Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Biosynthetic Pathways for Rebeccamycin Family of Natural Products

Author(s): M. Mujahid Alam, Ravi Varala*, Chandra Mohan Kurmarayuni, Hari Babu Bollikolla and Narsimhaswamy Dubasi

Volume 20, Issue 3, 2023

Published on: 10 August, 2022

Page: [309 - 321] Pages: 13

DOI: 10.2174/1570193X19666220429120600

Price: $65

Abstract

The isolation of Rebeccamycin, a family of indolocarbazole alkaloids from natural sources, and the biosynthesis of this class of compounds are briefly reviewed. Rebeccamycin and its analogues have been extensively studied by medicinal chemists, over the last four decades, due to its wide range of biological activities, predominantly with neuroprotective and antitumor properties.

Keywords: Indolocarbazoles, Rebeccamycin, antitumor, neuroprotective, biosynthesis, isolation.

« Previous
Graphical Abstract
[1]
Akinaga, S.; Sugiyama, K.; Akiyama, T. UCN-01 (7-hydroxystaurosporine) and other indolocarbazole compounds: A new generation of anti-cancer agents for the new century? Anticancer Drug Des., 2000, 15(1), 43-52.
[PMID: 10888035]
[2]
Prudhomme, M. Rebeccamycin analogues as anti-cancer agents. Eur. J. Med. Chem., 2003, 38(2), 123-140.
[http://dx.doi.org/10.1016/S0223-5234(03)00011-4] [PMID: 12620658]
[3]
Mucke, H.A.M. CEP-1347 (Cephalon). IDrugs, 2003, 6(4), 377-383.
[PMID: 12789610]
[4]
a) Janosik, T.; Rannug, A.; Rannug, U.; Wahlström, N.; Slätt, J.; Bergman, J. Chemistry and properties of indolocarbazoles. Chem. Rev., 2018, 118(18), 9058-9128.
[http://dx.doi.org/10.1021/acs.chemrev.8b00186] [PMID: 30191712];
b) Knölker, H-J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2002, 102(11), 4303-4427.
[http://dx.doi.org/10.1021/cr020059j] [PMID: 12428991]
[5]
Nakano, H. Ōmura, S. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine J. Antibiot. (Tokyo), 2009, 62(1), 17-26.
[http://dx.doi.org/10.1038/ja.2008.4] [PMID: 19132059]
[6]
Rao, B.P.C.; Oliveira, O.N.; Varala, R. Strategies towards the synthesis of staurosporine indolocarbazole alkaloid and its analogues. scope of selective heterocycles from organic and pharmaceutical perspective; Intech Open, 2016, pp. 83-114.
[http://dx.doi.org/10.5772/63832]
[7]
Shewach, D.S.; Kuchta, R.D. Introduction to cancer chemotherapeutics. Chem. Rev., 2009, 109(7), 2859-2861.
[http://dx.doi.org/10.1021/cr900208x] [PMID: 19583428]
[8]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[9]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[10]
Sreedhar, A.S.; Csermely, P. Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: A comprehensive review. Pharmacol. Ther., 2004, 101(3), 227-257.
[http://dx.doi.org/10.1016/j.pharmthera.2003.11.004] [PMID: 15031001]
[11]
Pechan, P.M. Heat shock proteins and cell proliferation. FEBS Lett., 1991, 280(1), 1-4.
[http://dx.doi.org/10.1016/0014-5793(91)80190-E] [PMID: 2009952]
[12]
McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Lee, J.T.; Chang, F.; Bertrand, F.E.; Navolanic, P.M.; Terrian, D.M.; Franklin, R.A.; D’Assoro, A.B.; Salisbury, J.L.; Mazzarino, M.C.; Stivala, F.; Libra, M. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul., 2006, 46(1), 249-279.
[http://dx.doi.org/10.1016/j.advenzreg.2006.01.004] [PMID: 16854453]
[13]
Lloyd, D.G.; Golfis, G.; Knox, A.J.; Fayne, D.; Meegan, M.J.; Oprea, T.I. Oncology exploration: Charting cancer medicinal chemistry space. Drug Discov. Today, 2006, 11(3-4), 149-159.
[http://dx.doi.org/10.1016/S1359-6446(05)03688-3] [PMID: 16533713]
[14]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[15]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[16]
Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J. Med. Chem., 2008, 51(9), 2589-2599.
[http://dx.doi.org/10.1021/jm0704090] [PMID: 18393402]
[17]
a) Nettleton, D.E.; Doyle, T.W.; Krishnan, B.; Matsumoto, G.K.; Clardy, J. Isolation and structure of rebeccamycin - a new antitumor antibiotic from nocardia aerocoligenes. Tetrahedron Lett., 1985, 26(34), 4011-4014.
[http://dx.doi.org/10.1016/S0040-4039(00)89280-1];
b) Nettleton, D.E.; Bush, J.A.; Bradner, W.T.; Doyle, T.W. Process for producing rebeccamycin. US4552842 1985.;
c) Kaneko, T.; Wong, H.; Okamoto, K.T.; Clardy, J. Two synthetic approaches to rebeccamycin. Tetrahedron Lett., 1985, 26(34), 4015-4018.
[http://dx.doi.org/10.1016/S0040-4039(00)89281-3]
[18]
a) Prudhomme, M. Recent developments of rebeccamycin analogues as topoisomerase i inhibitors and antitumor agents. Curr. Med. Chem., 2000, 7(12), 1189-1212.
[http://dx.doi.org/10.2174/0929867003374138] [PMID: 11032967];
b) Xu, Y.; Her, C. Inhibition of topoisomerase (DNA) I (TOP1): DNA damage repair and anticancer therapy. Biomolecules, 2015, 5(3), 1652-1670.
[http://dx.doi.org/10.3390/biom5031652] [PMID: 26287259];
c) Pereira, E.R.; Belin, L.; Sancelme, M.; Prudhomme, M.; Ollier, M.; Rapp, M.; Sevère, D.; Riou, J.F.; Fabbro, D.; Meyer, T. Structure-activity relationships in a series of substituted indolocarbazoles: Topoisomerase I and protein kinase C inhibition and antitumoral and antimicrobial properties. J. Med. Chem., 1996, 39(22), 4471-4477.
[http://dx.doi.org/10.1021/jm9603779] [PMID: 8893841]
[19]
Sánchez, C.; Méndez, C.; Salas, J.A. Indolocarbazole natural products: Occurrence, biosynthesis, and biological activity. Nat. Prod. Rep., 2006, 23(6), 1007-1045.
[http://dx.doi.org/10.1039/B601930G] [PMID: 17119643]
[20]
Pommerehne, K.; Walisko, J.; Ebersbach, A.; Krull, R. The antitumor antibiotic rebeccamycin-challenges and advanced approaches in production processes. Appl. Microbiol. Biotechnol., 2019, 103(9), 3627-3636.
[http://dx.doi.org/10.1007/s00253-019-09741-y] [PMID: 30888461]
[21]
Nouioui, I.; Carro, L.; García-López, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H-P.; Goodfellow, M.; Göker, M. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol., 2018, 9, 2007.
[http://dx.doi.org/10.3389/fmicb.2018.02007] [PMID: 30186281]
[22]
Long, B.H.; Rose, W.C.; Vyas, D.M.; Matson, J.A.; Forenza, S. Discovery of antitumor indolocarbazoles: Rebeccamycin, NSC 655649, and fluoroindolocarbazoles. Curr. Med. Chem. Anticancer Agents, 2002, 2(2), 255-266.
[http://dx.doi.org/10.2174/1568011023354218] [PMID: 12678746]
[23]
Matson, J.A. Process for preparing 4'-deschlororebeccamycin U.S. 45671431986.
[24]
Lam, K.S.; McDonald, L.; Mattei, J.; Forenza, S.; Matson, J.A.U.S. U.S. 5326754. 1994.
[25]
Bush, J.A.; Long, B.H.; Catino, J.J.; Bradner, W.T.; Tomita, K. Production and biological activity of rebeccamycin, a novel antitumor agent. J. Antibiot. (Tokyo), 1987, 40(5), 668-678.
[http://dx.doi.org/10.7164/antibiotics.40.668] [PMID: 3112080]
[26]
Kaneko, T.; Wong, H.; Utzig, J.; Schurig, J.; Doyle, T. Water soluble derivatives of rebeccamycin. J. Antibiot. (Tokyo), 1990, 43(1), 125-127.
[http://dx.doi.org/10.7164/antibiotics.43.125] [PMID: 2307626]
[27]
Bailly, C.; Colson, P.; Houssier, C.; Rodrigues-Pereira, E.; Prudhomme, M.; Waring, M.J. Recognition of specific sequences in DNA by a topoisomerase i inhibitor derived from the antitumor drug rebeccamycin. Mol. Pharmacol., 1998, 53(1), 77-87.
[http://dx.doi.org/10.1124/mol.53.1.77] [PMID: 9443934]
[28]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[29]
Rewcastle, G.W. Becatecarin (Helsinn Healthcare). IDrugs, 2005, 8(10), 838-847.
[PMID: 16254805]
[30]
Fabre, S.; Prudhomme, V.; Rapp, M. Preparation of synthons for the synthesis of protein kinase C inhibitors from rebeccamycin. Bioorg. Med. Chem. Lett., 1992, 2(5), 449-452.
[http://dx.doi.org/10.1016/S0960-894X(00)80167-5]
[31]
Fabre, S.; Prudhomme, M.; Sancelme, M.; Rapp, M. Indolocarbazole protein kinase C inhibitors from rebeccamycin. Bioorg. Med. Chem., 1994, 2(2), 73-77.
[http://dx.doi.org/10.1016/S0968-0896(00)82003-9] [PMID: 7922125]
[32]
a) Bailly, C.; Riou, J-F.; Colson, P.; Houssier, C.; Rodrigues-Pereira, E.; Prudhomme, M. DNA cleavage by topoisomerase I in the presence of indolocarbazole derivatives of rebeccamycin. Biochemistry, 1997, 36(13), 3917-3929.
[http://dx.doi.org/10.1021/bi9624898] [PMID: 9092822];
b) Bailly, C.; Qu, X.; Graves, D.E.; Prudhomme, M.; Chaires, J.B. Calories from carbohydrates: Energetic contribution of the carbohydrate moiety of rebeccamycin to DNA binding and the effect of its orientation on topoisomerase I inhibition. Chem. Biol., 1999, 6(5), 277-286.
[http://dx.doi.org/10.1016/S1074-5521(99)80073-8] [PMID: 10322124];
c) Bailly, C.; Goossens, J-F.; Laine, W.; Anizon, F.; Prudhomme, M.; Ren, J.; Chaires, J.B. Formaldehyde-induced alkylation of a 2′-aminoglucose rebeccamycin derivative to both A.T and G.C base pairs in DNA. J. Med. Chem., 2000, 43(24), 4711-4720.
[http://dx.doi.org/10.1021/jm0003438] [PMID: 11101362];
d) Bailly, C.; Qu, X.; Anizon, F.; Prudhomme, M.; Riou, J-F.; Chaires, J.B. Enhanced binding to DNA and topoisomerase I inhibition by an analog of the antitumor antibiotic rebeccamycin containing an amino sugar residue. Mol. Pharmacol., 1999, 55(2), 377-385.
[http://dx.doi.org/10.1124/mol.55.2.377] [PMID: 9927631]
[33]
Anizon, F.; Belin, L.; Moreau, P.; Sancelme, M.; Voldoire, A.; Prudhomme, M.; Ollier, M.; Sevère, D.; Riou, J-F.; Bailly, C.; Fabbro, D.; Meyer, T. Syntheses and biological activities (topoisomerase inhibition and antitumor and antimicrobial properties) of rebeccamycin analogues bearing modified sugar moieties and substituted on the imide nitrogen with a methyl group. J. Med. Chem., 1997, 40(21), 3456-3465.
[http://dx.doi.org/10.1021/jm9702084] [PMID: 9341921]
[34]
Moreau, P.; Anizon, F.; Sancelme, M.; Prudhomme, M.; Bailly, C.; Sevère, D.; Riou, J-F.; Fabbro, D.; Meyer, T.; Aubertin, A-M. Syntheses and biological activities of rebeccamycin analogues. Introduction of a halogenoacetyl substituent. J. Med. Chem., 1999, 42(4), 584-592.
[http://dx.doi.org/10.1021/jm980396d] [PMID: 10052965]
[35]
Moreau, P.; Anizon, F.; Sancelme, M.; Prudhomme, M.; Sevère, D.; Riou, J-F.; Goossens, J-F.; Hénichart, J-P.; Bailly, C.; Labourier, E.; Tazzi, J.; Fabbro, D.; Meyer, T.; Aubertin, A.M. Synthesis, mode of action, and biological activities of rebeccamycin bromo derivatives. J. Med. Chem., 1999, 42(10), 1816-1822.
[http://dx.doi.org/10.1021/jm980702n] [PMID: 10346933]
[36]
Lakatosh, S.A.; Balzarini, J.; Andrei, G.; Snoeck, R.; Lakatosh, A.; De Clercq, E.; Preobrazhenskaya, M.N. Synthesis, and cytotoxic activity of N(ind)-alkoxy derivatives of antibiotic arcyriarubin and dechloro-rebeccamycin aglycon. J. Antibiot. (Tokyo), 2002, 55(8), 768-773.
[http://dx.doi.org/10.7164/antibiotics.55.768] [PMID: 12374389]
[37]
Marminon, C.; Anizon, F.; Moreau, P.; Léonce, S.; Pierré, A.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Syntheses and antiproliferative activities of new rebeccamycin derivatives with the sugar unit linked to both indole nitrogens. J. Med. Chem., 2002, 45(6), 1330-1339.
[http://dx.doi.org/10.1021/jm011045t] [PMID: 11882002]
[38]
Marminon, C.; Pierré, A.; Pfeiffer, B.; Pérez, V.; Léonce, S.; Renard, P.; Prudhomme, M. Syntheses and antiproliferative activities of rebeccamycin analogues bearing two 7-azaindole moieties. Bioorg. Med. Chem., 2003, 11(5), 679-687.
[http://dx.doi.org/10.1016/S0968-0896(02)00532-1] [PMID: 12537997]
[39]
Moreau, P.; Gaillard, N.; Marminon, C.; Anizon, F.; Dias, N.; Baldeyrou, B.; Bailly, C.; Pierré, A.; Hickman, J.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Semi-synthesis, topoisomerase I and kinases inhibitory properties, and antiproliferative activities of new rebeccamycin derivatives. Bioorg. Med. Chem., 2003, 11(23), 4871-4879.
[http://dx.doi.org/10.1016/j.bmc.2003.09.014] [PMID: 14604648]
[40]
Faul, M.M.; Sullivan, K.A.; Grutsch, J.L.; Winneroski, L.L.; Shih, C.; Sanchez-Martinez, C.; Cooper, J.T. Synthesis of indolo[2,3-a]carbazole glycoside analogs of rebeccamycin: Inhibitors of cyclin D1-CDK4. Tetrahedron Lett., 2004, 45(5), 1095-1098.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.184]
[41]
Zhang, G.; Shen, J.; Cheng, H.; Zhu, L.; Fang, L.; Luo, S.; Muller, M.T.; Lee, G.E.; Wei, L.; Du, Y.; Sun, D.; Wang, P.G. Syntheses and biological activities of rebeccamycin analogues with uncommon sugars. J. Med. Chem., 2005, 48(7), 2600-2611.
[http://dx.doi.org/10.1021/jm0493764] [PMID: 15801850]
[42]
Messaoudi, S.; Anizon, F.; Léonce, S.; Pierré, A.; Pfeiffer, B.; Prudhomme, M. Synthesis and cytotoxicities of 7-aza rebeccamycin analogues bearing various substituents on the sugar moiety, on the imide nitrogen and on the carbazole framework. Eur. J. Med. Chem., 2005, 40(10), 961-971.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.002] [PMID: 15907347]
[43]
Messaoudi, S.; Anizon, F.; Peixoto, P.; David-Cordonnier, M-H.; Golsteyn, R.M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Synthesis and biological activities of 7-aza rebeccamycin analogues bearing the sugar moiety on the nitrogen of the pyridine ring. Bioorg. Med. Chem., 2006, 14(22), 7551-7562.
[http://dx.doi.org/10.1016/j.bmc.2006.07.013] [PMID: 16889964]
[44]
Animati, F.; Berettoni, M.; Bigioni, M.; Binaschi, M.; Felicetti, P.; Gontrani, L.; Incani, O.; Madami, A.; Monteagudo, E.; Olivieri, L.; Resta, S.; Rossi, C.; Cipollone, A. Synthesis, biological evaluation, and molecular modeling studies of rebeccamycin analogues modified in the carbohydrate moiety. ChemMedChem, 2008, 3(2), 266-279.
[http://dx.doi.org/10.1002/cmdc.200700232] [PMID: 18157856]
[45]
Anizon, F.; Golsteyn, R.M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. A three-step synthesis from rebeccamycin of an efficient checkpoint kinase 1 inhibitor. Eur. J. Med. Chem., 2009, 44(5), 2234-2238.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.023] [PMID: 18602198]
[46]
Animati, F.; Berettoni, M.; Bigioni, M.; Binaschi, M.; Cipollone, A.; Irrissuto, C.; Nardelli, F.; Olivieri, L. Synthesis and biological evaluation of rebeccamycin analogues modified at the imide moiety. Bioorg. Med. Chem. Lett., 2012, 22(15), 5013-5017.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.016] [PMID: 22749423]
[47]
Marminon, C.; Anizon, F.; Moreau, P.; Pfeiffer, B.; Pierré, A.; Golsteyn, R.M.; Peixoto, P.; Hildebrand, M.P.; David-Cordonnier, M.H.; Lozach, O.; Meijer, L.; Prudhomme, M. Rebeccamycin derivatives as dual DNA-damaging agents and potent checkpoint kinase 1 inhibitors. Mol. Pharmacol., 2008, 74(6), 1620-1629.
[http://dx.doi.org/10.1124/mol.108.049346] [PMID: 18768386]
[48]
Van Arnam, E.B.; Ruzzini, A.C.; Sit, C.S.; Currie, C.R.; Clardy, J. Rebeccamycin analog provides plasmid-encoded niche defense. J. Am. Chem. Soc., 2015, 137(45), 14272-14274.
[http://dx.doi.org/10.1021/jacs.5b09794] [PMID: 26535611]
[49]
Matson, J.A.; Claridge, C.; Bush, J.A.; Titus, J.; Bradner, W.T.; Doyle, T.W.; Horan, A.C.; Patel, M. AT2433-A1, AT2433-A2, AT2433-B1, and AT2433-B2 novel antitumorantibiotic compounds produced by actinomaduramelliaura. J. Antibiot. (Tokyo), 1989, 42(11), 1547-1555.
[http://dx.doi.org/10.7164/antibiotics.42.1547] [PMID: 2584136]
[50]
Dowlati, A.; Posey, J.; Ramanathan, R.K.; Rath, L.; Fu, P.; Chak, A.; Krishnamurthi, S.; Brell, J.; Ingalls, S.; Hoppel, C.L.; Ivy, P.; Remick, S.C. Phase II and pharmacokinetic trial of rebeccamycin analog in advanced biliary cancers. Cancer Chemother. Pharmacol., 2009, 65(1), 73-78.
[http://dx.doi.org/10.1007/s00280-009-1005-x] [PMID: 19399502]
[51]
Borthakur, G.; Alvarado, Y.; Ravandi-Kashani, F.; Cortes, J.; Estrov, Z.; Faderl, S.; Ivy, P.; Bueso-Ramos, C.; Nebiyou Bekele, B.; Giles, F. Phase 1 study of XL119, a rebeccamycin analog, in patients with refractory hematologic malignancies. Cancer, 2008, 113(2), 360-366.
[http://dx.doi.org/10.1002/cncr.23559] [PMID: 18473351]
[52]
Langevin, A.M.; Bernstein, M.; Kuhn, J.G.; Blaney, S.M.; Ivy, P.; Sun, J.; Chen, Z.; Adamson, P.C. A phase II trial of rebeccamycin analogue (NSC #655649) in children with solid tumors: A children’s oncology group study. Pediatr. Blood Cancer, 2008, 50(3), 577-580.
[http://dx.doi.org/10.1002/pbc.21274] [PMID: 17610262]
[53]
Lam, K.S.; Schroeder, D.R.; Veitch, J.M.; Matson, J.A.; Forenza, S. Isolation of a bromo analog of rebeccamycin from Saccharothrix aerocolonigenes. J. Antibiot. (Tokyo), 1991, 44(9), 934-939.
[http://dx.doi.org/10.7164/antibiotics.44.934] [PMID: 1938615]
[54]
Pearce, C.J.; Doyle, T.W.; Forenza, S.; Lam, K.S.; Schroeder, D.R. The biosynthetic origins of rebeccamycin. J. Nat. Prod., 1988, 51(5), 937-940.
[http://dx.doi.org/10.1021/np50059a020] [PMID: 3204382]
[55]
Schwandt, A.; Mekhail, T.; Halmos, B.; O’Brien, T.; Ma, P.C.; Fu, P.; Ivy, P.; Dowlati, A. Phase-II trial of rebeccamycin analog, a dual topoisomerase-I and -II inhibitor, in relapsed “sensitive” small cell lung cancer. J. Thorac. Oncol., 2012, 7(4), 751-754.
[http://dx.doi.org/10.1097/JTO.0b013e31824abca2] [PMID: 22425925]
[56]
Burstein, H.J.; Overmoyer, B.; Gelman, R.; Silverman, P.; Savoie, J.; Clarke, K.; Dumadag, L.; Younger, J.; Ivy, P.; Winer, E.P. Rebeccamycin analog for refractory breast cancer: A randomized phase II trial of dosing schedules. Invest. New Drugs, 2007, 25(2), 161-164.
[http://dx.doi.org/10.1007/s10637-006-9007-6] [PMID: 16969707]
[57]
Dowlati, A.; Chapman, R.; Subbiah, S.; Fu, P.; Ness, A.; Cortas, T.; Patrick, L.; Reynolds, S.; Xu, N.; Levitan, N.; Ivy, P.; Remick, S.C. Randomized phase II trial of different schedules of administration of rebeccamycin analogue as second line therapy in non-small cell lung cancer. Invest. New Drugs, 2005, 23(6), 563-567.
[http://dx.doi.org/10.1007/s10637-005-0754-6] [PMID: 16034518]
[58]
Nock, C.J.; Brell, J.M.; Bokar, J.A.; Cooney, M.M.; Cooper, B.; Gibbons, J.; Krishnamurthi, S.; Manda, S.; Savvides, P.; Remick, S.C.; Ivy, P.; Dowlati, A. A phase I study of rebeccamycin analog in combination with oxaliplatin in patients with refractory solid tumors. Invest. New Drugs, 2011, 29(1), 126-130.
[http://dx.doi.org/10.1007/s10637-009-9322-9] [PMID: 19774342]
[59]
Goel, S.; Wadler, S.; Hoffman, A.; Volterra, F.; Baker, C.; Nazario, E.; Ivy, P.; Silverman, A.; Mani, S. A phase II study of rebeccamycin analog NSC 655649 in patients with metastatic colorectal cancer. Invest. New Drugs, 2003, 21(1), 103-107.
[http://dx.doi.org/10.1023/A:1022980613420] [PMID: 12795535]
[60]
Hussain, M.; Vaishampayan, U.; Heilbrun, L.K.; Jain, V.; LoRusso, P.M.; Ivy, P.; Flaherty, L. A phase II study of rebeccamycin analog (NSC-655649) in metastatic renal cell cancer. Invest. New Drugs, 2003, 21(4), 465-471.
[http://dx.doi.org/10.1023/A:1026259503954] [PMID: 14586215]
[61]
Lam, K.S.; Forenza, S.; Doyle, T.W.; Pearce, C.J. Identification of indolepyruvic acid as an intermediate of rebeccamycin biosynthesis. J. Ind. Microbiol., 1990, 6(4), 291-294.
[http://dx.doi.org/10.1007/BF01575876] [PMID: 1366997]
[62]
Sánchez, C.; Butovich, I.A.; Braña, A.F.; Rohr, J.; Méndez, C.; Salas, J.A. The biosynthetic gene cluster for the antitumor rebeccamycin: Characterization and generation of indolocarbazole derivatives. Chem. Biol., 2002, 9(4), 519-531.
[http://dx.doi.org/10.1016/S1074-5521(02)00126-6] [PMID: 11983340]
[63]
Sánchez, C.; Zhu, L.; Braña, A.F.; Salas, A.P.; Rohr, J.; Méndez, C.; Salas, J.A. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 461-466.
[http://dx.doi.org/10.1073/pnas.0407809102] [PMID: 15625109]
[64]
Onaka, H.; Taniguchi, S.; Igarashi, Y.; Furumai, T. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci. Biotechnol. Biochem., 2003, 67(1), 127-138.
[http://dx.doi.org/10.1271/bbb.67.127] [PMID: 12619684]
[65]
Hyun, C.G.; Bililign, T.; Liao, J.; Thorson, J.S. The biosynthesis of indolocarbazoles in a heterologous E. coli host. ChemBioChem, 2003, 4(1), 114-117.
[http://dx.doi.org/10.1002/cbic.200390004] [PMID: 12512086]
[66]
Nishizawa, T.; Aldrich, C.C.; Sherman, D.H. Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J. Bacteriol., 2005, 187(6), 2084-2092.
[http://dx.doi.org/10.1128/JB.187.6.2084-2092.2005] [PMID: 15743957]
[67]
Howard-Jones, A.R.; Walsh, C.T. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry, 2005, 44(48), 15652-15663.
[http://dx.doi.org/10.1021/bi051706e] [PMID: 16313168]
[68]
Yeh, E.; Garneau, S.; Walsh, C.T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc. Natl. Acad. Sci. USA, 2005, 102(11), 3960-3965.
[http://dx.doi.org/10.1073/pnas.0500755102] [PMID: 15743914]
[69]
Yeh, E.; Cole, L.J.; Barr, E.W.; Bollinger, J.M., Jr; Ballou, D.P.; Walsh, C.T. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Biochemistry, 2006, 45(25), 7904-7912.
[http://dx.doi.org/10.1021/bi060607d] [PMID: 16784243]
[70]
Sánchez, C.; Méndez, C.; Salas, J.A. Engineering biosynthetic pathways to generate antitumor indolocarbazole derivatives. J. Ind. Microbiol. Biotechnol., 2006, 33(7), 560-568.
[http://dx.doi.org/10.1007/s10295-006-0092-5] [PMID: 16491358]
[71]
Zhang, C.; Albermann, C.; Fu, X.; Peters, N.R.; Chisholm, J.D.; Zhang, G.; Gilbert, E.J.; Wang, P.G.; Van Vranken, D.L.; Thorson, J.S. RebG- and RebM-catalyzed indolocarbazole diversification. ChemBioChem, 2006, 7(5), 795-804.
[http://dx.doi.org/10.1002/cbic.200500504] [PMID: 16575939]
[72]
Nishizawa, T.; Grüschow, S.; Jayamaha, D.H.E.; Nishizawa-Harada, C.; Sherman, D.H. Enzymatic assembly of the bis-indole core of rebeccamycin. J. Am. Chem. Soc., 2006, 128(3), 724-725.
[http://dx.doi.org/10.1021/ja056749x] [PMID: 16417354]
[73]
Zhang, C.; Weller, R.L.; Thorson, J.S.; Rajski, S.R. Natural product diversification using a non-natural cofactor analogue of S-adenosyl-L-methionine. J. Am. Chem. Soc., 2006, 128(9), 2760-2761.
[http://dx.doi.org/10.1021/ja056231t] [PMID: 16506729]
[74]
Howard-Jones, A.R.; Walsh, C.T. Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid. J. Am. Chem. Soc., 2006, 128(37), 12289-12298.
[http://dx.doi.org/10.1021/ja063898m] [PMID: 16967980]
[75]
Yeh, E.; Blasiak, L.C.; Koglin, A.; Drennan, C.L.; Walsh, C.T. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry, 2007, 46(5), 1284-1292.
[http://dx.doi.org/10.1021/bi0621213] [PMID: 17260957]
[76]
Howard-Jones, A.R.; Walsh, C.T. Nonenzymatic oxidative steps accompanying action of the cytochrome P450 enzymes StaP and RebP in the biosynthesis of staurosporine and rebeccamycin. J. Am. Chem. Soc., 2007, 129(36), 11016-11017.
[http://dx.doi.org/10.1021/ja0743801] [PMID: 17705392]
[77]
Ryan, K.S.; Howard-Jones, A.R.; Hamill, M.J.; Elliott, S.J.; Walsh, C.T.; Drennan, C.L. Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC. Proc. Natl. Acad. Sci. USA, 2007, 104(39), 15311-15316.
[http://dx.doi.org/10.1073/pnas.0707190104] [PMID: 17873060]
[78]
Ryan, K.S.; Howard-Jones, A.R.; Walsh, C.T.; Drennan, C.L. Crystal structure of RebC, a flavoprotein involved in rebaccamycin biosynthesis. FASEB J., 2007, 21(6), A1043-A1043.
[79]
Singh, S.; McCoy, J.G.; Zhang, C.; Bingman, C.A.; Phillips, G.N., Jr; Thorson, J.S. Structure and mechanism of the rebeccamycin sugar 4′-O-methyltransferase RebM. J. Biol. Chem., 2008, 283(33), 22628-22636.
[http://dx.doi.org/10.1074/jbc.M800503200] [PMID: 18502766]
[80]
Groom, K.; Bhattacharya, A.; Zechel, D.L. Rebeccamycin and staurosporine biosynthesis: Insight into the mechanisms of the flavin-dependent monooxygenases RebC and StaC. ChemBioChem, 2011, 12(3), 396-400.
[http://dx.doi.org/10.1002/cbic.201000580] [PMID: 21290541]
[81]
Asamizu, S.; Shiro, Y.; Igarashi, Y.; Nagano, S.; Onaka, H. Characterization and functional modification of StaC and RebC, which are involved in the pyrrole oxidation of indolocarbazole biosynthesis. Biosci. Biotechnol. Biochem., 2011, 75(11), 2184-2193.
[http://dx.doi.org/10.1271/bbb.110474] [PMID: 22056432]
[82]
Spolitak, T.; Ballou, D.P. Evidence for catalytic intermediates involved in generating the chromopyrrolic acid scaffold of rebeccamycin by RebO and RebD. Arch. Biochem. Biophys., 2015, 573, 111-119.
[http://dx.doi.org/10.1016/j.abb.2015.03.020] [PMID: 25837855]
[83]
Zenkov, R.G.; Ektova, L.V.; Vlasova, O.A.; Belitskiy, G.A.; Yakubovskaya, M.G.; Kirsanov, K.I. Indolo[2,3-a]carbazoles: Diversity, biological properties, application in antitumor therapy. Chem. Heterocycl. Compd., 2020, 56(6), 644-658.
[http://dx.doi.org/10.1007/s10593-020-02714-4]
[84]
Chambers, G.E.; Sayan, A.E.; Brown, R.C.D. The synthesis of biologically active indolocarbazole natural products. Nat. Prod. Rep., 2021, 38(10), 1794-1820.
[http://dx.doi.org/10.1039/D0NP00096E] [PMID: 33666619]
[85]
Gallant, M.; Link, J.T.; Danishefsky, S.J. A stereoselective synthesis of indole-.beta.-N-glycosides: An application to the synthesis of rebeccamycin. J. Org. Chem., 1993, 58(2), 343-349.
[http://dx.doi.org/10.1021/jo00054a015]
[86]
Faul, M.M.; Winneroski, L.L.; Krumrich, C.A. Synthesis of rebeccamycin and 11-Dechlororebeccamycin. J. Org. Chem., 1999, 64(7), 2465-2470.
[http://dx.doi.org/10.1021/jo982277b]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy