Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy

Author(s): Dharmendra K. Khatri*, Kumari Preeti, Shivraj Tonape, Sheoshree Bhattacharjee, Monica Patel, Saurabh Shah, Pankaj K. Singh, Saurabh Srivastava, Dalapathi Gugulothu, Lalitkumar Vora and Shashi B. Singh*

Volume 21, Issue 3, 2023

Published on: 19 December, 2022

Page: [493 - 516] Pages: 24

DOI: 10.2174/1570159X20666220507022701

Price: $65

Abstract

Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.

Keywords: Parkinson's disease, blood-brain-barrier, nose-to-brain delivery, intranasal, nano-carriers, nano drug delivery.

Graphical Abstract
[1]
Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[2]
Maiti, P.; Manna, J.; Dunbar, G.L.; Maiti, P.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener., 2017, 6(1), 28.
[http://dx.doi.org/10.1186/s40035-017-0099-z] [PMID: 29090092]
[3]
Gabathuler, R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol. Dis., 2010, 37(1), 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[4]
Kaur, R.; Mehan, S.; Singh, S. Understanding multifactorial architecture of Parkinson’s disease: Pathophysiology to management. In: Neurological Sciences; Springer: Verlag Italia, , 2019; p. 40, pp. 13-23.
[5]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[6]
Engelhardt, B.; Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin. Immunopathol., 2009, 31(4), 497-511.
[http://dx.doi.org/10.1007/s00281-009-0177-0] [PMID: 19779720]
[7]
Silindir, G.M.; Yekta, O.A.; Chalon, S. Drug delivery systems for imaging and therapy of Parkinson’s disease. Curr. Neuropharmacol., 2016, 14(4), 376-391.
[http://dx.doi.org/10.2174/1570159X14666151230124904] [PMID: 26714584]
[8]
Djupesland, P.G.; Messina, J.C.; Mahmoud, R.A. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview. Ther. Deliv., 2014, 5(6), 709-733.
[http://dx.doi.org/10.4155/tde.14.41] [PMID: 25090283]
[9]
Haddad, F.; Sawalha, M.; Khawaja, Y.; Najjar, A.; Karaman, R. Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease. Molecules, 2017, 23(1), 40.
[http://dx.doi.org/10.3390/molecules23010040] [PMID: 29295587]
[10]
Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s disease: Current status and future developments. Curr. Neuropharmacol., 2018, 16(8), 1239-1252.
[http://dx.doi.org/10.2174/1570159X15666170510143821] [PMID: 28494719]
[11]
Joseph, J. Motor fluctuations and dyskinesias in Parkinson’s disease: Clinical manifestations. Mov. Disord., 2005, 20(Suppl. 11), S11-S16.
[12]
Angela, M.C. Presynaptic mechanisms of l-DOPA-induced dyskinesia: The findings, the debate, and the therapeutic implications. Front. Neurol., 2014, 242, 5.
[13]
Olarte-Avellaneda, S.; Cepeda Del Castillo, J.; Rojas-Rodriguez, A.F.; Sánchez, O.; Rodríguez-López, A.; Suárez, G.D.A.; Pulido, L.M.S.; Alméciga-Díaz, C.J. Bromocriptine as a novel pharmacological chaperone for mucopolysaccharidosis IV A. ACS Med. Chem. Lett., 2020, 11(7), 1377-1385.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00042] [PMID: 32676143]
[14]
Brooks, D.J. Dopamine agonists: Their role in the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2000, 68(6), 685-689.
[http://dx.doi.org/10.1136/jnnp.68.6.685] [PMID: 10811688]
[15]
Olanow, C.W.; Kieburtz, K.; Leinonen, M.; Elmer, L.; Giladi, N.; Hauser, R.A.; Klepiskaya, O.S.; Kreitzman, D.L.; Lew, M.F.; Russell, D.S.; Kadosh, S.; Litman, P.; Friedman, H.; Linvah, N. The PB Study Group, A randomized trial of a low-dose Rasagiline and Pramipexole combination (P2B001) in early Parkinson’s disease. Mov. Disord., 2017, 32(5), 783-789.
[http://dx.doi.org/10.1002/mds.26941] [PMID: 28370340]
[16]
Antonini, A; Abbruzzese, G; Barone, P; Bonuccelli, U; Lopiano, L.; Onofrj, M. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): Relevance for motor and non-motor features. Neuropsychiatr Dis Treat, 2008, 4(1 A), 1-9.
[17]
Onofrj, M.; Thomas, A.; Iacono, D.; Di Iorio, A.; Bonanni, L. Switch-over from tolcapone to entacapone in severe Parkinson’s disease patients. Eur. Neurol., 2001, 46(1), 11-16.
[http://dx.doi.org/10.1159/000050749] [PMID: 11455177]
[18]
Parkinson Study Group. Entacapone improves motor fluctuations in levodopa- treated Parkinson’s disease patients. Ann. Neurol., 1997, 42(5), 747-755.
[http://dx.doi.org/10.1002/ana.410420511] [PMID: 9392574]
[19]
Gordin, A.; Kaakkola, S.; Teräväinen, H. Clinical advantages of COMT inhibition with entacapone - a review. J. Neural Transm. (Vienna), 2004, 111(10-11), 1343-1363.
[http://dx.doi.org/10.1007/s00702-004-0190-3] [PMID: 15340869]
[20]
Riederer, P.; Lachenmayer, L.; Laux, G. Clinical applications of MAO-inhibitors. Curr. Med. Chem., 2004, 11(15), 2033-2043.
[http://dx.doi.org/10.2174/0929867043364775] [PMID: 15279566]
[21]
Schapira, A.H. Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: A review of symptomatic and potential disease-modifying effects. CNS Drugs, 2011, 25(12), 1061-1071.
[http://dx.doi.org/10.2165/11596310-000000000-00000] [PMID: 22133327]
[22]
Krishna, R.; Ali, M.; Moustafa, A.A. Effects of combined MAO-B inhibitors and levodopa vs. monotherapy in Parkinson’s disease. Front. Aging Neurosci., 2014, 6(JUL), 180.
[PMID: 25120478]
[23]
Schwab, R.S.; England, A.C., Jr; Poskanzer, D.C.; Young, R.R. Amantadine in the treatment of Parkinson’s disease. JAMA, 1969, 208(7), 1168-1170.
[http://dx.doi.org/10.1001/jama.1969.03160070046011] [PMID: 5818715]
[24]
Malkani, R.; Zadikoff, C.; Melen, O.; Videnovic, A.; Borushko, E.; Simuni, T. Amantadine for freezing of gait in patients with Parkinson disease. Clin. Neuropharmacol., 2012, 35(6), 266-268.
[http://dx.doi.org/10.1097/WNF.0b013e31826e3406] [PMID: 23123688]
[25]
Müller, T. Drug therapy in patients with Parkinson’s disease. Transl. Neurodegener., 2012, 1(1), 10.
[http://dx.doi.org/10.1186/2047-9158-1-10] [PMID: 23211041]
[26]
Current pharmacotherapy and screening models for Parkinson’s disease- a mini review. J. Nat. Remed., Available from: https://www.jnronline.com/ojs/index.php/about/article/view/192 [Accessed on: 2022 Jun, 1
[27]
Daniele, A.; Albanese, A.; Gainotti, G.; Gregori, B.; Bartolomeo, P. Zolpidem in Parkinson’s disease. Lancet, 1997, 349(9060), 1222-1223.
[http://dx.doi.org/10.1016/S0140-6736(05)62416-6]
[28]
Hajak, G.; Müller, W.E.; Wittchen, H.U.; Pittrow, D.; Kirch, W. Abuse and dependence potential for the non-benzodiazepine hypnotics zolpidem and zopiclone: A review of case reports and epidemiological data. Addiction, 2003, 98(10), 1371-1378.
[http://dx.doi.org/10.1046/j.1360-0443.2003.00491.x] [PMID: 14519173]
[29]
Bronstein, J.M.; Tagliati, M.; Alterman, R.L.; Lozano, A.M.; Volkmann, J.; Stefani, A.; Horak, F.B.; Okun, M.S.; Foote, K.D.; Krack, P.; Pahwa, R.; Henderson, J.M.; Hariz, M.I.; Bakay, R.A.; Rezai, A.; Marks, W.J., Jr; Moro, E.; Vitek, J.L.; Weaver, F.M.; Gross, R.E.; DeLong, M.R. Deep brain stimulation for Parkinson disease: An expert consensus and review of key issues. Arch. Neurol., 2011, 68(2), 165-171.
[http://dx.doi.org/10.1001/archneurol.2010.260] [PMID: 20937936]
[30]
deSouza, R.M.; Moro, E.; Lang, A.E.; Schapira, A.H.V. Timing of deep brain stimulation in Parkinson disease: A need for reappraisal? Ann. Neurol., 2013, 73(5), 565-575.
[http://dx.doi.org/10.1002/ana.23890] [PMID: 23483564]
[31]
Deuschl, G.; Paschen, S.; Witt, K. Clinical outcome of deep brain stimulation for Parkinson’s disease. Handb. Clin. Neurol., 2013, 116(part II), 107-128.
[http://dx.doi.org/10.1016/B978-0-444-53497-2.00010-3] [PMID: 24112889]
[32]
Tyulmankov, D.; Tass, P.A.; Bokil, H. Periodic flashing coordinated reset stimulation paradigm reduces sensitivity to ON and OFF period durations. PLoS One, 2018, 13(9), e0203782.
[http://dx.doi.org/10.1371/journal.pone.0203782] [PMID: 30192855]
[33]
Lenz, F.A. Ablative surgery for the treatment of Parkinson’s disease. Handbook of Clinical Neurology; Elsevier, 2007, pp. 243-260.
[34]
Lang, A.E.; Obeso, J.A. Challenges in Parkinson’s disease: Restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol., 2004, 3(5), 309-316.
[http://dx.doi.org/10.1016/S1474-4422(04)00740-9] [PMID: 15099546]
[35]
Rivetti di Val Cervo, P.; Romanov, R.A.; Spigolon, G.; Masini, D.; Martín-Montañez, E.; Toledo, E.M. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol., 2017, 35(5), 444-452.
[http://dx.doi.org/10.1038/nbt.3835]
[36]
Goodarzi, P.; Aghayan, H.R.; Larijani, B.; Soleimani, M.; Dehpour, A.R.; Sahebjam, M.; Ghaderi, F.; Arjmand, B. Stem cell-based approach for the treatment of Parkinson’s disease. Med. J. Islam. Repub. Iran, 2015, 29, 168.
[PMID: 26000262]
[37]
Kuhn, W; Müller, T. Medications for treating Parkinson’s disease. 8.
[38]
Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Park. Dis., 2016, 2(1), 1-12.
[39]
Daniele, A.; Panza, F.; Greco, A.; Logroscino, G.; Seripa, D. Can a positive allosteric modulation of GABAergic receptors improve motor symptoms in patients with Parkinson’s disease? The potential role of zolpidem in the treatment of Parkinson’s disease. Parkinsons Dis., 2016, 2016.
[http://dx.doi.org/10.1155/2016/2531812]
[40]
Lee, D.; Dallapiazza, R.; De Vloo, P.; Lozano, A. Current surgical treatments for Parkinson’s disease and potential therapeutic targets. Neural Regen. Res., 2018, 13(8), 1342-1345.
[http://dx.doi.org/10.4103/1673-5374.235220] [PMID: 30106037]
[41]
Md, S.; Bhattmisra, S.K.; Zeeshan, F.; Shahzad, N.; Mujtaba, M.A.; Srikanth Meka, V.; Radhakrishnan, A.; Kesharwani, P.; Baboota, S.; Ali, J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol., 2018, 43, 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[42]
Hussein, N.R.; Omer, H.K.; Elhissi, A.M.A.; Ahmed, W. Advances in nasal drug delivery systems. In: Advances in Medical and Surgical Engineering; Elsevier Inc., 2020, pp. 279-311.
[http://dx.doi.org/10.1016/B978-0-12-819712-7.00015-2]
[43]
Hirlekar, R.S.; Momin, A.M. Advances in drug delivery from nose to brain: An overview. Curr. Drug Ther., 2018, 13(1), 4-24.
[http://dx.doi.org/10.2174/1574885512666170921145204]
[44]
Selvaraj, K.; Gowthamarajan, K.; Karri, V.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2088-2095.
[PMID: 29282995]
[45]
Semwal, R.; Upadhyaya, K.; Semwal, R.B.; Semwal, D.K. Acceptability of nose-to-brain drug targeting in context to its advances and challenges. Drug Deliv. Lett., 2017, 8(1), 20-28.
[46]
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm., 2018, 128, 337-362.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[47]
Alexander, A.; Agrawal, M.; Bhupal Chougule, M.; Saraf, S.; Saraf, S. Nose-to-brain drug delivery: An alternative approach for effective brain drug targeting. an alternative approach for effective brain drug targeting. In: Nanopharmaceuticals: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems; Elsevier Inc. 2020, pp. 175-200.
[48]
Ross, T.M.; Martinez, P.M.; Renner, J.C.; Thorne, R.G.; Hanson, L.R.; Frey, W.H., II Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: A non-invasive treatment strategy for multiple sclerosis. J. Neuroimmunol., 2004, 151(1-2), 66-77.
[http://dx.doi.org/10.1016/j.jneuroim.2004.02.011] [PMID: 15145605]
[49]
Thorne, R.G.; Pronk, G.J.; Padmanabhan, V.; Frey, W.H., II Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 2004, 127(2), 481-496.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.029] [PMID: 15262337]
[50]
Ghadiri, M.; Young, P.; Traini, D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics, 2019, 11(3), 113.
[http://dx.doi.org/10.3390/pharmaceutics11030113] [PMID: 30861990]
[51]
Keller, L-A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 2021, 2021, 1-23.
[PMID: 33491126]
[52]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[53]
Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999.
[http://dx.doi.org/10.1084/jem.20142290] [PMID: 26077718]
[54]
Inoue, D.; Furubayashi, T.; Tanaka, A.; Sakane, T.; Sugano, K. Effect of cerebrospinal fluid circulation on nose-to-brain direct delivery and distribution of caffeine in rats. Mol. Pharm., 2020, 17(11), 4067-4076.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00495] [PMID: 32955898]
[55]
Lilius, T.O.; Blomqvist, K.; Hauglund, N.L.; Liu, G.; Stæger, F.F.; Bærentzen, S.; Du, T.; Ahlström, F.; Backman, J.T.; Kalso, E.A.; Rauhala, P.V.; Nedergaard, M. Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J. Control. Release, 2019, 304, 29-38.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.005] [PMID: 31067483]
[56]
Marttin, E.; Schipper, N.G.M.; Verhoef, J.C.; Merkus, F.W.H.M. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev., 1998, 29(1-2), 13-38.
[http://dx.doi.org/10.1016/S0169-409X(97)00059-8] [PMID: 10837578]
[57]
Anand, U.; Feridooni, T.; Agu, R.U. Novel mucoadhesive polymers for nasal drug delivery; Recent Adv. Novel Drug Carrier Syst, 2012, pp. 315-330.
[http://dx.doi.org/10.5772/52560]
[58]
Pathak, R.; Prasad Dash, R.; Misra, M.; Nivsarkar, M. Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharm. Sin. B, 2014, 4(2), 151-160.
[http://dx.doi.org/10.1016/j.apsb.2014.02.002] [PMID: 26579378]
[59]
Chari, S.; Sridhar, K.; Walenga, R.; Kleinstreuer, C. Computational analysis of a 3D mucociliary clearance model predicting nasal drug uptake. J. Aerosol Sci., 2021, 155, 105757.
[http://dx.doi.org/10.1016/j.jaerosci.2021.105757]
[60]
van Rumund, A.; Pavelka, L.; Esselink, R.A.J.; Geurtz, B.P.M.; Wevers, R.A.; Mollenhauer, B. Peripheral decarboxylase inhibitors paradoxically induce aromatic L-amino acid decarboxylase. NPJ Park Dis, 2021, 7(1), 1-5.
[61]
Cacciatore, I.; Ciulla, M.; Marinelli, L.; Eusepi, P.; Di Stefano, A. Advances in prodrug design for Parkinson’s disease. Expert Opin. Drug Discov., 2018, 13(4), 295-305.
[http://dx.doi.org/10.1080/17460441.2018.1429400] [PMID: 29361853]
[62]
Bors, L.A.; Bajza, Á.; Mándoki, M.; Tasi, B.J.; Cserey, G.; Imre, T.; Szabó, P.; Erdő, F. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Res. Bull., 2020, 160, 65-73.
[http://dx.doi.org/10.1016/j.brainresbull.2020.04.012] [PMID: 32344126]
[63]
Dolberg, A.M.; Reichl, S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int. J. Pharm., 2016, 508(1-2), 22-33.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.010] [PMID: 27155589]
[64]
Di Gioia, S.; Trapani, A.; Mandracchia, D.; De Giglio, E.; Cometa, S.; Mangini, V.; Arnesano, F.; Belgiovine, G.; Castellani, S.; Pace, L.; Lavecchia, M.A.; Trapani, G.; Conese, M.; Puglisi, G.; Cassano, T. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur. J. Pharm. Biopharm., 2015, 94(1), 180-193.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.019] [PMID: 26032293]
[65]
Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan nanoparticles: A promising system in novel drug delivery. Chem. Pharm. Bull. (Tokyo), 2010, 58(11), 1423-1430.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[66]
Henriksen, I.; Green, K.L.; Smart, J.D.; Smistad, G.; Karlsen, J. Bioadhesion of hydrated chitosans: An in vitro and in vivo study. Int. J. Pharm., 1996, 145(1-2), 231-240.
[http://dx.doi.org/10.1016/S0378-5173(96)04776-X]
[67]
Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal delivery of high molecular weight drugs. Molecules, 2009, 14(9), 3754-3779.
[http://dx.doi.org/10.3390/molecules14093754] [PMID: 19783956]
[68]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[69]
Nguyen, T.T.; Dung Nguyen, T.T.; Vo, T.K.; Tran, N.M.A.; Nguyen, M.K.; Van Vo, T.; Van Vo, G. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother., 2021, 143, 112117.
[http://dx.doi.org/10.1016/j.biopha.2021.112117] [PMID: 34479020]
[70]
Mustafa, G.; Baboota, S.; Ahuja, A.; Ali, J. Formulation development of chitosan coated intra nasal ropinirole nanoemulsion for better management option of parkinson: An in vitro ex vivo evaluation. Curr. Nanosci., 2012, 8(3), 348-360.
[http://dx.doi.org/10.2174/157341312800620331]
[71]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[72]
Sridhar, V. Gaud, R.; Bajaj, A.; Wairkar, S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine (Lond.), 2018, 14(8), 2609-2618.
[73]
Ahmad, N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of parkinson’s disease., 2017, 40(13), 677-690.
[http://dx.doi.org/10.1080/10826076.2017.1343735]
[74]
Choudhury, H.; Zakaria, N.F.B.; Tilang, P.A.B.; Tzeyung, A.S.; Pandey, M.; Chatterjee, B.; Alhakamy, N.A.; Bhattamishra, S.K.; Kesharwani, P.; Gorain, B.; Md, S. Formulation development and evaluation of rotigotine mucoadhesive nanoemulsion for intranasal delivery. J. Drug Deliv. Sci. Technol., 2019, 54, 101301.
[http://dx.doi.org/10.1016/j.jddst.2019.101301]
[75]
Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int., 2019, 2019, 2382563.
[76]
Pangeni, R. Sharma, S.; Mustafa, G.; Ali, J.; Baboota, S.Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology, 2014, 25(48), 485102.
[77]
Hernando, S.; Herran, E.; Figueiro-Silva, J.; Pedraz, J.L.; Igartua, M.; Carro, E.; Hernandez, R.M. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol. Neurobiol., 2018, 55(1), 145-155.
[http://dx.doi.org/10.1007/s12035-017-0728-7] [PMID: 28866799]
[78]
Mandal, S.; Das Mandal, S.; Chuttani, K.; Sawant, K.K.; Subudhi, B.B. Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced Parkinson model. J. Pharm. Investig., 2015, 46(1), 41-53.
[79]
Kumar, S.; Dang, S.; Nigam, K.; Ali, J.; Baboota, S. Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuvenation Res., 2018, 21(5), 464-476.
[http://dx.doi.org/10.1089/rej.2017.2035] [PMID: 29717617]
[80]
Jafarieh, O.; Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Kumari, B.; Bhatnagar, A.; Ali, J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm., 2015, 41(10), 1674-1681.
[http://dx.doi.org/10.3109/03639045.2014.991400] [PMID: 25496439]
[81]
Wang, F.; Yang, Z.; Liu, M.; Tao, Y.; Li, Z.; Wu, Z.; Gui, S. Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: In vitro characterization and in vivo behavior study. Int. J. Pharm., 2020, 577, 119046.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119046] [PMID: 31982559]
[82]
Ahmad, E.; Lv, Y.; Zhu, Q.; Qi, J.; Dong, X.; Zhao, W.; Chen, Z.; Wu, W.; Lu, Y. TAT modification facilitates nose-to-brain transport of intact mPEG-PDLLA micelles: Evidence from aggregation-caused quenching probes. Appl. Mater. Today, 2020, 19, 100556.
[http://dx.doi.org/10.1016/j.apmt.2020.100556]
[83]
Migliore, M.M.; Ortiz, R.; Dye, S.; Campbell, R.B.; Amiji, M.M.; Waszczak, B.L. Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease. Neuroscience, 2014, 274, 11-23.
[http://dx.doi.org/10.1016/j.neuroscience.2014.05.019] [PMID: 24845869]
[84]
Pardeshi, C.V.; Rajput, P.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv., 2013, 20(1), 47-56.
[http://dx.doi.org/10.3109/10717544.2012.752421] [PMID: 23311653]
[85]
Kumar, M.; Pandey, R.S.; Patra, K.C.; Jain, S.K.; Soni, M.L.; Dangi, J.S.; Madan, J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol., 2013, 61, 189-195.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.041] [PMID: 23831532]
[86]
Tan, J.P.K.; Voo, Z.X.; Lim, S.; Venkataraman, S.; Ng, K.M.; Gao, S.; Hedrick, J.L.; Yang, Y.Y. Effective encapsulation of apomorphine into biodegradable polymeric nanoparticles through a reversible chemical bond for delivery across the blood-brain barrier. Nanomedicine, 2019, 17, 236-245.
[http://dx.doi.org/10.1016/j.nano.2019.01.014] [PMID: 30738234]
[87]
Liao, W.; Liu, Z.; Zhang, T.; Sun, S. ye, J.; Li, Z.; Mao, L.; Ren, J. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a nano-emulsion preparation. J. Agric. Food Chem., 2018, 66(1), 91-98.
[http://dx.doi.org/10.1021/acs.jafc.7b03953] [PMID: 29236498]
[88]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10(3-4), 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[89]
Ashhar, M.U.; Kumar, S.; Ali, J.; Baboota, S. CCRD based development of bromocriptine and glutathione nanoemulsion tailored ultrasonically for the combined anti-parkinson effect. Chem. Phys. Lipids, 2021, 235, 105035.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105035] [PMID: 33400967]
[90]
Nehal, N.; Nabi, B.; Rehman, S.; Pathak, A.; Iqubal, A.; Khan, S.A.; Yar, M.S.; Parvez, S.; Baboota, S.; Ali, J. Chitosan coated synergistically engineered nanoemulsion of Ropinirole and nigella oil in the management of Parkinson’s disease: Formulation perspective and in vitro and in vivo assessment. Int. J. Biol. Macromol., 2021, 167, 605-619.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.207] [PMID: 33278450]
[91]
Hernando, S.; Gartziandia, O.; Herran, E.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M. Advances in nanomedicine for the treatment of Alzheimer’s and Parkinson’s diseases. Nanomedicine (Lond.), 2016, 11(10), 1267-1285.
[http://dx.doi.org/10.2217/nnm-2016-0019] [PMID: 27077453]
[92]
Sun, Y.; Li, L.; Xie, H.; Wang, Y.; Gao, S.; Zhang, L.; Bo, F.; Yang, S.; Feng, A. Primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonol-solid lipid nanoparticles for intranasal drug delivery. Int. J. Nanomedicine, 2020, 15, 3137-3160.
[http://dx.doi.org/10.2147/IJN.S247935] [PMID: 32440115]
[93]
Scherließ, R. Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther. Deliv., 2020, 11(3), 183-191.
[http://dx.doi.org/10.4155/tde-2019-0086] [PMID: 32046624]
[94]
Shah, B.M.; Misra, M.; Shishoo, C.J.; Padh, H. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization. Drug Deliv., 2015, 22(7), 918-930.
[http://dx.doi.org/10.3109/10717544.2013.878857] [PMID: 24467601]
[95]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem., 2018, 6, 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[96]
Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for cns disorders. Pharmaceutics, 2020, 12(12), 1230.
[http://dx.doi.org/10.3390/pharmaceutics12121230] [PMID: 33352959]
[97]
Choi, J-Y.; Park, C.H.; Lee, J. Effect of polymer molecular weight on nanocomminution of poorly soluble drug. Drug Deliv., 2008, 15(5), 347-353.
[http://dx.doi.org/10.1080/10717540802039113]
[98]
Agrahari, V.; Burnouf, P-A.; Burnouf, T.; Agrahari, V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev., 2019, 148, 146-180.
[99]
Dey, S.; Mahanti, B.; Mazumder, B.; Malgope, A.; Sandeepan, A. Nasal drug delivery: An approach of drug delivery through nasal route. Der Chem Sin., 2011, 2(3), 94-106.
[100]
Donovan, M.D.; Huang, Y. Large molecule and particulate uptake in the nasal cavity: The effect of size on nasal absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 147-155.
[http://dx.doi.org/10.1016/S0169-409X(97)00066-5] [PMID: 10837585]
[101]
Farzal, Z.; Basu, S.; Burke, A.; Fasanmade, O.O.; Lopez, E.M.; Bennett, W.D.; Ebert, C.S., Jr; Zanation, A.M.; Senior, B.A.; Kimbell, J.S. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients. Int. Forum Allergy Rhinol., 2019, 9(7), 746-758.
[http://dx.doi.org/10.1002/alr.22324] [PMID: 30821929]
[102]
Kaur, P.; Garg, T.; Rath, G.; Goyal, A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1167-1176.
[PMID: 25749276]
[103]
Chand, P. Pratibha; Gnanarajan, G.; Kothiyal, P. In situ gel: A review. Indian J. Pharm. Biol. Res., 2016, 4(2), 11-19. [IJPBR
[http://dx.doi.org/10.30750/ijpbr.4.2.2]
[104]
Prasad, K.M.; Ravindranath, B.S.; Sheetal, B.G. Nasal insitu gel: A novel approach for nasal drug delivery system. World J. Pharm. Res., 2015, 4(2), 686-708.
[105]
Mujawar, N.; Ghatage, S.; Navale, S.; Sankpal, B.; Patil, S.; Patil, S. Nasal drug delivery: Problem solution and its application. J. Curr. Pharma Res., 2014, 4(3), 1231-1245.
[http://dx.doi.org/10.33786/JCPR.2014.v04i03.008]
[106]
Pendolino, A.L.; Lund, V.J.; Nardello, E.; Ottaviano, G. The nasal cycle: A comprehensive review. Rhinol. Online, 2018, 1(1), 67-76.
[http://dx.doi.org/10.4193/RHINOL/18.021]
[107]
Schipper, N.G.M.; Verhoef, J.C.; Merkus, F.W.H.M. The nasal mucociliary clearance: Relevance to nasal drug delivery. Pharm. Res., 1991, 8(7), 807-814.
[http://dx.doi.org/10.1023/A:1015830907632] [PMID: 1924131]
[108]
Trenkel, M.; Scherließ, R. Nasal powder formulations: In-vitro characterisation of the impact of powders on nasal residence time and sensory effects. Pharm, 2021, 13(3), 385.
[109]
Sharma, S.; Lohan, S.; Murthy, R.S.R. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev. Ind. Pharm., 2014, 40(7), 869-878.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[110]
Inoue, D.; Furubayashi, T.; Tanaka, A.; Sakane, T.; Sugano, K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur. J. Pharm. Biopharm., 2020, 149, 145-153.
[http://dx.doi.org/10.1016/j.ejpb.2020.02.004] [PMID: 32057906]
[111]
Kürti, L.; Veszelka, S.; Bocsik, A.; Ózsvári, B.; Puskás, L.G.; Kittel, Á.; Szabó-Révész, P.; Deli, M.A. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology, 2013, 65(3), 395-406.
[http://dx.doi.org/10.1007/s10616-012-9493-7] [PMID: 22940916]
[112]
Zada, M.H.; Kubek, M.; Khan, W.; Kumar, A.; Domb, A. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). J. Control. Release, 2019, 295, 278-289.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.050] [PMID: 30610951]
[113]
Mistry, A.; Stolnik, S.; Illum, L. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm., 2015, 12(8), 2755-2766.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00088] [PMID: 25997083]
[114]
Ladel, S.; Schlossbauer, P.; Flamm, J.; Luksch, H.; Mizaikoff, B.; Schindowski, K. Improved in vitro model for intranasal mucosal drug delivery: Primary olfactory and respiratory epithelial cells compared with the permanent nasal cell line RPMI 2650. Pharm, 2019, 11(8), 367.
[115]
Na, K.; Lee, M.; Shin, H.W.; Chung, S. In vitro nasal mucosa gland-like structure formation on a chip. Lab Chip, 2017, 17(9), 1578-1584.
[http://dx.doi.org/10.1039/C6LC01564F] [PMID: 28379223]
[116]
Nižić Nodilo, L.; Ugrina, I.; Špoljarić, D.; Amidžić Klarić, D.; Jakobušić Brala, C.; Perkušić, M.; Pepić, I.; Lovrić, J.; Saršon, V.; Safundžić Kučuk, M.; Zadravec, D.; Kalogjera, L.; Hafner, A. A dry powder platform for nose-to-brain delivery of dexamethasone: Formulation development and nasal deposition studies. Pharmaceutics, 2021, 13(6), 795.
[http://dx.doi.org/10.3390/pharmaceutics13060795] [PMID: 34073500]
[117]
Trenfield, SJ; Awad, A; Madla, CM; Hatton, GB; Firth, J; Goyanes, A Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. 2019, 16(10), 1081-1094.
[118]
Lungare, S.; Bowen, J.; Badhan, R. Development and evaluation of a novel intranasal spray for the delivery of amantadine. J. Pharm. Sci., 2016, 105(3), 1209-1220.
[http://dx.doi.org/10.1016/j.xphs.2015.12.016] [PMID: 26886345]
[119]
Ahmad, J.; Haider, N.; Khan, M.A.; Md, S.; Alhakamy, N.A.; Ghoneim, M.M.; Alshehri, S.; Sarim Imam, S.; Ahmad, M.Z.; Mishra, A. Novel therapeutic interventions for combating Parkinson’s disease and prospects of Nose-to-Brain drug delivery. Biochem. Pharmacol., 2022, 195, 114849.
[http://dx.doi.org/10.1016/j.bcp.2021.114849] [PMID: 34808125]
[120]
Khan, S.; Patil, K.; Bobade, N.; Yeole, P.; Gaikwad, R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J. Drug Target., 2010, 18(3), 223-234.
[http://dx.doi.org/10.3109/10611860903386938] [PMID: 20030503]
[121]
Rao, M.; Agrawal, D.K.; Shirsath, C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm., 2017, 43(1), 142-150.
[http://dx.doi.org/10.1080/03639045.2016.1225754] [PMID: 27533244]
[122]
Ravi, P.R.; Aditya, N.; Patil, S.; Cherian, L. Nasal in-situ gels for delivery of rasagiline mesylate: Improvement in bioavailability and brain localization. Drug Deliv., 2015, 22(7), 903-910.
[http://dx.doi.org/10.3109/10717544.2013.860501] [PMID: 24286183]
[123]
Djupesland, P.G.; Messina, J.C.; Mahmoud, R.A. Role of nasal casts for in vitro evaluation of nasal drug delivery and quantitative evaluation of various nasal casts.In: Therapeutic Delivery; Newlands Press Ltd London: UK, 2020, pp. 485-495.
[http://dx.doi.org/10.4155/tde-2020-0054]
[124]
Samoliński, B.K.; Grzanka, A.; Gotlib, T. Changes in nasal cavity dimensions in children and adults by gender and age. Laryngoscope, 2007, 117(8), 1429-1433.
[http://dx.doi.org/10.1097/MLG.0b013e318064e837] [PMID: 17607151]
[125]
Warnken, Z.N.; Smyth, H.D.C.; Davis, D.A.; Weitman, S.; Kuhn, J.G.; Williams, R.O., III; Williams, I. Personalized medicine in nasal delivery: The use of patient-specific administration parameters to improve nasal drug targeting using 3D-printed nasal replica casts. Mol. Pharm., 2018, 15(4), 1392-1402.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00702] [PMID: 29485888]
[126]
Kundoor, V.; Dalby, R.N. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method. Pharm. Res., 2009, 27(1), 30-36.
[127]
Kiaee, M.; Wachtel, H.; Noga, M.L.; Martin, A.R.; Finlay, W.H. An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Comput. Biol. Med., 2019, 107, 206-217.
[http://dx.doi.org/10.1016/j.compbiomed.2019.02.013] [PMID: 30851506]
[128]
Vachhani, S.; Kleinstreuer, C. Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region. Comput. Biol. Med., 2021, 128, 104103.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104103] [PMID: 33220592]
[129]
Shah, V.; Sharma, M.; Pandya, R.; Parikh, R.K.; Bharatiya, B.; Shukla, A.; Tsai, H.C. Quality by design approach for an in situ gelling microemulsion of Lorazepam via intranasal route. Mater. Sci. Eng. C, 2017, 75, 1231-1241.
[http://dx.doi.org/10.1016/j.msec.2017.03.002] [PMID: 28415411]
[130]
Ladel, S.; Flamm, J.; Zadeh, A.S.; Filzwieser, D.; Walter, J-C. Schlossbauer, P Allogenic Fc domain-facilitated uptake of IgG in nasal lamina propria: Friend or foe for intranasal CNS delivery? Pharm, 2018, 10(3), 107.
[131]
Khafaji, A.S. Al; Donovan, MD Endocytic uptake of solid lipid nanoparticles by the nasal mucosa. Pharm, 2021, 13(5), 761.
[http://dx.doi.org/10.3390/pharmaceutics13050761]
[132]
Kanazawa, T.; Fukuda, M.; Suzuki, N.; Suzuki, T. Novel methods for intranasal administration under inhalation anesthesia to evaluate nose-to-brain drug delivery. J. Vis. Exp., 2018, 2018(141), p.e58485.
[133]
Tolosa, E.; Martí, M.J.; Valldeoriola, F.; Molinuevo, J.L. History of levodopa and dopamine agonists in Parkinson’s disease treatment. Neurology, 1998, 50(Suppl. 6), S2-S10.
[http://dx.doi.org/10.1212/WNL.50.6_Suppl_6.S2] [PMID: 9633679]
[134]
Kao, H.D.; Traboulsi, A.; Itoh, S.; Dittert, L.; Hussain, A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm. Res., 2000, 17(8), 978-984.
[http://dx.doi.org/10.1023/A:1007583422634] [PMID: 11028945]
[135]
Samaridou, E.; Walgrave, H.; Salta, E.; Álvarez, D.M.; Castro-López, V.; Loza, M.; Alonso, M.J. Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials, 2020, 230, 119657.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119657] [PMID: 31837821]
[136]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.G.M.; Murty, U.S. Ajazuddin; Alexander, A. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J. Control. Release, 2020, 327, 235-265.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.044] [PMID: 32739524]
[137]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[138]
Sosnik, A.; Seremeta, K. Polymeric hydrogels as technology platform for drug delivery applications. Gels, 2017, 3(3), 25.
[http://dx.doi.org/10.3390/gels3030025] [PMID: 30920522]
[139]
Aderibigbe, B.A. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics, 2018, 10(2), 40.
[http://dx.doi.org/10.3390/pharmaceutics10020040]
[140]
Overcoming Parkinson’s disease: Direct nose-to-brain delivery of amantadine. Open Research Online, Available from: http://oro.open.ac.uk/43400/ [Accessed on: 2022 Jun, 24
[141]
Hoban, D.B.; Newland, B.; Moloney, T.C.; Howard, L.; Pandit, A.; Dowd, E. The reduction in immunogenicity of neurotrophin overexpressing stem cells after intra-striatal transplantation by encapsulation in an in situ gelling collagen hydrogel. Biomaterials, 2013, 34(37), 9420-9429.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.073] [PMID: 24054846]
[142]
Khafagy, E.S.; Kamei, N.; Fujiwara, Y.; Okumura, H.; Yuasa, T.; Kato, M.; Arime, K.; Nonomura, A.; Ogino, H.; Hirano, S.; Sugano, S.; Takeda-Morishita, M. Systemic and brain delivery of leptin via intranasal coadministration with cell-penetrating peptides and its therapeutic potential for obesity. J. Control. Release, 2020, 319, 397-406.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.016] [PMID: 31926192]
[143]
Aly, A.E-E.; Waszczak, B.L. Intranasal gene delivery for treating Parkinsons disease: Overcoming the blood-brain barrier. Exp. Opin. Drug Deliv. Informa Healthcare, 2015, 12, 1923-1941.
[144]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H., II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[145]
Malerba, F.; Paoletti, F.; Capsoni, S.; Cattaneo, A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin. Drug Deliv., 2011, 8(10), 1277-1296.
[http://dx.doi.org/10.1517/17425247.2011.588204] [PMID: 21619468]
[146]
Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 614-628.
[http://dx.doi.org/10.1016/j.addr.2011.11.002] [PMID: 22119441]
[147]
Lu, C.T.; Jin, R.R.; Jiang, Y.N.; Lin, Q.; Yu, W.Z.; Mao, K.L.; Tian, F.R.; Zhao, Y.P.; Zhao, Y.Z. Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: An in vitro and in vivo study. Drug Des. Devel. Ther., 2015, 9, 1955-1962.
[PMID: 25897205]
[148]
Samaridou, E.; Alonso, M.J.; María, J.A.; Epithelium, O. Nose-to-brain peptide delivery-the potential of nanotechnology. Bioorg. Med. Chem., 2018, 26(10), 2888-2905.
[149]
Decressac, M.; Pain, S.; Chabeauti, P.Y.; Frangeul, L.; Thiriet, N.; Herzog, H.; Vergote, J.; Chalon, S.; Jaber, M.; Gaillard, A. Neuroprotection by neuropeptide Y in cell and animal models of Parkinson’s disease. Neurobiol. Aging, 2012, 33(9), 2125-2137.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.018] [PMID: 21816512]
[150]
Duarte-Neves, J.; Cavadas, C.; Pereira de Almeida, L.; Neuropeptide, Y. NPY) intranasal delivery alleviates Machado-Joseph disease. Sci. Reports, 2021, 11(1), 1-9.
[151]
Intranasal administration of neuropeptide Y in healthy male volunteers - full text view. ClinicalTrials.gov
[152]
Mathé, A.A.; Michaneck, M.; Berg, E.; Charney, D.S.; Murrough, J.W. A randomized controlled trial of intranasal neuropeptide Y in patients with major depressive disorder. Int. J. Neuropsychopharmacol., 2020, 23(12), 783-790.
[http://dx.doi.org/10.1093/ijnp/pyaa054] [PMID: 33009815]
[153]
Noè, F.; Pool, A.H.; Nissinen, J.; Gobbi, M.; Bland, R.; Rizzi, M.; Balducci, C.; Ferraguti, F.; Sperk, G.; During, M.J.; Pitkänen, A.; Vezzani, A. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain, 2008, 131(6), 1506-1515.
[http://dx.doi.org/10.1093/brain/awn079] [PMID: 18477594]
[154]
Fiebich, B.L.; Schleicher, S.; Butcher, R.D.; Craig, A.; Lieb, K. The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-κ. B. J. Immunol., 2000, 165(10), 5606-5611.
[http://dx.doi.org/10.4049/jimmunol.165.10.5606] [PMID: 11067916]
[155]
Zhao, Y.Z.; Jin, R.R.; Yang, W.; Xiang, Q.; Yu, W.Z.; Lin, Q.; Tian, F.R.; Mao, K.L.; Lv, C.Z.; Wáng, Y.X.J.; Lu, C.T. Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PLoS One, 2016, 11(2), e0148848.
[http://dx.doi.org/10.1371/journal.pone.0148848] [PMID: 26894626]
[156]
Rizk, S.S.; Misiura, A.; Paduch, M.; Kossiakoff, A.A. Substance P derivatives as versatile tools for specific delivery of various types of biomolecular cargo. Bioconjug. Chem., 2012, 23(1), 42-46.
[http://dx.doi.org/10.1021/bc200496e] [PMID: 22175275]
[157]
Ding, G.; Wang, T.; Han, Z.; Tian, L.; Cheng, Q.; Luo, L.; Zhao, B.; Wang, C.; Feng, S.; Wang, L.; Meng, Z.; Meng, Q. Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(32), 6347-6356.
[http://dx.doi.org/10.1039/D1TB00577D] [PMID: 34251002]
[158]
Bender, T.S.; Migliore, M.M.; Campbell, R.B.; John Gatley, S.; Waszczak, B.L. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience, 2015, 303, 569-576.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.016] [PMID: 26166725]
[159]
Kordower, J.H.; Bjorklund, A. Trophic factor gene therapy for Parkinson’s disease. Mov. Disord., 2013, 28(1), 96-109.
[http://dx.doi.org/10.1002/mds.25344] [PMID: 23390096]
[160]
Murlidharan, G.; Samulski, R.J.; Asokan, A. Biology of adeno-associated viral vectors in the central nervous system. Front. Mol. Neurosci., 2014, 7, 76.
[http://dx.doi.org/10.3389/fnmol.2014.00076] [PMID: 25285067]
[161]
Tenenbaum, L.; Chtarto, A.; Lehtonen, E.; Velu, T.; Brotchi, J.; Levivier, M. Recombinant AAV-mediated gene delivery to the central nervous system. J. Gene Med., 2004, 6(Suppl. 1), S212-S222.
[162]
McCully, J.D.; Cowan, D.B.; Emani, S.M.; del Nido, P.J. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion, 2017, 34, 127-134.
[http://dx.doi.org/10.1016/j.mito.2017.03.004] [PMID: 28342934]
[163]
Chang, J-C.; Chao, Y-C.; Chang, H-S.; Wu, Y-L.; Chang, H-J. Lin, Y-S Intranasal delivery of mitochondria for treatment of Parkinson’s Disease model rats lesioned with 6-hydroxydopamine. Sci. Reports, 2021, 11(1), 1-14.
[164]
Alexander, J.F.; Seua, A.V.; Arroyo, L.D.; Ray, P.R.; Wangzhou, A.; Heiβ-Lückemann, L.; Schedlowski, M.; Price, T.J.; Kavelaars, A.; Heijnen, C.J. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics, 2021, 11(7), 3109-3130.
[http://dx.doi.org/10.7150/thno.53474] [PMID: 33537077]
[165]
Chen, H.; Yang, G.Z.X.; Getachew, H.; Acosta, C.; Sierra Sánchez, C.; Konofagou, E.E. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci. Rep., 2016, 6(1), 28599.
[http://dx.doi.org/10.1038/srep28599] [PMID: 27345430]
[166]
Ji, R.; Smith, M.; Niimi, Y.; Karakatsani, M.E.; Murillo, M.F.; Jackson-Lewis, V.; Przedborski, S.; Konofagou, E.E. Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson’s disease mouse model. Sci. Rep., 2019, 9(1), 19402.
[http://dx.doi.org/10.1038/s41598-019-55294-5] [PMID: 31852909]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy