Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Regenerative Therapy Approaches and Encountered Problems in Sensorineural Hearing Loss

Author(s): Kübra Kelleci* and Eda Golebetmaz

Volume 18, Issue 2, 2023

Published on: 11 August, 2022

Page: [186 - 201] Pages: 16

DOI: 10.2174/1574888X17666220429121714

Price: $65

Abstract

Hearing loss is one of the most important public health matters worldwide, severely affecting people's social, psychological, and cognitive development.

The perception of sound, movement, and balance in vertebrates depends on a special sensory organ called the cochlea, which contains hair cells and supporting cells in the inner ear. Genetic factors, epigenetics, the use of ototoxic drugs (some antibiotics and chemotherapeutics), noise, infections, or even aging can cause loss of hair cells and their related primary neurons, leading to sensorineural hearing loss. Although a sensorineural hearing loss, also known as permanent hearing loss, is treated with hearing aids and cochlear implants, treatment methods are limited. Since even the best implant cannot exhibit the characteristics of the original ear, the permanent sensory deficit will be permanent.

For this reason, it has become important to develop regenerative treatment methods to regenerate and replace lost or damaged hair cells and neurons. Developments in stem cell technology have led to promising studies in regenerating damaged/lost hair cells or neurons with endogenous or exogenous cell-based therapies. Epigenetic mechanisms can turn hearing-related genes on and off and determine which proteins to copy. In addition, due to gene silencing, gene replacement, and CRISPR/CAS9 technology, gene therapy methods have accelerated, and studies have been carried out to treat dominant and recessive mutations that cause genetic-induced hearing loss or increase hair cell regeneration.

In this paper, potential gene therapy and stem cell applications in the acquisition of cochlear function, which causes sensorineural hearing loss, and the difficulties encountered in these applications are compiled from a bioengineering perspective.

Keywords: Hair cell, iPSC, regeneration, hearing loss, stem cell transplantation, gene therapy, epigenetic.

Graphical Abstract
[1]
Youm I, Li W. Cochlear hair cell regeneration: An emerging opportunity to cure noise-induced sensorineural hearing loss. Drug Discov Today 2018; 23(8): 1564-9.
[http://dx.doi.org/10.1016/j.drudis.2018.05.001] [PMID: 29733894]
[2]
Zhang W, Kim SM, Wang W, et al. Cochlear gene therapy for sensorineural hearing loss: Current status and major remaining hurdles for translational success. Front Mol Neurosci 2018; 11: 221.
[http://dx.doi.org/10.3389/fnmol.2018.00221] [PMID: 29997477]
[3]
Mittal R, Bencie N, Liu G, et al. Recent advancements in understanding the role of epigenetics in the auditory system. Gene 2020; 761: 144996.
[http://dx.doi.org/10.1016/j.gene.2020.144996] [PMID: 32738421]
[4]
Martini A, Sorrentino F, Sorrentino U, Cassina M. Genetics & Epigenetics of Hereditary Deafness: An Historical Overview. Audiology Res 2021; 11(4): 629-35.
[http://dx.doi.org/10.3390/audiolres11040057] [PMID: 34842610]
[5]
Layman WS, Zuo J. Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration. Front Cell Neurosci 2015; 8: 446.
[http://dx.doi.org/10.3389/fncel.2014.00446] [PMID: 25750614]
[6]
Addressing the Rising Prevalence of Hearing Loss. Geneva, Switzerland: World Health Organization 2018.
[7]
Kujawa SG, Liberman MC. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 2009; 29(45): 14077-85.
[http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009] [PMID: 19906956]
[8]
Palmgren B, Jiao Y, Novozhilova E, Stupp SI, Olivius P. Survival, migration and differentiation of mouse tau-GFP embryonic stem cell. Exp Neurol 2012; 235(2): 599-609.
[9]
Chester J, Johnston E, Walker D, et al. A review on recent advancement on age-related hearing loss: The applications of nanotechnology, drug pharmacology, and biotechnology. Pharmaceutics 2021; 13(7): 1041.
[http://dx.doi.org/10.3390/pharmaceutics13071041] [PMID: 34371732]
[10]
Mittal R, Ocak E, Zhu A, et al. Effect of bone marrow-derived mesenchymal stem cells on cochlear function in an experimental rat model. Anat Rec (Hoboken) 2020; 303(3): 487-93.
[http://dx.doi.org/10.1002/ar.24065] [PMID: 30632683]
[11]
Oluwole OG, James K, Yalcouye A, Wonkam A. Hearing loss and brain disorders: A review of multiple pathologies. Open Med (Wars) 2021; 17(1): 61-9.
[http://dx.doi.org/10.1515/med-2021-0402] [PMID: 34993346]
[12]
Sagers JE, Landegger LD, Worthington S, Nadol JB, Stankovic KM. Human cochlear histopathology reflects clinical signatures of primary neural degeneration. Sci Rep 2017; 7(1): 4884.
[http://dx.doi.org/10.1038/s41598-017-04899-9] [PMID: 28687782]
[13]
Sitek KR, Gulban OF, Calabrese E, et al. Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. eLife 2019; 8: e48932.
[http://dx.doi.org/10.7554/eLife.48932] [PMID: 31368891]
[14]
Anagnostopoulos AV. A compendium of mouse knockouts with inner ear defects. Trends Genet 2002; 18(10): 499.
[http://dx.doi.org/10.1016/S0168-9525(02)02753-1] [PMID: 12350347]
[15]
Parkinson N, Brown SD. Focusing on the genetics of hearing: You ain’t heard nothin’ yet. Genome Biol 3: Comment20061–20066 2002.
[16]
Noben-Trauth K, Johnson KR. Inheritance patterns of progressive hearing loss in laboratory strains of mice. Brain Res 2009; 1277: 42-51.
[http://dx.doi.org/10.1016/j.brainres.2009.02.012] [PMID: 19236853]
[17]
Pennacchio LA. Insights from human/mouse genome comparisons. Mamm Genome 2003; 14(7): 429-36.
[http://dx.doi.org/10.1007/s00335-002-4001-1] [PMID: 12925891]
[18]
Yoshimura H, Shibata SB, Ranum PT, Moteki H, Smith RJH. Targeted allele suppression prevents progressive hearing loss in the mature murine model of human TMC1 deafness. Mol Ther 2019; 27(3): 681-90.
[http://dx.doi.org/10.1016/j.ymthe.2018.12.014] [PMID: 30686588]
[19]
Ohlemiller KK. Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 2006; 1091(1): 89-102.
[http://dx.doi.org/10.1016/j.brainres.2006.03.017] [PMID: 16631134]
[20]
Lumpkin EA, Collisson T, Parab P, et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns 2003; 3(4): 389-95.
[http://dx.doi.org/10.1016/S1567-133X(03)00089-9] [PMID: 12915300]
[21]
Zhong C, Chen Z, Luo X, et al. Barhl1 is required for the differentiation of inner ear hair cell-like cells from mouse embryonic stem cells. Int J Biochem Cell Biol 2018; 96: 79-89.
[http://dx.doi.org/10.1016/j.biocel.2018.01.013] [PMID: 29413750]
[22]
Reis AD, Dalmolin SP, Dallegrave E. Animal models for hearing evaluations: A literature review. Rev CEFAC 2017; 19: 417-28.
[http://dx.doi.org/10.1590/1982-021620171932117]
[23]
Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11(3): 271-6.
[http://dx.doi.org/10.1038/nm1193] [PMID: 15711559]
[24]
DeSmidt AA, Zou B, Grati M, et al. Zebrafish Model for Nonsyndromic X-Linked Sensorineural Deafness, DFNX1. Anat Rec (Hoboken) 2020; 303(3): 544-55.
[http://dx.doi.org/10.1002/ar.24115] [PMID: 30874365]
[25]
Zhang W, Zhang Y, Sood R, et al. Visualization of intracellular trafficking of Math1 protein in different cell types with a newly-constructed nonviral gene delivery plasmid. J Gene Med 2011; 13(2): 134-44.
[http://dx.doi.org/10.1002/jgm.1537] [PMID: 21308898]
[26]
Schlecker C, Praetorius M, Brough DE, et al. Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 2011; 18(9): 884-90.
[http://dx.doi.org/10.1038/gt.2011.33] [PMID: 21472006]
[27]
Qiu Y. Qiu J. Stem Cells: A New Hope for Hearing Loss Therapy. Single Molecule and Single Cell Sequencing. Berlin/Heidelberg, Germany: Springer Science and Business Media LLC 2019; pp. 165-80.
[28]
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200: 190-209.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.003] [PMID: 31075354]
[29]
Roccio M, Edge ASB. Inner ear organoids: New tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146(17): dev177188.
[http://dx.doi.org/10.1242/dev.177188] [PMID: 31477580]
[30]
Czajkowski A, Mounier A, Delacroix L, Malgrange B. Pluripotent stem cell-derived cochlear cells: A challenge in constant progress. Cell Mol Life Sci 2019; 76(4): 627-35.
[http://dx.doi.org/10.1007/s00018-018-2950-5] [PMID: 30341460]
[31]
DeJonge RE, Liu XP, Deig CR, Heller S, Koehler KR, Hashino E. Modulation of Wnt signaling enhances inner ear organoid development in 3D culture. PLoS One 2016; 11(9): e0162508.
[http://dx.doi.org/10.1371/journal.pone.0162508] [PMID: 27607106]
[32]
Romeo S, Wu YH, Levine ZA, Gundersen MA, Vernier PT. Water influx and cell swelling after nanosecond electropermeabilization. Biochim Biophys Acta 2013; 1828(8): 1715-22.
[http://dx.doi.org/10.1016/j.bbamem.2013.03.007] [PMID: 23500618]
[33]
Duan M, Agerman K, Ernfors P, Canlon B. Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity. Proc Natl Acad Sci USA 2000; 97(13): 7597-602.
[http://dx.doi.org/10.1073/pnas.97.13.7597] [PMID: 10861021]
[34]
Carricondo F, Romero-Gómez B. The cochlear spiral ganglion neurons: The auditory portion of the VIII nerve. Anat Rec (Hoboken) 2019; 302(3): 463-71.
[http://dx.doi.org/10.1002/ar.23815] [PMID: 29659185]
[35]
Martins ML, Leite KLF, Pacheco-Filho EF, et al. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization. Arch Oral Biol 2018; 93: 56-65.
[http://dx.doi.org/10.1016/j.archoralbio.2018.05.017] [PMID: 29807235]
[36]
Young E, Westerberg B, Yanai A, Gregory-Evans K. The olfactory mucosa: A potential source of stem cells for hearing regeneration. Regen Med 2018; 13(5): 581-93.
[http://dx.doi.org/10.2217/rme-2018-0009] [PMID: 30113240]
[37]
Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 2011; 278(1-2): 21-33.
[http://dx.doi.org/10.1016/j.heares.2011.03.002] [PMID: 21414397]
[38]
Pirvola U, Ylikoski J. Neurotrophic factors during inner ear development. Curr Top Dev Biol 2003; 57(57): 207-23.
[http://dx.doi.org/10.1016/S0070-2153(03)57007-7] [PMID: 14674482]
[39]
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394: 107955.
[http://dx.doi.org/10.1016/j.heares.2020.107955] [PMID: 32331858]
[40]
Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells. Science 2000; 288(5471): 1660-3.
[http://dx.doi.org/10.1126/science.288.5471.1660] [PMID: 10834848]
[41]
Arnhold S, Lenartz D, Kruttwig K, et al. Differentiation of green fluorescent protein-labeled embryonic stem cell-derived neural precursor cells into Thy-1-positive neurons and glia after transplantation into adult rat striatum. J Neurosurg 2000; 93(6): 1026-32.
[http://dx.doi.org/10.3171/jns.2000.93.6.1026] [PMID: 11117845]
[42]
Boddy SL, Romero-Guevara R, Ji AR, et al. Generation of otic lineages from integration-free human-induced pluripotent stem cells reprogrammed by mrnas. Stem Cells Int 2020; 2020: 3692937.
[http://dx.doi.org/10.1155/2020/3692937] [PMID: 32190057]
[43]
Peeleman N, Verdoodt D, Ponsaerts P, Van Rompaey V. On the role of fibrocytes and the extracellular matrix in the physiology and pathophysiology of the spiral ligament. Front Neurol 2020; 11: 580639.
[http://dx.doi.org/10.3389/fneur.2020.580639] [PMID: 33193034]
[44]
Sun GW, Fujii M, Matsunaga T. Functional interaction between mesenchymal stem cells and spiral ligament fibrocytes. J Neurosci Res 2012; 90(9): 1713-22.
[http://dx.doi.org/10.1002/jnr.23067] [PMID: 22535531]
[45]
Roberson DW, Rubel EW. Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 1994; 15(1): 28-34.
[PMID: 8109626]
[46]
Cox BC, Chai R, Lenoir A, et al. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014; 141(4): 816-29.
[http://dx.doi.org/10.1242/dev.103036] [PMID: 24496619]
[47]
Sobkowicz HM, August BK, Slapnick SM. Post-traumatic survival and recovery of the auditory sensory cells in culture. Acta Otolaryngol 1996; 116(2): 257-62.
[http://dx.doi.org/10.3109/00016489609137836] [PMID: 8725527]
[48]
Menendez L, Trecek T, Gopalakrishnan S, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. elife 2020; 9: e55249.
[49]
Adler HJ, Raphael Y. New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 1996; 205(1): 17-20.
[http://dx.doi.org/10.1016/0304-3940(96)12367-3] [PMID: 8867010]
[50]
Jen HI, Hill MC, Tao L, et al. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019; 8: e44328.
[http://dx.doi.org/10.7554/eLife.44328] [PMID: 31033441]
[51]
Lee S, Song JJ, Beyer LA, et al. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep 2020; 10(1): 21397.
[http://dx.doi.org/10.1038/s41598-020-78167-8] [PMID: 33293609]
[52]
Xu S, Yang N. Research progress on the mechanism of cochlear hair cell regeneration. Front Cell Neurosci 2021; 15: 732507.
[http://dx.doi.org/10.3389/fncel.2021.732507] [PMID: 34489646]
[53]
Zhong C, Fu Y, Pan W, Yu J, Wang J. Atoh1 and other related key regulators in the development of auditory sensory epithelium in the mammalian inner ear: Function and interplay. Dev Biol 2019; 446(2): 133-41.
[http://dx.doi.org/10.1016/j.ydbio.2018.12.025] [PMID: 30605626]
[54]
Wallis D, Hamblen M, Zhou Y, et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival 2003.
[55]
Matern MS, Milon B, Lipford EL, et al. GFI1 functions to repress neuronal gene expression in the developing inner ear hair cells. Development 2020; 147(17): dev186015.
[http://dx.doi.org/10.1242/dev.186015] [PMID: 32917668]
[56]
Lin Z, Perez P, Sun Z, et al. Reprogramming of single-cell derived mesenchymal stem cells into hair cell-like cells. Otology & neurotolo-gy: Official publication of the American Otological Society, American Neurotology Society. Otol Neurotol 2012; 33(9): 1648-55.
[http://dx.doi.org/10.1097/MAO.0b013e3182713680]
[57]
Jeon SJ, Oshima K, Heller S, Edge AS. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci 2007; 34(1): 59-68.
[http://dx.doi.org/10.1016/j.mcn.2006.10.003] [PMID: 17113786]
[58]
Bas E, Van De Water TR, Lumbreras V, et al. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev 2014; 23(5): 502-14.
[http://dx.doi.org/10.1089/scd.2013.0274] [PMID: 24172073]
[59]
Kil K, Choi MY, Kong JS, Kim WJ, Park KH. Regenerative efficacy of mesenchymal stromal cells from human placenta in sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2016; 91: 72-81.
[http://dx.doi.org/10.1016/j.ijporl.2016.10.010] [PMID: 27863646]
[60]
Pandit SR, Sullivan JM, Egger V, Borecki AA, Oleskevich S. Functional effects of adult human olfactory stem cells on early-onset senso-rineural hearing loss. Stem Cells 2011; 29(4): 670-7.
[http://dx.doi.org/10.1002/stem.609] [PMID: 21312317]
[61]
Mahmoudian-Sani MR, Hashemzadeh-Chaleshtori M, Jami MS, Saidijam M. In vitro differentiation of human bone marrow mesenchymal stem cells to hair cells using growth factors. Int Tinnitus J 2017; 21(2): 179-84.
[http://dx.doi.org/10.5935/0946-5448.20170030] [PMID: 29336137]
[62]
Mahmoudian-Sani MR, Jami MS, Mahdavinezhad A, Amini R, Farnoosh G, Saidijam M. The effect of the microrna-183 family on hair cell-specific markers of human bone marrow-derived mesenchymal stem cells. Audiol Neurotol 2018; 23(4): 208-15.
[http://dx.doi.org/10.1159/000493557] [PMID: 30380528]
[63]
Kil K, Choi MY, Park KH. In vitro differentiation of human Wharton’s jelly-derived mesenchymal stem cells into auditory hair cells and neurons. J Int Adv Otol 2016; 12(1): 37-42.
[http://dx.doi.org/10.5152/iao.2016.1190] [PMID: 27340981]
[64]
Boddy SL, Chen W, Romero-Guevara R, Kottam L, Bellantuono I, Rivolta MN. Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells. Regen Med 2012; 7(6): 757-67.
[http://dx.doi.org/10.2217/rme.12.58] [PMID: 23164077]
[65]
Lee JH, Kang WK, Seo JH, et al. Neural differentiation of bone marrow-derived mesenchymal stem cells: Applicability for inner ear therapy. Korean J Audiol 2012; 16(2): 47-53.
[http://dx.doi.org/10.7874/kja.2012.16.2.47] [PMID: 24653871]
[66]
Zhai S, Shi L, Wang BE, et al. Isolation and culture of hair cell progenitors from postnatal rat cochleae. J Neurobiol 2005; 65(3): 282-93.
[http://dx.doi.org/10.1002/neu.20190] [PMID: 16155904]
[67]
Chen J, Hong F, Zhang C, et al. Differentiation and transplantation of human induced pluripotent stem cell-derived otic epithelial progenitors in mouse cochlea. Stem Cell Res Ther 2018; 9(1): 230.
[http://dx.doi.org/10.1186/s13287-018-0967-1] [PMID: 30157937]
[68]
Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced plu-ripotent stem cells. Cell 2010; 141(4): 704-16.
[http://dx.doi.org/10.1016/j.cell.2010.03.035] [PMID: 20478259]
[69]
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007; 40(7): 609-19.
[http://dx.doi.org/10.1038/sj.bmt.1705757] [PMID: 17603514]
[70]
Peng T, Zhu G, Dong Y, et al. BMP4: A possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells. Clin Lab 2015; 61(9): 1171-8.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150217] [PMID: 26634236]
[71]
Durán Alonso MB, Feijoo-Redondo A, Conde de Felipe M, et al. Generation of inner ear sensory cells from bone marrow-derived human mesenchymal stem cells. Regen Med 2012; 7(6): 769-83.
[http://dx.doi.org/10.2217/rme.12.65] [PMID: 23164078]
[72]
Cho YB, Cho HH, Jang S, Jeong HS, Park JS. Transplantation of neural differentiated human mesenchymal stem cells into the cochlea of an auditory-neuropathy guinea pig model. J Korean Med Sci 2011; 26(4): 492-8.
[http://dx.doi.org/10.3346/jkms.2011.26.4.492] [PMID: 21468255]
[73]
Kamogashira T, Fujimoto C, Yamasoba T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BioMed Res Int 2015; 2015: 617207.
[http://dx.doi.org/10.1155/2015/617207] [PMID: 25874222]
[74]
Eshraghi AA, Ocak E, Zhu A, et al. Biocompatibility of bone marrow-derived mesenchymal stem cells in the rat inner ear following trans-tympanic administration. J Clin Med 2020; 9(6): 1711.
[http://dx.doi.org/10.3390/jcm9061711] [PMID: 32498432]
[75]
Niknazar S, Abbaszadeh HA, Peyvandi H, et al. Protective effect of [Pyr1]-apelin-13 on oxidative stress-induced apoptosis in hair cell-like cells derived from bone marrow mesenchymal stem cells. Eur J Pharmacol 2019; 853: 25-32.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.012] [PMID: 30876980]
[76]
Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol 2001; 121(2): 140-2.
[http://dx.doi.org/10.1080/000164801300043226] [PMID: 11349765]
[77]
Hu Z, Wei D, Johansson CB, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res 2005; 302(1): 40-7.
[http://dx.doi.org/10.1016/j.yexcr.2004.08.023] [PMID: 15541724]
[78]
Matsuoka AJ, Kondo T, Miyamoto RT, Hashino E. In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope 2006; 116(8): 1363-7.
[http://dx.doi.org/10.1097/01.mlg.0000225986.18790.75] [PMID: 16885736]
[79]
Coleman B, Hardman J, Coco A, et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant 2006; 15(5): 369-80.
[http://dx.doi.org/10.3727/000000006783981819] [PMID: 16970279]
[80]
Sekiya T, Kojima K, Matsumoto M, Kim TS, Tamura T, Ito J. Cell transplantation to the auditory nerve and cochlear duct. Exp Neurol 2006; 198(1): 12-24.
[http://dx.doi.org/10.1016/j.expneurol.2005.11.006] [PMID: 16376874]
[81]
Parker MA, Corliss DA, Gray B, et al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 2007; 232(1-2): 29-43.
[http://dx.doi.org/10.1016/j.heares.2007.06.007] [PMID: 17659854]
[82]
Hu Z, Ulfendahl M, Olivius NP. Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve. Brain Res 2004; 1026(1): 68-73.
[http://dx.doi.org/10.1016/j.brainres.2004.08.013] [PMID: 15476698]
[83]
Hildebrand MS, Dahl HHM, Hardman J, Coleman B, Shepherd RK, de Silva MG. Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J Assoc Res Otolaryngol 2005; 6(4): 341-54.
[http://dx.doi.org/10.1007/s10162-005-0012-9] [PMID: 16208453]
[84]
Ma Y, Guo W, Yi H, et al. Transplantation of human umbilical cord mesenchymal stem cells in cochlea to repair sensorineural hearing. Am J Transl Res 2016; 8(12): 5235-45.
[PMID: 28077998]
[85]
Regala C, Duan M, Zou J, Salminen M, Olivius P. Xenografted fetal dorsal root ganglion, embryonic stem cell and adult neural stem cell survival following implantation into the adult vestibulocochlear nerve. Exp Neurol 2005; 193(2): 326-33.
[http://dx.doi.org/10.1016/j.expneurol.2004.12.027] [PMID: 15869935]
[86]
Zhou Y, Li C, Li M, et al. Mutation analysis of common deafness genes among 1,201 patients with non-syndromic hearing loss in Shanxi Province. Mol Genet Genomic Med 2019; 7(3): e537.
[http://dx.doi.org/10.1002/mgg3.537] [PMID: 30693673]
[87]
Hilgert N, Smith RJH, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA diagnostics? Mutat Res 2009; 681(2-3): 189-96.
[http://dx.doi.org/10.1016/j.mrrev.2008.08.002] [PMID: 18804553]
[88]
Yoshimura H, Shibata SB, Ranum PT, Smith RJH. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fen-estration with round window membrane inoculation. Sci Rep 2018; 8(1): 2980.
[http://dx.doi.org/10.1038/s41598-018-21233-z] [PMID: 29445157]
[89]
Hastings ML, Jones TA. Antisense oligonucleotides for the treatment of inner ear dysfunction. Neurotherapeutics 2019; 16(2): 348-59.
[http://dx.doi.org/10.1007/s13311-019-00729-0] [PMID: 30972560]
[90]
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836): 494-8.
[91]
Karimian A, Azizian K, Parsian H, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019; 234(8): 12267-77.
[http://dx.doi.org/10.1002/jcp.27972] [PMID: 30697727]
[92]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[93]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[94]
György B, Nist-Lund C, Pan B, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 2019; 25(7): 1123-30.
[http://dx.doi.org/10.1038/s41591-019-0500-9] [PMID: 31270503]
[95]
Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 2018; 553(7687): 217-21.
[http://dx.doi.org/10.1038/nature25164] [PMID: 29258297]
[96]
Nist-Lund CA, Pan B, Patterson A, Asai Y, Chen T, Zhou W, et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun 2019; 10(1): 1-14.
[PMID: 30602773]
[97]
Shibata SB, Ranum PT, Moteki H, et al. RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet 2016; 98(6): 1101-13.
[http://dx.doi.org/10.1016/j.ajhg.2016.03.028] [PMID: 27236922]
[98]
Iizuka T, Kamiya K, Gotoh S, et al. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 2015; 24(13): 3651-61.
[http://dx.doi.org/10.1093/hmg/ddv109] [PMID: 25801282]
[99]
Takada Y, Beyer LA, Swiderski DL, et al. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 2014; 309: 124-35.
[http://dx.doi.org/10.1016/j.heares.2013.11.009] [PMID: 24333301]
[100]
Kim MA, Kim SH, Ryu N, et al. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics 2019; 9(24): 7184-99.
[http://dx.doi.org/10.7150/thno.38032] [PMID: 31695761]
[101]
Golub JS, Tong L, Ngyuen TB, et al. Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 2012; 32(43): 15093-105.
[http://dx.doi.org/10.1523/JNEUROSCI.1709-12.2012] [PMID: 23100430]
[102]
Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. eLife 2017; 6: e18128.
[http://dx.doi.org/10.7554/eLife.18128] [PMID: 28263708]
[103]
Bremer HG, Versnel H, Hendriksen FG, Topsakal V, Grolman W, Klis SF. Does vestibular end-organ function recover after gentamicin-induced trauma in Guinea pigs? Audiol Neurotol 2014; 19(2): 135-50.
[http://dx.doi.org/10.1159/000357587] [PMID: 24525357]
[104]
Bermingham NA, Hassan BA, Wang VY, et al. Proprioceptor pathway development is dependent on Math1. Neuron 2001; 30(2): 411-22.
[http://dx.doi.org/10.1016/S0896-6273(01)00305-1] [PMID: 11395003]
[105]
Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 1995; 270(15): 8730-8.
[http://dx.doi.org/10.1074/jbc.270.15.8730] [PMID: 7721778]
[106]
Van Keymeulen A, Mascre G, Youseff KK, et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 2009; 187(1): 91-100.
[http://dx.doi.org/10.1083/jcb.200907080] [PMID: 19786578]
[107]
Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294(5549): 2155-8.
[http://dx.doi.org/10.1126/science.1065718] [PMID: 11739954]
[108]
Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 2004; 7(12): 1310-8.
[http://dx.doi.org/10.1038/nn1349] [PMID: 15543141]
[109]
Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J Neurosci 2015; 35(14): 5870-83.
[http://dx.doi.org/10.1523/JNEUROSCI.5083-14.2015] [PMID: 25855195]
[110]
Walters BJ, Coak E, Dearman J, et al. In vivo interplay between p27Kip1, GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice. Cell Rep 2017; 19(2): 307-20.
[http://dx.doi.org/10.1016/j.celrep.2017.03.044] [PMID: 28402854]
[111]
Kuo BR, Baldwin EM, Layman WS, Taketo MM, Zuo J. In vivo cochlear hair cell generation and survival by coactivation of β-catenin and Atoh1. J Neurosci 2015; 35(30): 10786-98.
[http://dx.doi.org/10.1523/JNEUROSCI.0967-15.2015] [PMID: 26224861]
[112]
Atkinson PJ, Dong Y, Gu S, et al. Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. J Clin Invest 2018; 128(4): 1641-56.
[http://dx.doi.org/10.1172/JCI97248] [PMID: 29553487]
[113]
Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Developmental biology 2013; 376(1): 86-98.
[114]
Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 2008; 455(7212): 537-41.
[115]
Baker K, Brough DE, Staecker H. Repair of the vestibular system via adenovector delivery of Atoh1: A potential treatment for balance disorders. Adv Otorhinolaryngol 2009; 66: 52-63.
[http://dx.doi.org/10.1159/000218207] [PMID: 19494572]
[116]
He L, Guo JY, Qu TF, et al. Cellular origin and response of flat epithelium in the vestibular end organs of mice to Atoh1 overexpression. Hear Res 2020; 391: 107953.
[http://dx.doi.org/10.1016/j.heares.2020.107953] [PMID: 32234638]
[117]
Hicks KL, Wisner SR, Cox BC, Stone JS. Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 2020; 385: 107838.
[http://dx.doi.org/10.1016/j.heares.2019.107838] [PMID: 31751832]
[118]
Bermingham NA, Hassan BA, Price SD, et al. Math1: An essential gene for the generation of inner ear hair cells. Science 1999; 284(5421): 1837-41.
[http://dx.doi.org/10.1126/science.284.5421.1837] [PMID: 10364557]
[119]
Kraft S, Hsu C, Brough DE, Staecker H. Atoh1 induces auditory hair cell recovery in mice after ototoxic injury. Laryngoscope 2013; 123(4): 992-9.
[http://dx.doi.org/10.1002/lary.22171] [PMID: 23483451]
[120]
Manor U, Disanza A, Grati M, et al. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr Biol 2011; 21(2): 167-72.
[http://dx.doi.org/10.1016/j.cub.2010.12.046] [PMID: 21236676]
[121]
Chang MY, Kim AR, Kim NK, et al. Identification and clinical implications of novel MYO15A mutations in a non-consanguineous Korean family by targeted exome sequencing. Mol Cells 2015; 38(9): 781-8.
[http://dx.doi.org/10.14348/molcells.2015.0078] [PMID: 26242193]
[122]
Xia H, Huang X, Guo Y, et al. Identification of a novel MYO15A mutation in a Chinese family with autosomal recessive nonsyndromic hearing loss. PLoS One 2015; 10(8): e0136306.
[http://dx.doi.org/10.1371/journal.pone.0136306] [PMID: 26308726]
[123]
Chen JR, Tang ZH, Zheng J, et al. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ 2016; 23(8): 1347-57.
[http://dx.doi.org/10.1038/cdd.2016.16] [PMID: 26915297]
[124]
Tang ZH, Chen JR, Zheng J, et al. Genetic correction of induced pluripotent stem cells from a deaf patient with MYO7A mutation results in morphologic and functional recovery of the derived hair cellé like cells. Stem Cells Transl Med 2016; 5(5): 561-71.
[http://dx.doi.org/10.5966/sctm.2015-0252] [PMID: 27013738]
[125]
Ryu N, Kim MA, Choi DG, et al. CRISPR/Cas9-mediated genome editing of splicing mutation causing congenital hearing loss. Gene 2019; 703: 83-90.
[http://dx.doi.org/10.1016/j.gene.2019.03.020] [PMID: 30898719]
[126]
Zhang W, Zhang Y, Löbler M, et al. Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Int J Nanomedicine 2011; 6: 535-46.
[http://dx.doi.org/10.2147/IJN.S16973] [PMID: 21468356]
[127]
Belyantseva IA, Boger ET, Naz S, et al. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 2005; 7(2): 148-56.
[http://dx.doi.org/10.1038/ncb1219] [PMID: 15654330]
[128]
Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 2003; 100(24): 13958-63.
[http://dx.doi.org/10.1073/pnas.2334417100] [PMID: 14610277]
[129]
Wareing M, Mhatre AN, Pettis R, et al. Cationic liposome mediated transgene expression in the guinea pig cochlea. Hear Res 1999; 128(1-2): 61-9.
[http://dx.doi.org/10.1016/S0378-5955(98)00196-8] [PMID: 10082284]
[130]
Okano T, Nakagawa T, Kita T, Endo T, Ito J. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther 2006; 14(6): 866-71.
[http://dx.doi.org/10.1016/j.ymthe.2006.06.012] [PMID: 16956795]
[131]
Shu Y, Tao Y, Wang Z, et al. Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell sub-types. Hum Gene Ther 2016; 27(9): 687-99.
[http://dx.doi.org/10.1089/hum.2016.053] [PMID: 27342665]
[132]
Johnson KR, Tian C, Gagnon LH, Jiang H, Ding D, Salvi R. Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci Rep 2017; 7(1): 44450.
[http://dx.doi.org/10.1038/srep44450] [PMID: 28287619]
[133]
Mianné J, Chessum L, Kumar S, et al. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 2016; 8(1): 16.
[http://dx.doi.org/10.1186/s13073-016-0273-4] [PMID: 26876963]
[134]
Belyantseva IA. Helios® gene gun–mediated transfection of the inner ear sensory epithelium.In: Auditory and Vestibular Research. Hu-mana Press 2009; pp. 103-24.
[135]
Brigande JV, Gubbels SP, Woessner DW, Jungwirth JJ, Bresee CS. Electroporation-mediated gene transfer to the developing mouse inner earAuditory and Vestibular Research. Humana Press 2009; pp. 125-39.
[http://dx.doi.org/10.1007/978-1-59745-523-7_8]
[136]
Staecker H, Li D, O’Malley BW Jr, Van De Water TR. Gene expression in the mammalian cochlea: A study of multiple vector systems. Acta Otolaryngol 2001; 121(2): 157-63.
[http://dx.doi.org/10.1080/000164801300043307] [PMID: 11349769]
[137]
Staecker H, Liu W, Malgrange B, Lefebvre PP, Van De Water TR. Vector-mediated delivery of bcl-2 prevents degeneration of auditory hair cells and neurons after injury. ORL J Otorhinolaryngol Relat Spec 2007; 69(1): 43-50.
[http://dx.doi.org/10.1159/000096716] [PMID: 17085952]
[138]
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020; 394: 107927.
[http://dx.doi.org/10.1016/j.heares.2020.107927] [PMID: 32199720]
[139]
Han M, Yu D, Song Q, Wang J, Dong P, He J. Polybrene: Observations on cochlear hair cell necrosis and minimal lentiviral transduction of cochlear hair cells. Neurosci Lett 2015; 600: 164-70.
[http://dx.doi.org/10.1016/j.neulet.2015.06.011] [PMID: 26071903]
[140]
Pietola L, Aarnisalo AA, Joensuu J, Pellinen R, Wahlfors J, Jero J. HOX-GFP and WOX-GFP lentivirus vectors for inner ear gene transfer. Acta Otolaryngol 2008; 128(6): 613-20.
[http://dx.doi.org/10.1080/00016480701663409] [PMID: 18568493]
[141]
Husseman J, Raphael Y. Gene therapy in the inner ear using adenovirus vectors. Adv Otorhinolaryngol 2009; 66: 37-51.
[http://dx.doi.org/10.1159/000218206] [PMID: 19494571]
[142]
Cooper LB, Chan DK, Roediger FC, et al. AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 2006; 27(4): 484-90.
[http://dx.doi.org/10.1097/00129492-200606000-00009] [PMID: 16791039]
[143]
Tan F, Chu C, Qi J, et al. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 2019; 10(1): 3733.
[http://dx.doi.org/10.1038/s41467-019-11687-8] [PMID: 31427575]
[144]
Chang SY, Park YH, Carpena NT, et al. Photobiomodulation promotes adenoviral gene transduction in auditory cells. Lasers Med Sci 2019; 34(2): 367-75.
[http://dx.doi.org/10.1007/s10103-018-2605-7] [PMID: 30105484]
[145]
Büning H, Schambach A, Morgan M, et al. Challenges and advances in translating gene therapy for hearing disorders. Expert Rev Precis Med Drug Dev 2020; 5(1): 23-34.
[http://dx.doi.org/10.1080/23808993.2020.1707077]
[146]
Wei C, Kong W, He Z. Application of gene therapy in auditory system diseases. STEMedicine 2020; 1(1): e17-7.
[http://dx.doi.org/10.37175/stemedicine.v1i1.17]
[147]
Ji XJ, Chen W, Wang X, et al. Canalostomy is an ideal surgery route for inner ear gene delivery in big animal model. Acta Otolaryngol 2019; 139(11): 939-47.
[http://dx.doi.org/10.1080/00016489.2019.1654130] [PMID: 31486693]
[148]
Okada H, Iizuka T, Mochizuki H, et al. Gene transfer targeting mouse vestibule using adenovirus and adeno-associated virus vectors. Otol Neurotol 2012; 33(4): 655-9.
[http://dx.doi.org/10.1097/MAO.0b013e31825368d1] [PMID: 22525215]
[149]
Isgrig K, Chien WW. Posterior semicircular canal approach for inner ear gene delivery in neonatal mouse. J Vis Exp 2018; (133): 133.
[http://dx.doi.org/10.3791/56648] [PMID: 29553564]
[150]
Shibata SB, Yoshimura H, Ranum PT, Goodwin AT, Smith RJH. Intravenous rAAV2/9 injection for murine cochlear gene delivery. Sci Rep 2017; 7(1): 9609.
[http://dx.doi.org/10.1038/s41598-017-09805-x] [PMID: 28852025]
[151]
Celis-Aguilar E, Lassaletta L, Torres-Martín M, et al. The molecular biology of vestibular schwannomas and its association with hearing loss: A review. Genet Res Int 2012; 2012: 856157.
[http://dx.doi.org/10.1155/2012/856157] [PMID: 22567403]
[152]
Dinh CT, Nisenbaum E, Chyou D, et al. Genomics, epigenetics, and hearing loss in neurofibromatosis type 2. Otology & neurotology: Official publication of the American Otological Society, American Neurotology Society. Otol Neurotol 2020; 41(5): e529-37.
[http://dx.doi.org/10.1097/MAO.0000000000002613]
[153]
Lassaletta L, Bello MJ, Del Río L, et al. DNA methylation of multiple genes in vestibular schwannoma: Relationship with clinical and radi-ological findings. Otol Neurotol 2006; 27(8): 1180-5.
[http://dx.doi.org/10.1097/01.mao.0000226291.42165.22] [PMID: 16983315]
[154]
Balendran V, Ritter KE, Martin DM. Epigenetic mechanisms of inner ear development. Hear Res 2022; 108440.
[http://dx.doi.org/10.1016/j.heares.2022.108440] [PMID: 35063312]
[155]
Jiang H, Sha SH, Schacht J. Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo. J Neurochem 2006; 99(1): 269-76.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04117.x] [PMID: 16903869]
[156]
Kiernan AE, Pelling AL, Leung KK, et al. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 2005; 434(7036): 1031-5.
[http://dx.doi.org/10.1038/nature03487] [PMID: 15846349]
[157]
Tsuji-Takayama K, Inoue T, Ijiri Y, et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochem Biophys Res Commun 2004; 323(1): 86-90.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.052] [PMID: 15351705]
[158]
Yu H, Lin Q, Wang Y, et al. Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis 2013; 4(2): e506-6.
[http://dx.doi.org/10.1038/cddis.2013.28] [PMID: 23429292]
[159]
Zhao L, Wu Q, Song R, Yun Z. The epigenetic regulation of sensorineural deafness. IOP Conf Ser Earth Environ Sci 2019; 332(3): 032006.
[http://dx.doi.org/10.1088/1755-1315/332/3/032006]
[160]
Giannios JN. Precision and personalised genomic and epigenomic medicine in audiology/hearing loss. ENT and Audiology News. 2021; Available from: https://www.entandaudiologynews.com/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy