Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Nanotechnology: A Promising Approach in Nerve Regeneration

Author(s): Namrah Azmi, Abhishekh Tiwari, Navjeet Kaur and Atul Chaskar*

Volume 19, Issue 3, 2023

Published on: 03 September, 2022

Page: [305 - 321] Pages: 17

DOI: 10.2174/1573413718666220509125522

Price: $65

Abstract

This review focuses on nerve degeneration a major health problem of nowadays, caused due to different nerve diseases or injuries. The low regenerative capacity of the nerve leads to primary brain injury. Clinical therapies available were only able to stabilize lesion progression. Reversal of the degeneration process and functional regeneration promotion were brought about by the implementation of nanotechnology in biology, allowing cell tissue integration. Nanomaterials implemented in the delivery of drugs and bioactive materials treat specifically targeted cells. Nanomaterials made in contact with cells lead to stem cell therapy, promoting stem cell differentiation and neurogenesis. Nanomaterials were also screened for their appropriateness as potential scaffold materials, owing to their neuroprotectant activity in nerve regeneration.

Keywords: Nerve regeneration, nanomaterials, nanoscaffold, neurogenesis, drug, targeted cells.

Next »
Graphical Abstract
[1]
Gupta, D.K. Study of nanotechnology and its application. J. Phy. Opt. Sci., 2020, 2(1), 1-7.
[2]
Pinho, A.G.; Cibrão, J.R.; Silva, N.A.; Monteiro, S.; Salgado, A.J. Cell secretome: Basic insights and therapeutic opportunities for CNS disorders. Pharmaceuticals (Basel), 2020, 13(2), 1-18.
[http://dx.doi.org/10.3390/ph13020031] [PMID: 32093352]
[3]
Silva, G.A. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann. N. Y. Acad. Sci., 2010, 1199(1), 221-230.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05361.x] [PMID: 20633128]
[4]
Zhang, G.; Khan, A.A.; Wu, H.; Chen, L.; Gu, Y.; Gu, N. The application of nanomaterials in stem cell therapy for some neurological diseases. Curr. Drug Targets, 2018, 19(3), 279-298.
[http://dx.doi.org/10.2174/1389450118666170328115801] [PMID: 28356028]
[5]
Armstrong, R.J.; Barker, R.A. Neurodegeneration: A failure of neuroregeneration? Lancet, 2001, 358(9288), 1174-1176.
[http://dx.doi.org/10.1016/S0140-6736(01)06260-2] [PMID: 11597694]
[6]
Enciu, A.M.; Nicolescu, M.I.; Manole, C.G.; Mureşanu, D.F.; Popescu, L.M.; Popescu, B.O. Neuroregeneration in neurodegenerative disorders. BMC Neurol., 2011, 11(1), 75.
[http://dx.doi.org/10.1186/1471-2377-11-75] [PMID: 21699711]
[7]
Nasrollahi Nia, F.; Asadi, A.; Zahri, S.; Abdolmaleki, A. Biosynthesis, characterization and evaluation of the supportive properties and biocompatibility of DBM nanoparticles on a tissue-engineered nerve conduit from decellularized sciatic nerve. Regen. Ther., 2020, 14, 315-321.
[http://dx.doi.org/10.1016/j.reth.2020.03.004] [PMID: 32467828]
[8]
Yang, G.; Lu, Y.; Liu, C.; Zhou, M.; Yin, S.; Zhang, W.; Jiang, X. A dynamic functional stem cell microtissue culture system based on magnetic nanoparticles labeled endothelial cells. Appl. Mater. Today, 2020, 20, 100691.
[http://dx.doi.org/10.1016/j.apmt.2020.100691]
[9]
Mohseni, M.; Shojaei, S.; Mehravi, B.; Mohammadi, E. Natural polymeric nanoparticles as a non-invasive probe for mesenchymal stem cell labelling. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 770-776.
[http://dx.doi.org/10.1080/21691401.2020.1748641] [PMID: 32297529]
[10]
Wang, D.; Wang, K.; Liu, Z.; Wang, Z.; Wu, H. Valproic acid labeled chitosan nanoparticles promote the proliferation and differentiation of neural stem cells after spinal cord injury. Neurotox. Res., 2021, 39(2), 456-466.
[http://dx.doi.org/10.1007/s12640-020-00304-y] [PMID: 33247828]
[11]
Bennur, T.; Javdekar, V.; Tomar, G.B.; Zinjarde, S. Gold nanoparticles biosynthesized by Nocardiopsis dassonvillei NCIM 5124 enhance osteogenesis in gingival mesenchymal stem cells. Appl. Microbiol. Biotechnol., 2020, 104(9), 4081-4092.
[http://dx.doi.org/10.1007/s00253-020-10508-z] [PMID: 32157422]
[12]
Asgari, V.; Landarani-Isfahani, A.; Salehi, H.; Amirpour, N.; Hashemibeni, B.; Kazemi, M.; Bahramian, H. Direct conjugation of retinoic acid with gold nanoparticles to improve neural differentiation of human adipose stem cells. J. Mol. Neurosci., 2020, 70(11), 1836-1850.
[http://dx.doi.org/10.1007/s12031-020-01577-w] [PMID: 32514739]
[13]
Wang, Y.; Duan, L. Fe3O4 @ Polydopamine nanoparticle-loaded human umbilical cord mesenchymal stem cells improve the cognitive function in Alzheimer’s disease mice by promoting hippocampal neurogenesis. Nanomed. Nanotechnol. Biol. Med., 2022, 40, 102507.
[14]
De Simone, U.; Spinillo, A.; Caloni, F.; Gribaldo, L.; Coccini, T. Neuron-like cells generated from human umbilical cord lining-derived Mesenchymal stem cells as a new in vitro model for neuronal toxicity screening: Using magnetite nanoparticles as an example. Int. J. Mol. Sci., 2019, 21(1), E271.
[http://dx.doi.org/10.3390/ijms21010271] [PMID: 31906090]
[15]
Yun, W.S.; Aryal, S.; Ahn, Y.J.; Seo, Y.J.; Key, J. Engineered iron oxide nanoparticles to improve regenerative effects of mesenchymal stem cells. Biomed. Eng. Lett., 2020, 10(2), 259-273.
[http://dx.doi.org/10.1007/s13534-020-00153-w] [PMID: 32477611]
[16]
Novotna, B.; Herynek, V.; Rossner, P., Jr; Turnovcova, K.; Jendelova, P. The effects of grafted mesenchymal stem cells labeled with iron oxide or cobalt-zinc-iron nanoparticles on the biological macromolecules of rat brain tissue extracts. Int. J. Nanomedicine, 2017, 12, 4519-4526.
[http://dx.doi.org/10.2147/IJN.S133156] [PMID: 28684912]
[17]
Mili, B.; Das, K.; Kumar, A.; Saxena, A.C.; Singh, P.; Ghosh, S.; Bag, S. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J. Mater. Sci. Mater. Med., 2017, 29(1), 4.
[http://dx.doi.org/10.1007/s10856-017-6008-2] [PMID: 29204722]
[18]
Lu, C.W.; Hsiao, J.K.; Liu, H.M.; Wu, C.H. Characterization of an iron oxide nanoparticle labelling and MRI-based protocol for inducing human mesenchymal stem cells into neural-like cells. Sci. Rep., 2017, 7(1), 3587.
[http://dx.doi.org/10.1038/s41598-017-03863-x] [PMID: 28620162]
[19]
Rocha, L.A.; Silva, D.; Barata-Antunes, S.; Cavaleiro, H.; Gomes, E.D.; Silva, N.A.; Salgado, A.J. Cell and tissue instructive materials for central nervous system repair. Adv. Funct. Mater., 2020, 1909083(44), 1909083.
[http://dx.doi.org/10.1002/adfm.201909083]
[20]
Kumar, R.; Aadil, K.R.; Ranjan, S.; Kumar, V.B. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J. Drug Deliv. Sci. Technol., 2020, 57, 101617.
[http://dx.doi.org/10.1016/j.jddst.2020.101617]
[21]
Gallego, I.; Villate-Beitia, I.; Soto-Sánchez, C.; Menéndez, M.; Grijalvo, S.; Eritja, R.; Martínez-Navarrete, G.; Humphreys, L.; López-Méndez, T.; Puras, G.; Fernández, E.; Pedraz, J.L. Brain angiogenesis induced by nonviral gene therapy with potential therapeutic benefits for central nervous system diseases. Mol. Pharm., 2020, 17(6), 1848-1858.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01213] [PMID: 32293897]
[22]
Nascimento-Dos-Santos, G.; Teixeira-Pinheiro, L.C.; da Silva-Júnior, A.J.; Carvalho, L.R.P.; Mesentier-Louro, L.A.; Hauswirth, W.W.; Mendez-Otero, R.; Santiago, M.F.; Petrs-Silva, H. Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury. Gene Ther., 2020, 27(1-2), 27-39.
[http://dx.doi.org/10.1038/s41434-019-0089-0] [PMID: 31243393]
[23]
Bidve, P.; Prajapati, N.; Kalia, K.; Tekade, R.; Tiwari, V. Emerging role of nanomedicine in the treatment of neuropathic pain. J. Drug Target., 2020, 28(1), 11-22.
[http://dx.doi.org/10.1080/1061186X.2019.1587444] [PMID: 30798636]
[24]
Fowler, M.J.; Cotter, J.D.; Knight, B.E.; Sevick-Muraca, E.M.; Sandberg, D.I.; Sirianni, R.W. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev., 2020, 165-166, 77-95.
[http://dx.doi.org/10.1016/j.addr.2020.02.006] [PMID: 32142739]
[25]
Zeng, Y.; Li, Z.; Zhu, H.; Gu, Z.; Zhang, H.; Luo, K. Recent advances in nanomedicines for multiple sclerosis therapy. ACS Appl. Bio Mater., 2020, 3(10), 6571-6597.
[http://dx.doi.org/10.1021/acsabm.0c00953] [PMID: 35019387]
[26]
Naqvi, S.; Panghal, A.; Flora, S.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front. Neurosci., 2020, 14(June), 494.
[http://dx.doi.org/10.3389/fnins.2020.00494] [PMID: 32581676]
[27]
Semenov, K.N.; Charykov, N.A.; Postnov, V.N.; Sharoyko, V.V.; Vorotyntsev, I.V.; Galagudza, M.M.; Murin, I.V. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem., 2016, 44(2), 59-74.
[http://dx.doi.org/10.1016/j.progsolidstchem.2016.04.002]
[28]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A. Harshita; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[29]
Chountoulesi, M.; Demetzos, C. Promising nanotechnology approaches in treatment of autoimmune diseases of central nervous system. Brain Sci., 2020, 10(6), E338.
[http://dx.doi.org/10.3390/brainsci10060338] [PMID: 32498357]
[30]
Battaglini, M.; Marino, A.; Carmignani, A.; Tapeinos, C.; Cauda, V.; Ancona, A.; Garino, N.; Vighetto, V.; La Rosa, G.; Sinibaldi, E.; Ciofani, G. Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation. ACS Appl. Mater. Interfaces, 2020, 12(32), 35782-35798.
[http://dx.doi.org/10.1021/acsami.0c05497] [PMID: 32693584]
[31]
Barui, A.K.; Jhelum, P.; Nethi, S.K.; Das, T.; Bhattacharya, D.B.V.; Karri, S.; Chakravarty, S.; Patra, C.R. Potential therapeutic application of zinc oxide nanoflowers in the cerebral ischemia rat model through neuritogenic and neuroprotective properties. Bioconjug. Chem., 2020, 31(3), 895-906.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00030] [PMID: 32050064]
[32]
Nguyen, C.T.; Kim, C.R.; Le, T.H.; Koo, K.I.; Hwang, C.H. Magnetically guided targeted delivery of erythropoietin using magnetic nanoparticles: Proof of concept. Medicine (Baltimore), 2020, 99(19), e19972.
[http://dx.doi.org/10.1097/MD.0000000000019972] [PMID: 32384447]
[33]
Chiang, M.C.; Nicol, C.J.B.; Cheng, Y.C.; Yen, C.; Lin, C.H.; Chen, S.J.; Huang, R.N. Nanogold neuroprotection in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Neuroscience, 2020, 435, 44-57.
[http://dx.doi.org/10.1016/j.neuroscience.2020.03.040] [PMID: 32229231]
[34]
Tiwari, A.; Kumar, R.; Shefi, O.; Randhawa, J.K. Fluorescent mantle carbon coated core-shell SPIONs for neuroengineering applications. ACS Appl. Bio Mater., 2020, 3(7), 4665-4673.
[http://dx.doi.org/10.1021/acsabm.0c00582] [PMID: 35025465]
[35]
Mukherjee, S.; Madamsetty, V.S.; Bhattacharya, D.; Roy Chowdhury, S.; Paul, M.K.; Mukherjee, A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv. Funct. Mater., 2020, 30(35), 1-27.
[http://dx.doi.org/10.1002/adfm.202003054]
[36]
Ojeda-Hernández, D.D.; Canales-Aguirre, A.A.; Matias-Guiu, J.; Gomez-Pinedo, U.; Mateos-Díaz, J.C.; Gilbert, R.J. Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front. Bioeng. Biotechnol., 2020, 8(May), 389.
[http://dx.doi.org/10.3389/fbioe.2020.00389] [PMID: 32432095]
[37]
Press, D. Natural product-based nanomedicines for wound healing purposes : Therapeutic targets and drug delivery systems. Int. J. Nanomedicine, 2018, 5023-5043.
[38]
Del, L.; Caballero-flor, I.H.; Meza-toledo, J.A. Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 2019, 1-28.
[http://dx.doi.org/10.3390/biom9020056]
[39]
Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol., 2020, 8(April), 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[40]
Heidari, S.; Mahdiani, S. Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotech App Biochem, 67(3), pp.430-441.
[http://dx.doi.org/10.1002/bab.1891]
[41]
Huang, R.; Zhu, Y.; Lin, L.; Song, S.; Cheng, L.; Zhu, R. Solid lipid nanoparticles enhanced the neuroprotective role of curcumin against epilepsy through activation of Bcl-2 Family and P38 MAPK pathways. ACS Chem. Neurosci., 2020, 11(13), 1985-1995.
[http://dx.doi.org/10.1021/acschemneuro.0c00242] [PMID: 32464055]
[42]
Cell, S.; Applied, D.; Yousefi, M. Nanocurcumin restores aberrant miRNA expression profile in multiple. J Cellular Physiology, 2017, 233(7), 5222-5230.
[http://dx.doi.org/10.1002/jcp.26301]
[43]
Varan, C.; Bilensoy, E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J. Nanotechnol., 2017, 8(1), 1446-1456.
[http://dx.doi.org/10.3762/bjnano.8.144] [PMID: 28900598]
[44]
Kuo, Y.; Wang, L.; Rajesh, R. Materials science & engineering C Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Mater. Sci. Eng. C, 2019, 102, 362-372.
[http://dx.doi.org/10.1016/j.msec.2019.04.065]
[45]
Van Woensel, M. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by galectin-1 intranasal knock-down strategy. Scientific Reports, 2017, 7(1), 1-14.
[http://dx.doi.org/10.1038/s41598-017-01279-1]
[46]
Xue, Y.; Wang, N.; Zeng, Z.; Huang, J.; Xiang, Z.; Guan, Y.Q. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models. J. Mater. Sci. Technol., 2020, 43, 197-207.
[http://dx.doi.org/10.1016/j.jmst.2019.10.013]
[47]
Ebrahimi, M.H.; Samadian, H.; Davani, S.T.; Kolarijani, N.R.; Mogharabian, N.; Salami, M.S.; Salehi, M. Peripheral nerve regeneration in rats by chitosan/alginate hydrogel composited with Berberine and Naringin nanoparticles: In vitro and in vivo study. J. Mol. Liq., 2020, 318, 114226.
[http://dx.doi.org/10.1016/j.molliq.2020.114226]
[48]
Aalinkeel, R.; Kutscher, H.L.; Singh, A.; Cwiklinski, K.; Khechen, N.; Schwartz, S.A.; Mahajan, S.D. Neuroprotective effects of a biodegradable poly (lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? J. Drug Target., 2017, 26(2), 182-193.
[http://dx.doi.org/10.1080/1061186X.2017.1354002]
[49]
Naeimi, R.; Safarpour, F.; Hashemian, M.; Tashakorian, H.; Ahmadian, S.R.; Ashrafpour, M.; Ghasemi-Kasman, M. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci. Lett., 2018, 674, 1-10.
[http://dx.doi.org/10.1016/j.neulet.2018.03.018] [PMID: 29530814]
[50]
Sun, J.; Wei, C.; Liu, Y.; Xie, W.; Xu, M.; Zhou, H.; Liu, J. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials, 2019, 197, 417-431.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.027] [PMID: 30638753]
[51]
Lohan, S.; Raza, K.; Mehta, S.K.; Bhatti, G.K.; Saini, S.; Singh, B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm., 2017, 530(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[52]
Ismail, N.; Ismail, M.; Azmi, N.H.; Bakar, M.F.; Yida, Z.; Stanslas, J.; Sani, D.; Basri, H.; Abdullah, M.A. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats. Chem. Biol. Interact., 2017, 275, 61-73.
[http://dx.doi.org/10.1016/j.cbi.2017.07.014] [PMID: 28734741]
[53]
Rifaai, R.A.; Mokhemer, S.A.; Saber, E.A.; El-Aleem, S.A.A.; El-Tahawy, N.F.G. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in Alzheimer’s disease. J. Chem. Neuroanat., 2020, 107, 101795.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101795] [PMID: 32464160]
[54]
Joachim, E.; Barakat, R.; Lew, B.; Kim, K.K.; Ko, C.; Choi, H. Single intranasal administration of 17β-estradiol loaded gelatin nanoparticles confers neuroprotection in the post-ischemic brain. Nanomedicine, 2020, 29, 102246.
[http://dx.doi.org/10.1016/j.nano.2020.102246] [PMID: 32590106]
[55]
Cox, A.; Capone, M.; Matzelle, D.; Vertegel, A.; Bredikhin, M.; Varma, A.; Haque, A.; Shields, D.C.; Banik, N.L. Nanoparticle-based estrogen delivery to spinal cord injury site reduces local parenchymal destruction and improves functional recovery. J. Neurotrauma, 2021, 38(3), 342-352.
[56]
Fonseca-Santos, B.; Chorilli, M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int. J. Pharm., 2020, 589, 119832.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119832] [PMID: 32877730]
[57]
Samadian, H.; Maleki, H.; Fathollahi, A.; Salehi, M.; Gholizadeh, S.; Derakhshankhah, H.; Allahyari, Z.; Jaymand, M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int. J. Biol. Macromol., 2020, 154, 795-817.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.155] [PMID: 32198035]
[58]
Samadian, H.; Ehterami, A.; Sarrafzadeh, A.; Khastar, H.; Nikbakht, M.; Rezaei, A.; Chegini, L.; Salehi, M. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study. Int. J. Biol. Macromol., 2020, 150, 380-388.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.102] [PMID: 32057876]
[59]
Jahromi, M.; Razavi, S.; Seyedebrahimi, R.; Reisi, P.; Kazemi, M. Regeneration of rat sciatic nerve using PLGA conduit containing rat ADSCs with controlled release of BDNF and gold nanoparticles. J. Mol. Neurosci., 2021, 71(4), 746-760.
[http://dx.doi.org/10.1007/s12031-020-01694-6] [PMID: 33029736]
[60]
Zhu, L.; Jia, S.; Liu, T.; Yan, L.; Huang, D.; Wang, Z.; Chen, S.; Zhang, Z.; Zeng, W.; Zhang, Y.; Yang, H.; Hao, D. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration. Adv. Funct. Mater., 2020, 30(39), 1-15.
[http://dx.doi.org/10.1002/adfm.202002610]
[61]
Zhou, G.; Chang, W.; Zhou, X.; Chen, Y.; Dai, F.; Anwar, A.; Yu, X. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration. ACS Appl. Mater. Interfaces, 2020, 12(14), 16168-16177.
[http://dx.doi.org/10.1021/acsami.0c04191] [PMID: 32182427]
[62]
Qian, Y.; Cheng, Y.; Song, J.; Xu, Y.; Yuan, W.E.; Fan, C.; Zheng, X. Mechano-informed biomimetic polymer scaffolds by incorporating self-powered zinc oxide nanogenerators enhance motor recovery and neural function. Small, 2020, 16(32), e2000796.
[http://dx.doi.org/10.1002/smll.202000796] [PMID: 32633072]
[63]
Fang, J.H.; Hsu, H.H.; Hsu, R.S.; Peng, C.K.; Lu, Y.J.; Chen, Y.Y.; Chen, S.Y.; Hu, S.H. 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Mater., 2020, 12(1), 1-16.
[http://dx.doi.org/10.1038/s41427-020-00244-1]
[64]
Li, L.; Abuduaini, H.; Ni, D.; Shi, Y.; Zhu, F.; Zong, Q. Preparation of mNGF-conjugated iron oxide nanoparticles and repair of peripheral nerve injury in rats under applied external magnetic field. Indian J. Pharm. Sci., 2020, 82(s2), 30-37.
[http://dx.doi.org/10.36468/pharmaceutical-sciences.spl.6]
[65]
Fernandez-Serra, R.; Gallego, R.; Lozano, P.; González-Nieto, D. Hydrogels for neuroprotection and functional rewiring: A new era for brain engineering. Neural Regen. Res., 2020, 15(5), 783-789.
[http://dx.doi.org/10.4103/1673-5374.268891] [PMID: 31719237]
[66]
Razavi, S.; Seyedebrahimi, R.; Jahromi, M. Biodelivery of nerve growth factor and gold nanoparticles encapsulated in chitosan nanoparticles for schwann-like cells differentiation of human adipose-derived stem cells. Biochem. Biophys. Res. Commun., 2019, 513(3), 681-687.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.189] [PMID: 30982578]
[67]
Park, J.; Jeon, J.; Kim, B.; Lee, M.S.; Park, S.; Lim, J.; Yi, J.; Lee, H.; Yang, H.S.; Lee, J.Y. Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration. Adv. Funct. Mater., 2020, 30(39), 1-14.
[http://dx.doi.org/10.1002/adfm.202003759]
[68]
Tao, J.; Zhang, J.; Du, T.; Xu, X.; Deng, X.; Chen, S.; Liu, J.; Chen, Y.; Liu, X.; Xiong, M.; Luo, Y.; Cheng, H.; Mao, J.; Cardon, L.; Gou, M.; Wei, Y. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater., 2019, 90, 49-59.
[http://dx.doi.org/10.1016/j.actbio.2019.03.047] [PMID: 30930306]
[69]
Zhang, Z.; Jørgensen, M.L.; Wang, Z.; Amagat, J.; Wang, Y.; Li, Q.; Dong, M.; Chen, M. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials, 2020, 253(April), 120108.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120108] [PMID: 32428776]
[70]
Amini, S.; Saudi, A.; Amirpour, N.; Jahromi, M.; Najafabadi, S.S.; Kazemi, M.; Rafienia, M.; Salehi, H. Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: In vitro and in vivo study. Int. J. Biol. Macromol., 2020, 159, 154-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.073] [PMID: 32416294]
[71]
Santander, J.; Fonseca, L.; Udina, S.; Marco, S. Non-selective NDIR array for gas detection. Sens. Actuators B Chem., 2007, 127, 69-73.
[http://dx.doi.org/10.1016/j.snb.2007.07.003]
[72]
Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn., 2020, 3409-3418.
[http://dx.doi.org/10.1080/07391102.2020.1758788]
[73]
Sun, Y.; Liu, X.; George, M.N.; Park, S.; Gaihre, B.; Terzic, A.; Lu, L. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J. Biomed. Mater. Res. - Part A, 2021, 109(2), 193-206.
[http://dx.doi.org/10.1002/jbm.a.37016]
[74]
Mahumane, G.D.; Kumar, P.; Pillay, V.; Choonara, Y.E. Repositioning n-acetylcysteine (NAC): Nac-loaded electrospun drug delivery scaffolding for potential neural tissue engineering application. Pharmaceutics, 2020, 12(10), 1-19.
[http://dx.doi.org/10.3390/pharmaceutics12100934] [PMID: 33007830]
[75]
Massoumi, B.; Hatamzadeh, M.; Firouzi, N.; Jaymand, M. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Mater. Sci. Eng. C, 2019, 98, 300-310.
[http://dx.doi.org/10.1016/j.msec.2018.12.114]
[76]
Jaswal, R.; Shrestha, S.; Shrestha, B.K.; Kumar, D.; Park, C.H.; Kim, C.S. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. Mater. Sci. Eng. C, 2020, 116, 111213.
[http://dx.doi.org/10.1016/j.msec.2020.111213] [PMID: 32806222]
[77]
Aydemir Sezer, U.; Ozturk Yavuz, K.; Ors, G.; Bay, S.; Aru, B.; Sogut, O.; Akgul Caglar, T.; Bozkurt, M.R.; Cagavi, E.; Yanikkaya Demirel, G.; Sezer, S. Zero-valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering. J. Tissue Eng. Regen. Med., 2020, 14(12), 1815-1826.
[http://dx.doi.org/10.1002/term.3137]
[78]
Pillai, M.M.; Sathishkumar, G.; Houshyar, S.; Senthilkumar, R.; Quigley, A.; Shanthakumari, S.; Padhye, R.; Bhattacharyya, A. Nanocomposite-coated silk-based artificial conduits: The influence of structures on regeneration of the peripheral nerve. ACS Appl. Bio Mater., 2020, 3(7), 4454-4464.
[http://dx.doi.org/10.1021/acsabm.0c00430] [PMID: 35025444]
[79]
Yang, B.; Zhang, F.; Cheng, F.; Ying, L.; Wang, C.; Shi, K.; Wang, J.; Xia, K.; Gong, Z.; Huang, X.; Yu, C.; Li, F.; Liang, C.; Chen, Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis., 2020, 11(6), 439.
[http://dx.doi.org/10.1038/s41419-020-2620-z] [PMID: 32513969]
[80]
Houshyar, S.; Pillai, M.M.; Saha, T.; Sathish-Kumar, G.; Dekiwadia, C.; Sarker, S.R.; Sivasubramanian, R.; Shanks, R.A.; Bhattacharyya, A. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing. RSC Advances, 2020, 10(66), 40351-40364.
[http://dx.doi.org/10.1039/D0RA06556K]
[81]
Askarzadeh, N.; Nazarpak, M.H.; Mansoori, K.; Farokhi, M.; Gholami, M.; Mohammadi, J.; Mottaghitalab, F. Bilayer cylindrical conduit consisting of electrospun polycaprolactone nanofibers and DSC cross-linked sodium alginate hydrogel to bridge peripheral nerve gaps. Macromol. Biosci., 2020, 20(9), e2000149.
[http://dx.doi.org/10.1002/mabi.202000149] [PMID: 32627956]
[82]
Haidar, M.K.; Timur, S.S.; Kazanci, A.; Turkoglu, O.F.; Gürsoy, R.N.; Nemutlu, E.; Sargon, M.F.; Bodur, E.; Gök, M.; Ulubayram, K.; Öner, L.; Eroğlu, H. Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur. J. Pharm. Biopharm., 2020, 153, 1-13.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.032] [PMID: 32504798]
[83]
Huang, Z.; Ma, Y.; Jing, W.; Zhang, Y.; Jia, X.; Cai, Q.; Ao, Q.; Yang, X. Tracing carbon nanotubes (CNTs) in rat peripheral nerve regenerated with conductive conduits composed of poly(lactide-co-glycolide) and fluorescent CNTs. ACS Biomater. Sci. Eng., 2020, 6(11), 6344-6355.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01065] [PMID: 33449666]
[84]
Cheong, H.; Kim, J.; Kim, B.J.; Kim, E.; Park, H.Y.; Choi, B.H.; Joo, K.I.; Cho, M.L.; Rhie, J.W.; Lee, J.I.; Cha, H.J. Multi-dimensional bioinspired tactics using an engineered mussel protein glue-based nanofiber conduit for accelerated functional nerve regeneration. Acta Biomater., 2019, 90, 87-99.
[http://dx.doi.org/10.1016/j.actbio.2019.04.018] [PMID: 30978510]
[85]
Kim, H.J.; Lee, J.S.; Park, J.M.; Lee, S.; Hong, S.J.; Park, J.S.; Park, K.H. Fabrication of nanocomposites complexed with gold nanoparticles on polyaniline and application to their nerve regeneration. ACS Appl. Mater. Interfaces, 2020, 12(27), 30750-30760.
[http://dx.doi.org/10.1021/acsami.0c05286] [PMID: 32539331]
[86]
Meng, C.; Jiang, W.; Huang, Z.; Liu, T.; Feng, J. Fabrication of a highly conductive silk knitted composite scaffold by two-step electrostatic self-assembly for potential peripheral nerve regeneration. ACS Appl. Mater. Interfaces, 2020, 12(10), 12317-12327.
[http://dx.doi.org/10.1021/acsami.9b22088] [PMID: 32115937]
[87]
Hlavac, N.; Kasper, M.; Schmidt, C.E. Progress toward finding the perfect match: Hydrogels for treatment of central nervous system injury. Mater. Today Adv., 2020, 6, 100039.
[http://dx.doi.org/10.1016/j.mtadv.2019.100039]
[88]
Yoo, J.; Park, J.H.; Kwon, Y.W.; Chung, J.J.; Choi, I.C.; Nam, J.J.; Lee, H.S.; Jeon, E.Y.; Lee, K.; Kim, S.H.; Jung, Y.; Park, J.W. Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel. Biomater. Sci., 2020, 8(22), 6261-6271.
[http://dx.doi.org/10.1039/D0BM00847H] [PMID: 33016275]
[89]
Wang, J.; Cheng, Y.; Wang, H.; Wang, Y.; Zhang, K.; Fan, C.; Wang, H.; Mo, X. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater., 2020, 117, 180-191.
[http://dx.doi.org/10.1016/j.actbio.2020.09.037] [PMID: 33007489]
[90]
Zhang, D.; Yao, Y.; Duan, Y.; Yu, X.; Shi, H.; Nakkala, J.R.; Zuo, X.; Hong, L.; Mao, Z.; Gao, C. Surface-anchored graphene oxide nanosheets on cell-scale micropatterned poly(d,l-lactide-co-caprolactone) conduits promote peripheral nerve regeneration. ACS Appl. Mater. Interfaces, 2020, 12(7), 7915-7930.
[http://dx.doi.org/10.1021/acsami.9b20321] [PMID: 31935055]
[91]
Zhang, D.; Yang, W.; Wang, C.; Zheng, H.; Liu, Z.; Chen, Z.; Gao, C. Methylcobalamin-loaded PLCL conduits facilitate the peripheral nerve regeneration. Macromol. Biosci., 2020, 20(3), e1900382.
[http://dx.doi.org/10.1002/mabi.201900382] [PMID: 32058665]
[92]
Wang, J.; Xiong, H.; Zhu, T.; Liu, Y.; Pan, H.; Fan, C.; Zhao, X.; Lu, W.W. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano, 2020, 14(10), 12579-12595.
[http://dx.doi.org/10.1021/acsnano.0c03570] [PMID: 32786254]
[93]
Chen, S.H.; Chou, P.Y.; Chen, Z.Y.; Chuang, D.C.C.; Hsieh, S.T.; Lin, F.H. An electrospun nerve wrap comprising Bletilla striata polysaccharide with dual function for nerve regeneration and scar prevention. Carbohydr. Polym., 2020, 250(35), 116981.
[http://dx.doi.org/10.1016/j.carbpol.2020.116981] [PMID: 33049868]
[94]
Jahromi, H.K.; Farzin, A.; Hasanzadeh, E.; Barough, S.E.; Mahmoodi, N.; Najafabadi, M.R.H.; Farahani, M.S.; Mansoori, K.; Shirian, S.; Ai, J. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat. Mater. Sci. Eng. C, 2020, 109, 110564.
[http://dx.doi.org/10.1016/j.msec.2019.110564] [PMID: 32228906]
[95]
Ai, A.; Behforouz, A.; Ehterami, A.; Sadeghvaziri, N.; Jalali, S.; Farzamfar, S.; Yousefbeigi, A.; Ai, A. goodarzi, A.; Salehi, M.; Ai, J. Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. Int. J. Polym. Mater., 2019, 68(18), 1133-1141.
[http://dx.doi.org/10.1080/00914037.2018.1534114]
[96]
Dolkhani, S.; Najafpour, A.; Mohammadi, R. Fabrication and transplantation of chitosan-selenium biodegradable nanocomposite conduit on transected sciatic nerve: A novel study in rat model. Neurol. Res., 2020, 42(6), 439-450.
[http://dx.doi.org/10.1080/01616412.2019.1709143] [PMID: 32223546]
[97]
Ebrahimi-Zadehlou, P.; Najafpour, A.; Mohammadi, R. Assessments of regenerative potential of silymarin nanoparticles loaded into chitosan conduit on peripheral nerve regeneration: A transected sciatic nerve model in rat. Neurol. Res., 2020, 43(2), 148-156.
[http://dx.doi.org/10.1080/01616412.2020.1831341] [PMID: 33034534]
[98]
Bielanin, J. ScholarWorks @ UARK the development and evaluation of alginate nanofibers as a neuroprotective nano-scaffold for Amyotrophic Lateral Sclerosis; ALS, 2020.
[99]
Yadid, M.; Feiner, R.; Dvir, T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett., 2019, 19(4), 2198-2206.
[http://dx.doi.org/10.1021/acs.nanolett.9b00472] [PMID: 30884238]
[100]
Foroutan Koudehi, M.; Imani Fooladi, A.A.; Aghozbeni, E.A.H.; Nourani, M.R. Nano bioglass/gelatin scaffold enhanced by nanosilver as an antibacterial conduit for peripheral nerve regeneration. Mater. Technol., 2019, 34(13), 776-784.
[http://dx.doi.org/10.1080/10667857.2019.1628332]
[101]
Chen, X.; Ge, X.; Qian, Y.; Tang, H.; Song, J.; Qu, X.; Yue, B.; Yuan, W-E. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4 magnetic nanoparticles for peripheral nerve regeneration. Adv. Funct. Mater., 2020, 30(38), 1-12.
[http://dx.doi.org/10.1002/adfm.202004537]
[102]
Opris, I.; Lebedev, M.A.; Pulgar, V.M.; Vidu, R.; Enachescu, M.; Casanova, M.F. Editorial: Nanotechnologies in neuroscience and neuroengineering. Front. Neurosci., 2020, 14, 33.
[http://dx.doi.org/10.3389/fnins.2020.00033] [PMID: 32116495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy