43]
Liu, M.; Zhang, W.; Yao, J.; Niu, J. Production, purification, characterization, and biological properties of Rhodosporidium paludigenum polysaccharide. PLoS One, 2021, 16(1), e0246148.
[http://dx.doi.org/10.1371/journal.pone.0246148] [PMID: 33513164]
[44]
Ahmadi Gavlighi, H.; Tabarsa, M.; You, S.; Surayot, U.; Ghaderi-Ghahfarokhi, M. Extraction, characterization and immunomodulatory property of pectic polysaccharide from pomegranate peels: Enzymatic vs. conventional approach. Int. J. Biol. Macromol., 2018, 116, 698-706.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.083] [PMID: 29775715]
[45]
Zhai, X.; Zhu, C.; Zhang, Y.; Sun, J.; Alim, A.; Yang, X. Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel. Carbohydr. Polym., 2018, 202, 461-469.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.013] [PMID: 30287023]
[46]
Zhu, Z.Y.; Dong, F.; Liu, X.; Lv, Q. YingYang; Liu, F.; Chen, L.; Wang, T.; Wang, Z.; Zhang, Y. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydr. Polym., 2016, 140, 461-471.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.053] [PMID: 26876874]
[47]
Kohli, K.; Chopra, S.; Dhar, D.; Arora, S.; Khar, R.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov. Today, 2010, 15(21-22), 958-965.
[http://dx.doi.org/10.1016/j.drudis.2010.08.007] [PMID: 20727418]
[48]
Ameen, F.; Abdullah, M.M.S.; Al-Homaidan, A.A.; Al-Lohedan, H.A.; Al-Ghanayem, A.A.; Almansob, A. Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J. Mol. Struct., 2020, 1217, 128392.
[http://dx.doi.org/10.1016/j.molstruc.2020.128392]
[49]
Onodera, T.; Kuriyama, I.; Andoh, T.; Ichikawa, H.; Sakamoto, Y.; Lee-Hiraiwa, E.; Mizushina, Y. Influence of particle size on the in vitro and in vivo anti-inflammatory and anti-allergic activities of a curcumin lipid nanoemulsion. Int. J. Mol. Med., 2015, 35(6), 1720-1728.
[http://dx.doi.org/10.3892/ijmm.2015.2186] [PMID: 25891482]
[50]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nanoemulsions. Curr. Opin. Colloid Interface Sci., 2005, 10(3-4), 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[51]
Devarajan, V.; Ravichandiran, V.; Masilamani, K. Development, characterization, and in vitro evaluation of telmisartan nanoemulsion. IJFST, 2013, 1(1), 75-85.
[52]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[53]
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Aqil, M.; Shafiq, S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech, 2007, 8(4), E104.
[http://dx.doi.org/10.1208/pt0804104] [PMID: 18181525]
[54]
Guerrero, S.; Inostroza-Riquelme, M.; Contreras-Orellana, P.; Diaz-Garcia, V.; Lara, P.; Vivanco-Palma, A.; Cárdenas, A.; Miranda, V.; Robert, P.; Leyton, L.; Kogan, M.J.; Quest, A.F.G.; Oyarzun-Ampuero, F. Curcumin-loaded nanoemulsion: A new safe and effective formulation to prevent tumor reincidence and metastasis. Nanoscale, 2018, 10(47), 22612-22622.
[http://dx.doi.org/10.1039/C8NR06173D] [PMID: 30484463]
[55]
Páez-Hernández, G.; Mondragón-Cortez, P.; Espinosa-Andrews, H. Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters. LWT food. Lebensm. Wiss. Technol., 2019, 111, 291-300.
[http://dx.doi.org/10.1016/j.lwt.2019.05.012]
[56]
Laxmi, M.; Bhardwaj, A.; Mehta, S.; Mehta, A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif. Cells Nanomed. Biotechnol., 2015, 43(5), 334-344.
[http://dx.doi.org/10.3109/21691401.2014.887018] [PMID: 24641773]
[57]
Mahajan, H.S.; Dinger, S.B. Design and in vitro evaluation of nanoemulsion for nasal delivery of artemether. Indian J. Nov. Drug Deliv., 2011, 3, 272-277.
[58]
McClements, D.J. Nanoemulsions versus micro emulsions: Terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[59]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[60]
Sun, H.; Liu, K.; Liu, W.; Wang, W.; Guo, C.; Tang, B.; Gu, J.; Zhang, J.; Li, H.; Mao, X.; Zou, Q.; Zeng, H. Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs. Int. J. Nanomedicine, 2012, 7, 5529-5543.
[http://dx.doi.org/10.2147/IJN.S36071] [PMID: 23118537]
[61]
Hosseinialhashemi, M.; Tavakoli, J.; Rafati, A.; Ahmadi, F. The aplication of Pistacia khinjuk extract nanoemulsion in a biopolymeric coating to improve the shelf life extension of sunflower oil. Food Sci. Nutr., 2020, 9(2), 920-928.
[http://dx.doi.org/10.1002/fsn3.2057] [PMID: 33598175]
[62]
Li, X.; Wang, L.; Wang, B. Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food Chem., 2017, 229, 479-486.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.051] [PMID: 28372204]
[63]
Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; Tomasello, G. Colorectal Carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res., 2017, 37(9), 4759-4766.
[PMID: 28870894]
[64]
Mizrahy, S.; Peer, D. Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev., 2012, 41(7), 2623-2640.
[http://dx.doi.org/10.1039/C1CS15239D] [PMID: 22085917]
[65]
Walsh, K.R.; Failla, M.L. Transport and metabolism of equol by Caco-2 human intestinal cells. J. Agric. Food Chem., 2009, 57(18), 8297-8302.
[http://dx.doi.org/10.1021/jf9011906] [PMID: 19715333]
[66]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[67]
Yang, B.; Zhao, M.; Prasad, K.N.; Jiang, G.; Jiang, Y. Effect of methylation on the structure and radical scavenging activity of polysaccharides from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chem., 2010, 118(2), 364-368.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.128]
[68]
Dawood, D.H.; Elmongy, M.S.; Negm, A.; Taher, M.A. Extraction and chemical characterization of novel water-soluble polysaccharides from two palm species and their antioxidant and antitumor activities. Egy. J. Basic Appl. Sci., 2020, 7(1), 141-158.
[http://dx.doi.org/10.1080/2314808X.2020.1773126]
[69]
Balasubramani, S.; Rajendhiran, T.; Moola, A.K.; Diana, R.K.B. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ. Sci. Pollut. Res. Int., 2017, 24(17), 15125-15133.
[http://dx.doi.org/10.1007/s11356-017-9118-y] [PMID: 28497330]
[70]
Rupa, E.J.; Li, J.F.; Arif, M.H.; Yaxi, H.; Puja, A.M.; Chan, A.J.; Hoang, V.A.; Kaliraj, L.; Yang, D.C.; Kang, S.C. Cordyceps militaris fungus extracts-mediated nanoemulsion for improvement antioxidant, antimicrobial, and anti-inflammatory activities. Molecules, 2020, 25(23), 5733.
[http://dx.doi.org/10.3390/molecules25235733] [PMID: 33291776]
[71]
Rajendran, V.; Lakshmi, K.S. In vitro and in vivo anti-inflammatory activity of leaves of Symplocos cochinchnensis (Lour) Moore ssp. laurina. Bangladesh J. Pharmacol., 2008, 3, 121-124.
[72]
Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym., 2015, 132, 378-396.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.079] [PMID: 26256362]
[73]
Pertiwi, I.; Setiasih, S.; Handayani, S.; Hudiyono, S. Bromelain nanoemulsion formulation resulting from partial purification of pineapple core (Ananas comosus [L.] Merr) and in vitro testing as anti-inflammation. In: AIP Conf. Proc; , 2020; 2243, p. (1)030017.
[74]
Yokota, J.; Kyotani, S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J. Chin. Med. Assoc., 2018, 81(6), 511-519.
[http://dx.doi.org/10.1016/j.jcma.2018.01.008] [PMID: 29555445]
[75]
Borges, R.S.; Keita, H.; Ortiz, B.L.S.; Dos Santos, S.T.I.; Ferreira, I.M.; Lima, E.S.; de Jesus Amazonas da Silva, M.; Fernandes, C.P.; de Faria Mota Oliveira, A.E.M.; da Conceição, E.C.; Rodrigues, A.B.L.; Filho, A.C.M.P.; Castro, A.N.; Carvalho, J.C.T. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: In vitro and in zebrafish studies. Inflammopharmacology, 2018, 26(4), 1057-1080.
[http://dx.doi.org/10.1007/s10787-017-0438-9] [PMID: 29404883]
[76]
Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23(12), 620-633.
[http://dx.doi.org/10.1016/j.tcb.2013.07.006] [PMID: 23958396]
[77]
Tubtimsri, S.; Limmatvapirat, C.; Limsirichaikul, S.; Akkaramongkolporn, P.; Inoue, Y.; Limmatvapirat, S. Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell. Asian J. Pharm. Sci., 2018, 13(5), 425-437.
[http://dx.doi.org/10.1016/j.ajps.2018.02.003] [PMID: 32104417]
[78]
Luo, Q.; Li, Z.; Yan, J.; Zhu, F.; Xu, R.J.; Cai, Y.Z. Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer. J. Med. Food, 2009, 12(4), 695-703.
[http://dx.doi.org/10.1089/jmf.2008.1232] [PMID: 19735167]
[79]
Ooi, V.E.; Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem., 2000, 7(7), 715-729.
[http://dx.doi.org/10.2174/0929867003374705] [PMID: 10702635]
[80]
Lo, T.C.; Kang, M.W.; Wang, B.C.; Chang, C.A. Glycosyl linkage characteristics and classifications of exo-polysaccharides of some regionally different strains of Lentinula edodes by amplified fragment length polymorphism assay and cluster analysis. Anal. Chim. Acta, 2007, 592(2), 146-153.
[http://dx.doi.org/10.1016/j.aca.2007.04.021] [PMID: 17512819]
[81]
Savale, S.K.; Sulforhodamine, B. SRB) Assay of curcumin loaded nanoemulsion by using glioblastoma cell line. Asian J. Biomater. Res., 2018, 3(3), 26-30.
[82]
Salvia-Trujillo, L.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O. Edible nanoemulsions as carriers of active ingredients: A Review. Annu. Rev. Food Sci. Technol., 2017, 8(1), 439-466.
[http://dx.doi.org/10.1146/annurev-food-030216-025908] [PMID: 28125342]
[83]
Chrastina, A.; Baron, V.T.; Abedinpour, P.; Rondeau, G.; Welsh, J.; Borgström, P. Plumbagin-loaded nanoemulsion drug delivery formulation and evaluation of antiproliferative effect on prostate cancer cells. BioMed Res. Int., 2018, 2018, 9035452.
[http://dx.doi.org/10.1155/2018/9035452] [PMID: 30534567]
[84]
Yue, H.; Wei, W.; Yue, Z.; Wang, B.; Luo, N.; Gao, Y.; Ma, D.; Ma, G.; Su, Z. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials, 2012, 33(16), 4013-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.021] [PMID: 22381473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy