Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

A Review: Molecular Mechanism of Regulation of ABCA1 Expression

Author(s): Dongdong Wang*, Andy Wai Kan Yeung and Atanas G. Atanasov*

Volume 23, Issue 3, 2022

Published on: 10 June, 2022

Page: [170 - 191] Pages: 22

DOI: 10.2174/1389203723666220429083753

Price: $65

Abstract

ATP-binding cassette subfamily A member 1 (ABCA1) protein plays an essential role in a variety of events, such as cholesterol and phospholipid efflux, nascent high-density lipoprotein (HDL) biosynthesis, phospholipid translocation. Thus, there has been much research activity aimed at understanding the molecular mechanisms of regulating ABCA1 expression. In this review, we first discuss ABCA1 structure, tissue distribution, cellular localization, and trafficking, as well as its function. Furthermore, current understanding of the molecular mechanisms involved in the regulation of ABCA1 expression is summarized.

ABCA1 transcriptional regulation is mediated by a very complicated system, including nuclear receptor systems, factors binding to other sites in the ABCA1 promoter, cytokines, hormones, growth factors, lipid metabolites, enzymes, and other messengers/factors/pathways. In addition, ABCA1 posttranscriptional regulation is mediated by microRNA, long noncoding RNA, RNA-binding proteins, proteases, fatty acids, PDZ proteins, signaling proteins, and other factors. Compared to the transcriptional regulation of ABCA1, which is well established, the post-transcriptional regulation of ABCA1 expression is poorly understood.

Keywords: Transporter, atherosclerosis, cardiovascular disease, mRNA, transcriptional regulation, post-transcriptional regulation.

Graphical Abstract
[1]
Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics, 2009, 3(3), 281-290.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[2]
Wang, D.; Zhang, L.; Huang, J.; Himabindu, K.; Tewari, D. Horbańczuk, J.O.; Xu, S.; Chen, Z.; Atanasov, A.G. Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. Trends Food Sci. Technol., 2021, 117, 34-45.
[http://dx.doi.org/10.1016/j.tifs.2020.11.024]
[3]
Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res., 2001, 42(7), 1007-1017.
[http://dx.doi.org/10.1016/S0022-2275(20)31588-1] [PMID: 11441126]
[4]
Broccardo, C.; Luciani, M.; Chimini, G. The ABCA subclass of mammalian transporters. Biochim. Biophys. Acta, 1999, 1461(2), 395-404.
[http://dx.doi.org/10.1016/S0005-2736(99)00170-4] [PMID: 10581369]
[5]
Luciani, M.F.; Denizot, F.; Savary, S.; Mattei, M.G.; Chimini, G. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics, 1994, 21(1), 150-159.
[http://dx.doi.org/10.1006/geno.1994.1237] [PMID: 8088782]
[6]
Wang, D.; Hiebl, V.; Ladurner, A.; Latkolik, S.L.; Bucar, F.; Heiß, E.H.; Dirsch, V.M.; Atanasov, A.G. 6-dihydroparadol, a ginger constitu-ent, enhances cholesterol efflux from THP-1-derived macrophages. Mol. Nutr. Food Res., 2018, 62(14), e1800011.
[http://dx.doi.org/10.1002/mnfr.201800011] [PMID: 29802792]
[7]
Wang, D.; Hiebl, V.; Schachner, D.; Ladurner, A.; Heiss, E.H.; Atanasov, A.G.; Dirsch, V.M. Soraphen A enhances macrophage cholester-ol efflux via indirect LXR activation and ABCA1 upregulation. Biochem. Pharmacol., 2020, 177, 114022.
[http://dx.doi.org/10.1016/j.bcp.2020.114022] [PMID: 32437644]
[8]
Wang, D.; Hiebl, V.; Xu, T.; Ladurner, A.; Atanasov, A.G.; Heiss, E.H.; Dirsch, V.M. Impact of natural products on the cholesterol trans-porter ABCA1. J. Ethnopharmacol., 2020, 249, 112444.
[http://dx.doi.org/10.1016/j.jep.2019.112444] [PMID: 31805338]
[9]
Wang, D.; Huang, J.; Gui, T.; Yang, Y.; Feng, T.; Tzvetkov, N.T.; Xu, T.; Gai, Z.; Zhou, Y.; Zhang, J.; Atanasov, A.G. SR-BI as a target of natural products and its significance in cancer. Semin. Cancer Biol., 2020, 80, 18-38.
[PMID: 31935456]
[10]
Wang, D.; Yang, Y.; Lei, Y.; Tzvetkov, N.T.; Liu, X.; Yeung, A.W.K.; Xu, S.; Atanasov, A.G. Targeting foam cell formation in atheroscle-rosis: Therapeutic potential of natural products. Pharmacol. Rev., 2019, 71(4), 596-670.
[http://dx.doi.org/10.1124/pr.118.017178] [PMID: 31554644]
[11]
Bungert, S.; Molday, L.L.; Molday, R.S. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: Identification of N-linked glycosylation sites. J. Biol. Chem., 2001, 276(26), 23539-23546.
[http://dx.doi.org/10.1074/jbc.M101902200] [PMID: 11320094]
[12]
Qian, H.; Zhao, X.; Cao, P.; Lei, J.; Yan, N.; Gong, X. Structure of the human lipid exporter ABCA1. Cell, 2017, 169(7), 1228-1239.e10.
[http://dx.doi.org/10.1016/j.cell.2017.05.020] [PMID: 28602350]
[13]
Santamarina-Fojo, S.; Peterson, K.; Knapper, C.; Qiu, Y.; Freeman, L.; Cheng, J.F.; Osorio, J.; Remaley, A.; Yang, X.P.; Haudenschild, C.; Prades, C.; Chimini, G.; Blackmon, E.; Francois, T.; Duverger, N.; Rubin, E.M.; Rosier, M.; Denèfle, P.; Fredrickson, D.S.; Brewer, H.B. Jr Complete genomic sequence of the human ABCA1 gene: Analysis of the human and mouse ATP-binding cassette A promoter. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 7987-7992.
[http://dx.doi.org/10.1073/pnas.97.14.7987] [PMID: 10884428]
[14]
Wang, S.; Smith, J.D. ABCA1 and nascent HDL biogenesis. Biofactors, 2014, 40(6), 547-554.
[http://dx.doi.org/10.1002/biof.1187] [PMID: 25359426]
[15]
Kaminski, W.E.; Piehler, A.; Wenzel, J.J. ABC A-subfamily transporters: Structure, function and disease. Biochim. Biophys. Acta, 2006, 1762(5), 510-524.
[http://dx.doi.org/10.1016/j.bbadis.2006.01.011] [PMID: 16540294]
[16]
Peelman, F.; Labeur, C.; Vanloo, B.; Roosbeek, S.; Devaud, C.; Duverger, N.; Denèfle, P.; Rosier, M.; Vandekerckhove, J.; Rosseneu, M. Characterization of the ABCA transporter subfamily: Identification of prokaryotic and eukaryotic members, phylogeny and topology. J. Mol. Biol., 2003, 325(2), 259-274.
[http://dx.doi.org/10.1016/S0022-2836(02)01105-1] [PMID: 12488094]
[17]
Attie, A.D. ABCA1: At the nexus of cholesterol, HDL and atherosclerosis. Trends Biochem. Sci., 2007, 32(4), 172-179.
[http://dx.doi.org/10.1016/j.tibs.2007.02.001] [PMID: 17324574]
[18]
Phillips, M.C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem., 2014, 289(35), 24020-24029.
[http://dx.doi.org/10.1074/jbc.R114.583658] [PMID: 25074931]
[19]
Biemans-Oldehinkel, E.; Doeven, M.K.; Poolman, B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett., 2006, 580(4), 1023-1035.
[http://dx.doi.org/10.1016/j.febslet.2005.11.079] [PMID: 16375896]
[20]
Wellington, C.L.; Walker, E.K.; Suarez, A.; Kwok, A.; Bissada, N.; Singaraja, R.; Yang, Y.Z.; Zhang, L.H.; James, E.; Wilson, J.E.; Fran-cone, O.; McManus, B.M.; Hayden, M.R. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab. Invest., 2002, 82(3), 273-283.
[http://dx.doi.org/10.1038/labinvest.3780421] [PMID: 11896206]
[21]
Lawn, R.M.; Wade, D.P.; Couse, T.L.; Wilcox, J.N. Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and ath-erosclerotic tissues. Arterioscler. Thromb. Vasc. Biol., 2001, 21(3), 378-385.
[http://dx.doi.org/10.1161/01.ATV.21.3.378] [PMID: 11231917]
[22]
Farke, C.; Viturro, E.; Meyer, H.H.; Albrecht, C. Identification of the bovine cholesterol efflux regulatory protein ABCA1 and its expres-sion in various tissues. J. Anim. Sci., 2006, 84(11), 2887-2894.
[http://dx.doi.org/10.2527/jas.2006-042] [PMID: 17032780]
[23]
Langmann, T.; Klucken, J.; Reil, M.; Liebisch, G.; Luciani, M.F.; Chimini, G.; Kaminski, W.E.; Schmitz, G. Molecular cloning of the hu-man ATP-binding cassette transporter 1 (hABC1): Evidence for sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun., 1999, 257(1), 29-33.
[http://dx.doi.org/10.1006/bbrc.1999.0406] [PMID: 10092505]
[24]
Bhattacharjee, J.; Ietta, F.; Giacomello, E.; Bechi, N.; Romagnoli, R.; Fava, A.; Paulesu, L. Expression and localization of ATP binding cassette transporter A1 (ABCA1) in first trimester and term human placenta. Placenta, 2010, 31(5), 423-430.
[http://dx.doi.org/10.1016/j.placenta.2010.02.015] [PMID: 20338636]
[25]
Zarubica, A.; Trompier, D.; Chimini, G. ABCA1, from pathology to membrane function. Pflugers Arch., 2007, 453(5), 569-579.
[http://dx.doi.org/10.1007/s00424-006-0108-z] [PMID: 16858612]
[26]
Albrecht, C.; Soumian, S.; Amey, J.S.; Sardini, A.; Higgins, C.F.; Davies, A.H.; Gibbs, R.G. ABCA1 expression in carotid atherosclerotic plaques. Stroke, 2004, 35(12), 2801-2806.
[http://dx.doi.org/10.1161/01.STR.0000147036.07307.93] [PMID: 15528463]
[27]
Huuskonen, J.; Abedin, M.; Vishnu, M.; Pullinger, C.R.; Baranzini, S.E.; Kane, J.P.; Fielding, P.E.; Fielding, C.J. Dynamic regulation of alternative ATP-binding cassette transporter A1 transcripts. Biochem. Biophys. Res. Commun., 2003, 306(2), 463-468.
[http://dx.doi.org/10.1016/S0006-291X(03)00992-6] [PMID: 12804586]
[28]
Singaraja, R.R.; James, E.R.; Crim, J.; Visscher, H.; Chatterjee, A.; Hayden, M.R. Alternate transcripts expressed in response to diet reflect tissue-specific regulation of ABCA1. J. Lipid Res., 2005, 46(10), 2061-2071.
[http://dx.doi.org/10.1194/jlr.M500133-JLR200] [PMID: 16024915]
[29]
Wang, N.; Silver, D.L.; Costet, P.; Tall, A.R. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane mor-phology in cells expressing ABC1. J. Biol. Chem., 2000, 275(42), 33053-33058.
[http://dx.doi.org/10.1074/jbc.M005438200] [PMID: 10918065]
[30]
Neufeld, E.B.; Demosky, S.J., Jr; Stonik, J.A.; Combs, C.; Remaley, A.T.; Duverger, N.; Santamarina-Fojo, S.; Brewer, H.B., Jr The ABCA1 transporter functions on the basolateral surface of hepatocytes. Biochem. Biophys. Res. Commun., 2002, 297(4), 974-979.
[http://dx.doi.org/10.1016/S0006-291X(02)02274-X] [PMID: 12359250]
[31]
Neufeld, E.B.; Remaley, A.T.; Demosky, S.J.; Stonik, J.A.; Cooney, A.M.; Comly, M.; Dwyer, N.K.; Zhang, M.; Blanchette-Mackie, J.; Santamarina-Fojo, S.; Brewer, H.B. Jr Cellular localization and trafficking of the human ABCA1 transporter. J. Biol. Chem., 2001, 276(29), 27584-27590.
[http://dx.doi.org/10.1074/jbc.M103264200] [PMID: 11349133]
[32]
Yamauchi, Y.; Iwamoto, N.; Rogers, M.A.; Abe-Dohmae, S.; Fujimoto, T.; Chang, C.C.; Ishigami, M.; Kishimoto, T.; Kobayashi, T.; Ueda, K.; Furukawa, K.; Chang, T.Y.; Yokoyama, S. Deficiency in the lipid exporter ABCA1 impairs retrograde sterol movement and disrupts sterol sensing at the endoplasmic reticulum. J. Biol. Chem., 2015, 290(39), 23464-23477.
[http://dx.doi.org/10.1074/jbc.M115.662668] [PMID: 26198636]
[33]
Beers, M.F.; Hawkins, A.; Shuman, H.; Zhao, M.; Newitt, J.L.; Maguire, J.A.; Ding, W.; Mulugeta, S. A novel conserved targeting motif found in ABCA transporters mediates trafficking to early post-Golgi compartments. J. Lipid Res., 2011, 52(8), 1471-1482.
[http://dx.doi.org/10.1194/jlr.M013284] [PMID: 21586796]
[34]
Kang, M.H.; Singaraja, R.; Hayden, M.R. Adenosine-triphosphate-binding cassette transporter-1 trafficking and function. Trends Cardiovasc. Med., 2010, 20(2), 41-49.
[http://dx.doi.org/10.1016/j.tcm.2010.03.006] [PMID: 20656214]
[35]
Fitzgerald, M.L.; Mendez, A.J.; Moore, K.J.; Andersson, L.P.; Panjeton, H.A.; Freeman, M.W. ATP-binding cassette transporter A1 con-tains an NH2-terminal signal anchor sequence that translocates the protein’s first hydrophilic domain to the exoplasmic space. J. Biol. Chem., 2001, 276(18), 15137-15145.
[http://dx.doi.org/10.1074/jbc.M100474200] [PMID: 11328826]
[36]
Tamehiro, N.; Zhou, S.; Okuhira, K.; Benita, Y.; Brown, C.E.; Zhuang, D.Z.; Latz, E.; Hornemann, T.; von Eckardstein, A.; Xavier, R.J.; Freeman, M.W.; Fitzgerald, M.L. SPTLC1 binds ABCA1 to negatively regulate trafficking and cholesterol efflux activity of the transporter. Biochemistry, 2008, 47(23), 6138-6147.
[http://dx.doi.org/10.1021/bi800182t] [PMID: 18484747]
[37]
Jennelle, L.; Hunegnaw, R.; Dubrovsky, L.; Pushkarsky, T.; Fitzgerald, M.L.; Sviridov, D.; Popratiloff, A.; Brichacek, B.; Bukrinsky, M. HIV-1 protein Nef inhibits activity of ATP-binding cassette transporter A1 by targeting endoplasmic reticulum chaperone calnexin. J. Biol. Chem., 2014, 289(42), 28870-28884.
[http://dx.doi.org/10.1074/jbc.M114.583591] [PMID: 25170080]
[38]
Tanaka, A.R.; Kano, F.; Ueda, K.; Murata, M. The ABCA1 Q597R mutant undergoes trafficking from the ER upon ER stress. Biochem. Biophys. Res. Commun., 2008, 369(4), 1174-1178.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.018] [PMID: 18343215]
[39]
Singaraja, R.R.; Kang, M.H.; Vaid, K.; Sanders, S.S.; Vilas, G.L.; Arstikaitis, P.; Coutinho, J.; Drisdel, R.C.; El-Husseini, A.D.; Green, W.N.; Berthiaume, L.; Hayden, M.R. Palmitoylation of ATP-binding cassette transporter A1 is essential for its trafficking and function. Circ. Res., 2009, 105(2), 138-147.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.193011] [PMID: 19556522]
[40]
Haidar, B.; Kiss, R.S.; Sarov-Blat, L.; Brunet, R.; Harder, C.; McPherson, R.; Marcel, Y.L.; Cathepsin, D. Cathepsin D, a lysosomal prote-ase, regulates ABCA1-mediated lipid efflux. J. Biol. Chem., 2006, 281(52), 39971-39981.
[http://dx.doi.org/10.1074/jbc.M605095200] [PMID: 17032648]
[41]
Lin, S.; Zhou, C.; Neufeld, E.; Wang, Y.H.; Xu, S.W.; Lu, L.; Wang, Y.; Liu, Z.P.; Li, D.; Li, C.; Chen, S.; Le, K.; Huang, H.; Liu, P.; Moss, J.; Vaughan, M.; Shen, X. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein modulates ATP-binding cassette transporter A-1 trafficking and function. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), e31-e38.
[http://dx.doi.org/10.1161/ATVBAHA.112.300720] [PMID: 23220274]
[42]
Linder, M.D.; Mäyränpää, M.I.; Peränen, J.; Pietilä, T.E.; Pietiäinen, V.M.; Uronen, R.L.; Olkkonen, V.M.; Kovanen, P.T.; Ikonen, E. Rab8 regulates ABCA1 cell surface expression and facilitates cholesterol efflux in primary human macrophages. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6), 883-888.
[http://dx.doi.org/10.1161/ATVBAHA.108.179481] [PMID: 19304576]
[43]
Rust, S.; Rosier, M.; Funke, H.; Real, J.; Amoura, Z.; Piette, J-C.; Deleuze, J-F.; Brewer, H.B.; Duverger, N.; Denèfle, P.; Assmann, G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet., 1999, 22(4), 352-355.
[http://dx.doi.org/10.1038/11921] [PMID: 10431238]
[44]
Fredrickson, D.S.; Altrocchi, P.H.; Avioli, L.V.; Goodman, D.W.S.; Goodman, H.C. Tangier disease: Combined clinical staff conference at the national institutes of health. Ann. Intern. Med., 1961, 55(6), 1016-1031.
[http://dx.doi.org/10.7326/0003-4819-55-6-1016]
[45]
Bale, P.M.; Clifton-Bligh, P.; Benjamin, B.N.; Whyte, H.M. Pathology of Tangier disease. J. Clin. Pathol., 1971, 24(7), 609-616.
[http://dx.doi.org/10.1136/jcp.24.7.609] [PMID: 5118827]
[46]
Serfaty-Lacrosniere, C.; Civeira, F.; Lanzberg, A.; Isaia, P.; Berg, J.; Janus, E.D.; Smith, M.P., Jr; Pritchard, P.H.; Frohlich, J.; Lees, R.S.; Barnard, G.F.; Ordovas, J.M.; Schaefer, E.J. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis, 1994, 107(1), 85-98.
[http://dx.doi.org/10.1016/0021-9150(94)90144-9] [PMID: 7945562]
[47]
Marcil, M.; Brooks-Wilson, A.; Clee, S.M.; Roomp, K.; Zhang, L.H.; Yu, L.; Collins, J.A.; van Dam, M.; Molhuizen, H.O.; Loubster, O.; Ouellette, B.F.; Sensen, C.W.; Fichter, K.; Mott, S.; Denis, M.; Boucher, B.; Pimstone, S.; Genest, J., Jr; Kastelein, J.J.; Hayden, M.R. Muta-tions in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet, 1999, 354(9187), 1341-1346.
[http://dx.doi.org/10.1016/S0140-6736(99)07026-9] [PMID: 10533863]
[48]
Remaley, A.T.; Schumacher, U.K.; Stonik, J.A.; Farsi, B.D.; Nazih, H.; Brewer, H.B. Jr Decreased reverse cholesterol transport from Tangier disease fibroblasts. Acceptor specificity and effect of brefeldin on lipid efflux. Arterioscler. Thromb. Vasc. Biol., 1997, 17(9), 1813-1821.
[http://dx.doi.org/10.1161/01.ATV.17.9.1813] [PMID: 9327782]
[49]
Yokoyama, S. Assembly of high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol., 2006, 26(1), 20-27.
[http://dx.doi.org/10.1161/01.ATV.0000195789.39418.e8] [PMID: 16284193]
[50]
Orsó, E.; Broccardo, C.; Kaminski, W.E.; Böttcher, A.; Liebisch, G.; Drobnik, W.; Götz, A.; Chambenoit, O.; Diederich, W.; Langmann, T.; Spruss, T.; Luciani, M-F.; Rothe, G.; Lackner, K.J.; Chimini, G.; Schmitz, G. Transport of lipids from golgi to plasma membrane is defec-tive in tangier disease patients and Abc1-deficient mice. Nat. Genet., 2000, 24(2), 192-196.
[http://dx.doi.org/10.1038/72869] [PMID: 10655069]
[51]
McNeish, J.; Aiello, R.J.; Guyot, D.; Turi, T.; Gabel, C.; Aldinger, C.; Hoppe, K.L.; Roach, M.L.; Royer, L.J.; de Wet, J.; Broccardo, C.; Chimini, G.; Francone, O.L. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4245-4250.
[http://dx.doi.org/10.1073/pnas.97.8.4245] [PMID: 10760292]
[52]
Vaisman, B.L.; Lambert, G.; Amar, M.; Joyce, C.; Ito, T.; Shamburek, R.D.; Cain, W.J.; Fruchart-Najib, J.; Neufeld, E.D.; Remaley, A.T.; Brewer, H.B., Jr; Santamarina-Fojo, S. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excre-tion in transgenic mice. J. Clin. Invest., 2001, 108(2), 303-309.
[http://dx.doi.org/10.1172/JCI200112517] [PMID: 11457883]
[53]
Singaraja, R.R.; Bocher, V.; James, E.R.; Clee, S.M.; Zhang, L.H.; Leavitt, B.R.; Tan, B.; Brooks-Wilson, A.; Kwok, A.; Bissada, N.; Yang, Y.Z.; Liu, G.; Tafuri, S.R.; Fievet, C.; Wellington, C.L.; Staels, B.; Hayden, M.R. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response ele-ments in intron 1. J. Biol. Chem., 2001, 276(36), 33969-33979.
[http://dx.doi.org/10.1074/jbc.M102503200] [PMID: 11423537]
[54]
Timmins, J.M.; Lee, J.Y.; Boudyguina, E.; Kluckman, K.D.; Brunham, L.R.; Mulya, A.; Gebre, A.K.; Coutinho, J.M.; Colvin, P.L.; Smith, T.L.; Hayden, M.R.; Maeda, N.; Parks, J.S. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest., 2005, 115(5), 1333-1342.
[http://dx.doi.org/10.1172/JCI200523915] [PMID: 15841208]
[55]
Brunham, L.R.; Kruit, J.K.; Iqbal, J.; Fievet, C.; Timmins, J.M.; Pape, T.D.; Coburn, B.A.; Bissada, N.; Staels, B.; Groen, A.K.; Hussain, M.M.; Parks, J.S.; Kuipers, F.; Hayden, M.R. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest., 2006, 116(4), 1052-1062.
[http://dx.doi.org/10.1172/JCI27352] [PMID: 16543947]
[56]
Joyce, C.W.; Amar, M.J.; Lambert, G.; Vaisman, B.L.; Paigen, B.; Najib-Fruchart, J.; Hoyt, R.F., Jr; Neufeld, E.D.; Remaley, A.T.; Fredrickson, D.S.; Brewer, H.B., Jr; Santamarina-Fojo, S. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc. Natl. Acad. Sci. USA, 2002, 99(1), 407-412.
[http://dx.doi.org/10.1073/pnas.012587699] [PMID: 11752403]
[57]
van Eck, M.; Bos, I.S.; Kaminski, W.E.; Orsó, E.; Rothe, G.; Twisk, J.; Böttcher, A.; Van Amersfoort, E.S.; Christiansen-Weber, T.A.; Fung-Leung, W.P.; Van Berkel, T.J.; Schmitz, G. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6298-6303.
[http://dx.doi.org/10.1073/pnas.092327399] [PMID: 11972062]
[58]
Haghpassand, M.; Bourassa, P.A.; Francone, O.L.; Aiello, R.J. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J. Clin. Invest., 2001, 108(9), 1315-1320.
[http://dx.doi.org/10.1172/JCI200112810] [PMID: 11696576]
[59]
Frikke-Schmidt, R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis, 2010, 208(2), 305-316.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.005] [PMID: 19596329]
[60]
Frikke-Schmidt, R.; Nordestgaard, B.G.; Stene, M.C.; Sethi, A.A.; Remaley, A.T.; Schnohr, P.; Grande, P.; Tybjaerg-Hansen, A. Associa-tion of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA, 2008, 299(21), 2524-2532.
[http://dx.doi.org/10.1001/jama.299.21.2524] [PMID: 18523221]
[61]
Aiello, R.J.; Brees, D.; Bourassa, P.A.; Royer, L.; Lindsey, S.; Coskran, T.; Haghpassand, M.; Francone, O.L. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vasc. Biol., 2002, 22(4), 630-637.
[http://dx.doi.org/10.1161/01.ATV.0000014804.35824.DA] [PMID: 11950702]
[62]
Oram, J.F.; Vaughan, A.M.; Stocker, R. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J. Biol. Chem., 2001, 276(43), 39898-39902.
[http://dx.doi.org/10.1074/jbc.M106984200] [PMID: 11546785]
[63]
Von Eckardstein, A.; Langer, C.; Engel, T.; Schaukal, I.; Cignarella, A.; Reinhardt, J.; Lorkowski, S.; Li, Z.; Zhou, X.; Cullen, P.; Ass-mann, G. ATP binding cassette transporter ABCA1 modulates the secretion of apolipoprotein E from human monocyte-derived macro-phages. FASEB J., 2001, 15(9), 1555-1561.
[http://dx.doi.org/10.1096/fj.00-0798com] [PMID: 11427487]
[64]
Zhou, X.; Engel, T.; Goepfert, C.; Erren, M.; Assmann, G.; von Eckardstein, A. The ATP binding cassette transporter A1 contributes to the secretion of interleukin 1beta from macrophages but not from monocytes. Biochem. Biophys. Res. Commun., 2002, 291(3), 598-604.
[http://dx.doi.org/10.1006/bbrc.2002.6473] [PMID: 11855831]
[65]
Quazi, F.; Molday, R.S. Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J. Biol. Chem., 2013, 288(48), 34414-34426.
[http://dx.doi.org/10.1074/jbc.M113.508812] [PMID: 24097981]
[66]
Rigot, V.; Hamon, Y.; Chambenoit, O.; Alibert, M.; Duverger, N.; Chimini, G. Distinct sites on ABCA1 control distinct steps required for cellular release of phospholipids. J. Lipid Res., 2002, 43(12), 2077-2086.
[http://dx.doi.org/10.1194/jlr.M200279-JLR200] [PMID: 12454269]
[67]
Gillotte, K.L.; Davidson, W.S.; Lund-Katz, S.; Rothblat, G.H.; Phillips, M.C. Removal of cellular cholesterol by pre-beta-HDL involves plasma membrane microsolubilization. J. Lipid Res., 1998, 39(10), 1918-1928.
[http://dx.doi.org/10.1016/S0022-2275(20)32490-1] [PMID: 9788238]
[68]
Smith, J.D.; Le Goff, W.; Settle, M.; Brubaker, G.; Waelde, C.; Horwitz, A.; Oda, M.N. ABCA1 mediates concurrent cholesterol and phos-pholipid efflux to apolipoprotein A-I. J. Lipid Res., 2004, 45(4), 635-644.
[http://dx.doi.org/10.1194/jlr.M300336-JLR200] [PMID: 14703508]
[69]
Hamon, Y.; Broccardo, C.; Chambenoit, O.; Luciani, M.F.; Toti, F.; Chaslin, S.; Freyssinet, J.M.; Devaux, P.F.; McNeish, J.; Marguet, D.; Chimini, G. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol., 2000, 2(7), 399-406.
[http://dx.doi.org/10.1038/35017029] [PMID: 10878804]
[70]
Liu, L.; Bortnick, A.E.; Nickel, M.; Dhanasekaran, P.; Subbaiah, P.V.; Lund-Katz, S.; Rothblat, G.H.; Phillips, M.C. Effects of apolipopro-tein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol: Formation of nascent high density lipoprotein particles. J. Biol. Chem., 2003, 278(44), 42976-42984.
[http://dx.doi.org/10.1074/jbc.M308420200] [PMID: 12928428]
[71]
Soumian, S.; Albrecht, C.; Davies, A.H.; Gibbs, R.G. ABCA1 and atherosclerosis. Vasc. Med., 2005, 10(2), 109-119.
[http://dx.doi.org/10.1191/1358863x05vm593ra] [PMID: 16013195]
[72]
Liu, Y.; Tang, C. Regulation of ABCA1 functions by signaling pathways. Biochim. Biophys. Acta, 2012, 1821(3), 522-529.
[http://dx.doi.org/10.1016/j.bbalip.2011.08.015] [PMID: 21920460]
[73]
Mineo, C.; Shaul, P.W. Regulation of signal transduction by HDL. J. Lipid Res., 2013, 54(9), 2315-2324.
[http://dx.doi.org/10.1194/jlr.R039479] [PMID: 23687307]
[74]
Oram, J.F.; Heinecke, J.W. ATP-binding cassette transporter A1: A cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev., 2005, 85(4), 1343-1372.
[http://dx.doi.org/10.1152/physrev.00005.2005] [PMID: 16183915]
[75]
Santamarina-Fojo, S.; Remaley, A.T.; Neufeld, E.B.; Brewer, H.B. Jr Regulation and intracellular trafficking of the ABCA1 transporter. J. Lipid Res., 2001, 42(9), 1339-1345.
[http://dx.doi.org/10.1016/S0022-2275(20)30266-2] [PMID: 11518753]
[76]
Langmann, T.; Porsch-Ozcürümez, M.; Heimerl, S.; Probst, M.; Moehle, C.; Taher, M.; Borsukova, H.; Kielar, D.; Kaminski, W.E.; Dit-trich-Wengenroth, E.; Schmitz, G. Identification of sterol-independent regulatory elements in the human ATP-binding cassette transporter A1 promoter: Role of Sp1/3, E-box binding factors, and an oncostatin M-responsive element. J. Biol. Chem., 2002, 277(17), 14443-14450.
[http://dx.doi.org/10.1074/jbc.M110270200] [PMID: 11839742]
[77]
Schmitz, G.; Langmann, T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim. Biophys. Acta, 2005, 1735(1), 1-19.
[http://dx.doi.org/10.1016/j.bbalip.2005.04.004] [PMID: 15922656]
[78]
Rosenfeld, M.G.; Glass, C.K. Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem., 2001, 276(40), 36865-36868.
[http://dx.doi.org/10.1074/jbc.R100041200] [PMID: 11459854]
[79]
Huuskonen, J.; Fielding, P.E.; Fielding, C.J. Role of p160 coactivator complex in the activation of liver X receptor. Arterioscler. Thromb. Vasc. Biol., 2004, 24(4), 703-708.
[http://dx.doi.org/10.1161/01.ATV.0000121202.72593.da] [PMID: 14764426]
[80]
Freedman, L.P. Multimeric coactivator complexes for steroid/nuclear receptors. Trends Endocrinol. Metab., 1999, 10(10), 403-407.
[http://dx.doi.org/10.1016/S1043-2760(99)00208-8] [PMID: 10542397]
[81]
Hermanson, O.; Glass, C.K.; Rosenfeld, M.G. Nuclear receptor coregulators: Multiple modes of modification. Trends Endocrinol. Metab., 2002, 13(2), 55-60.
[http://dx.doi.org/10.1016/S1043-2760(01)00527-6] [PMID: 11854019]
[82]
Edwards, P.A.; Kast, H.R.; Anisfeld, A.M. BAREing it all: The adoption of LXR and FXR and their roles in lipid homeostasis. J. Lipid Res., 2002, 43(1), 2-12.
[http://dx.doi.org/10.1016/S0022-2275(20)30180-2] [PMID: 11792716]
[83]
Song, C.; Kokontis, J.M.; Hiipakka, R.A.; Liao, S. Ubiquitous receptor: A receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc. Natl. Acad. Sci. USA, 1994, 91(23), 10809-10813.
[http://dx.doi.org/10.1073/pnas.91.23.10809] [PMID: 7971966]
[84]
Soprano, D.R.; Qin, P.; Soprano, K.J. Retinoic acid receptors and cancers. Annu. Rev. Nutr., 2004, 24(1), 201-221.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132407] [PMID: 15189119]
[85]
Costet, P.; Lalanne, F.; Gerbod-Giannone, M.C.; Molina, J.R.; Fu, X.; Lund, E.G.; Gudas, L.J.; Tall, A.R. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol. Cell. Biol., 2003, 23(21), 7756-7766.
[http://dx.doi.org/10.1128/MCB.23.21.7756-7766.2003] [PMID: 14560020]
[86]
Coban, N.; Gulec, C.; Ozsait-Selcuk, B.; Erginel-Unaltuna, N. CYP19A1, MIF and ABCA1 genes are targets of the RORα in monocyte and endothelial cells. Cell Biol. Int., 2017, 41(2), 163-176.
[http://dx.doi.org/10.1002/cbin.10712] [PMID: 27925372]
[87]
Miroshnikova, V.V.; Panteleeva, A.A.; Bazhenova, E.A.; Demina, E.P.; Usenko, T.S.; Nikolaev, M.A.; Semenova, I.A.; Neimark, A.E.; He, J.; Belyaeva, O.D.; Berkovich, O.A.; Baranova, E.I.; Pchelina, S.N. [Regulation of ABCA1 and ABCG1 gene expression in the in-traabdominal adipose tissue]. Biomed. Khim., 2016, 62(3), 283-289.
[http://dx.doi.org/10.18097/PBMC20166203283] [PMID: 27420620]
[88]
Barbier, O.; Torra, I.P.; Duguay, Y.; Blanquart, C.; Fruchart, J.C.; Glineur, C.; Staels, B. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2002, 22(5), 717-726.
[http://dx.doi.org/10.1161/01.ATV.0000015598.86369.04] [PMID: 12006382]
[89]
Chawla, A.; Boisvert, W.A.; Lee, C.H.; Laffitte, B.A.; Barak, Y.; Joseph, S.B.; Liao, D.; Nagy, L.; Edwards, P.A.; Curtiss, L.K.; Evans, R.M.; Tontonoz, P. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell, 2001, 7(1), 161-171.
[http://dx.doi.org/10.1016/S1097-2765(01)00164-2] [PMID: 11172721]
[90]
Oliver, W.R., Jr; Shenk, J.L.; Snaith, M.R.; Russell, C.S.; Plunket, K.D.; Bodkin, N.L.; Lewis, M.C.; Winegar, D.A.; Sznaidman, M.L.; Lambert, M.H.; Xu, H.E.; Sternbach, D.D.; Kliewer, S.A.; Hansen, B.C.; Willson, T.M. A selective peroxisome proliferator-activated re-ceptor delta agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. USA, 2001, 98(9), 5306-5311.
[http://dx.doi.org/10.1073/pnas.091021198] [PMID: 11309497]
[91]
Akiyama, T.E.; Sakai, S.; Lambert, G.; Nicol, C.J.; Matsusue, K.; Pimprale, S.; Lee, Y.H.; Ricote, M.; Glass, C.K.; Brewer, H.B., Jr; Gonza-lez, F.J. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol. Cell. Biol., 2002, 22(8), 2607-2619.
[http://dx.doi.org/10.1128/MCB.22.8.2607-2619.2002] [PMID: 11909955]
[92]
Claudel, T.; Leibowitz, M.D.; Fiévet, C.; Tailleux, A.; Wagner, B.; Repa, J.J.; Torpier, G.; Lobaccaro, J.M.; Paterniti, J.R.; Mangelsdorf, D.J.; Heyman, R.A.; Auwerx, J. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2610-2615.
[http://dx.doi.org/10.1073/pnas.041609298] [PMID: 11226287]
[93]
Jiang, M.; Li, X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem. Biophys. Res. Commun., 2017, 482(4), 849-856.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.123] [PMID: 27890613]
[94]
Sporstøl, M.; Tapia, G.; Malerød, L.; Mousavi, S.A.; Berg, T. Pregnane X receptor-agonists down-regulate hepatic ATP-binding cassette transporter A1 and scavenger receptor class B type I. Biochem. Biophys. Res. Commun., 2005, 331(4), 1533-1541.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.071] [PMID: 15883047]
[95]
Huuskonen, J.; Vishnu, M.; Pullinger, C.R.; Fielding, P.E.; Fielding, C.J. Regulation of ATP-binding cassette transporter A1 transcription by thyroid hormone receptor. Biochemistry, 2004, 43(6), 1626-1632.
[http://dx.doi.org/10.1021/bi0301643] [PMID: 14769039]
[96]
de Aguiar Vallim, T.Q.; Tarling, E.J.; Kim, T.; Civelek, M.; Baldán, Á.; Esau, C.; Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res., 2013, 112(12), 1602-1612.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300648] [PMID: 23519696]
[97]
Sporstøl, M.; Mousavi, S.A.; Eskild, W.; Roos, N.; Berg, T. ABCA1, ABCG1 and SR-BI: Hormonal regulation in primary rat hepatocytes and human cell lines. BMC Mol. Biol., 2007, 8(1), 5.
[http://dx.doi.org/10.1186/1471-2199-8-5] [PMID: 17241464]
[98]
Hiebl, V.; Ladurner, A.; Latkolik, S.; Dirsch, V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv., 2018, 36(6), 1657-1698.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.003] [PMID: 29548878]
[99]
Mutemberezi, V.; Guillemot-Legris, O.; Muccioli, G.G. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res., 2016, 64, 152-169.
[http://dx.doi.org/10.1016/j.plipres.2016.09.002] [PMID: 27687912]
[100]
Joseph, S.B.; Laffitte, B.A.; Patel, P.H.; Watson, M.A.; Matsukuma, K.E.; Walczak, R.; Collins, J.L.; Osborne, T.F.; Tontonoz, P. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem., 2002, 277(13), 11019-11025.
[http://dx.doi.org/10.1074/jbc.M111041200] [PMID: 11790787]
[101]
Repa, J.J.; Liang, G.; Ou, J.; Bashmakov, Y.; Lobaccaro, J.M.; Shimomura, I.; Shan, B.; Brown, M.S.; Goldstein, J.L.; Mangelsdorf, D.J. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev., 2000, 14(22), 2819-2830.
[http://dx.doi.org/10.1101/gad.844900] [PMID: 11090130]
[102]
Schultz, J.R.; Tu, H.; Luk, A.; Repa, J.J.; Medina, J.C.; Li, L.; Schwendner, S.; Wang, S.; Thoolen, M.; Mangelsdorf, D.J.; Lustig, K.D.; Shan, B. Role of LXRs in control of lipogenesis. Genes Dev., 2000, 14(22), 2831-2838.
[http://dx.doi.org/10.1101/gad.850400] [PMID: 11090131]
[103]
Yan, D.; Mäyränpää, M.I.; Wong, J.; Perttilä, J.; Lehto, M.; Jauhiainen, M.; Kovanen, P.T.; Ehnholm, C.; Brown, A.J.; Olkkonen, V.M. OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J. Biol. Chem., 2008, 283(1), 332-340.
[http://dx.doi.org/10.1074/jbc.M705313200] [PMID: 17991739]
[104]
Béaslas, O.; Metso, J.; Nissilä, E.; Laurila, P.P.; Kaiharju, E.; Batchu, K.C.; Kaipiainen, L.; Mäyränpää, M.I.; Yan, D.; Gylling, H.; Jauhi-ainen, M.; Olkkonen, V.M. Osbpl8 deficiency in mouse causes an elevation of high-density lipoproteins and gender-specific alterations of lipid metabolism. PLoS One, 2013, 8(3), e58856.
[http://dx.doi.org/10.1371/journal.pone.0058856] [PMID: 23554939]
[105]
Dasgupta, S.; Lonard, D.M.; O’Malley, B.W. Nuclear receptor coactivators: Master regulators of human health and disease. Annu. Rev. Med., 2014, 65(1), 279-292.
[http://dx.doi.org/10.1146/annurev-med-051812-145316] [PMID: 24111892]
[106]
Bulynko, Y.A.; O’Malley, B.W. Nuclear receptor coactivators: Structural and functional biochemistry. Biochemistry, 2011, 50(3), 313-328.
[http://dx.doi.org/10.1021/bi101762x] [PMID: 21141906]
[107]
Horwitz, K.B.; Jackson, T.A.; Bain, D.L.; Richer, J.K.; Takimoto, G.S.; Tung, L. Nuclear receptor coactivators and corepressors. Mol. Endocrinol., 1996, 10(10), 1167-1177.
[PMID: 9121485]
[108]
Jenster, G. Coactivators and corepressors as mediators of nuclear receptor function: An update. Mol. Cell. Endocrinol., 1998, 143(1-2), 1-7.
[http://dx.doi.org/10.1016/S0303-7207(98)00145-2] [PMID: 9806345]
[109]
Lazar, M.A. Nuclear receptor corepressors. Nucl. Recept. Signal., 2003, 1(1), e001-e001.
[http://dx.doi.org/10.1621/nrs.01001] [PMID: 16604174]
[110]
Hu, X.; Li, S.; Wu, J.; Xia, C.; Lala, D.S. Liver X receptors interact with corepressors to regulate gene expression. Mol. Endocrinol., 2003, 17(6), 1019-1026.
[http://dx.doi.org/10.1210/me.2002-0399] [PMID: 12663743]
[111]
Brendel, C.; Schoonjans, K.; Botrugno, O.A.; Treuter, E.; Auwerx, J. The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol. Endocrinol., 2002, 16(9), 2065-2076.
[http://dx.doi.org/10.1210/me.2001-0194] [PMID: 12198243]
[112]
Park, U.H.; Seong, M.R.; Kim, E.J.; Hur, W.; Kim, S.W.; Yoon, S.K.; Um, S.J. Reciprocal regulation of LXRα activity by ASXL1 and ASXL2 in lipogenesis. Biochem. Biophys. Res. Commun., 2014, 443(2), 489-494.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.124] [PMID: 24321552]
[113]
Baranova, I.; Vishnyakova, T.; Bocharov, A.; Chen, Z.; Remaley, A.T.; Stonik, J.; Eggerman, T.L.; Patterson, A.P. Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect. Immun., 2002, 70(6), 2995-3003.
[http://dx.doi.org/10.1128/IAI.70.6.2995-3003.2002] [PMID: 12010990]
[114]
Schmitz, G.; Heimerl, S.; Langmann, T. Zinc finger protein ZNF202 structure and function in transcriptional control of HDL metabolism. Curr. Opin. Lipidol., 2004, 15(2), 199-208.
[http://dx.doi.org/10.1097/00041433-200404000-00013] [PMID: 15017363]
[115]
Babb, R.; Bowen, B.R. SDP1 is a peroxisome-proliferator-activated receptor gamma 2 co-activator that binds through its SCAN domain. Biochem. J., 2003, 370(Pt 2), 719-727.
[http://dx.doi.org/10.1042/bj20021378] [PMID: 12444922]
[116]
Thymiakou, E.; Zannis, V.I.; Kardassis, D. Physical and functional interactions between liver X receptor/retinoid X receptor and Sp1 modulate the transcriptional induction of the human ATP binding cassette transporter A1 gene by oxysterols and retinoids. Biochemistry, 2007, 46(41), 11473-11483.
[http://dx.doi.org/10.1021/bi700994m] [PMID: 17887732]
[117]
Chen, X.; Zhao, Y.; Guo, Z.; Zhou, L.; Okoro, E.U.; Yang, H. Transcriptional regulation of ATP-binding cassette transporter A1 expres-sion by a novel signaling pathway. J. Biol. Chem., 2011, 286(11), 8917-8923.
[http://dx.doi.org/10.1074/jbc.M110.214429] [PMID: 21257755]
[118]
Chen, X.; Guo, Z.; Okoro, E.U.; Zhang, H.; Zhou, L.; Lin, X.; Rollins, A.T.; Yang, H. Up-regulation of ATP binding cassette transporter A1 expression by very low density lipoprotein receptor and apolipoprotein E receptor 2. J. Biol. Chem., 2012, 287(6), 3751-3759.
[http://dx.doi.org/10.1074/jbc.M111.310888] [PMID: 22170052]
[119]
Yang, X.P.; Freeman, L.A.; Knapper, C.L.; Amar, M.J.; Remaley, A.; Brewer, H.B., Jr; Santamarina-Fojo, S. The E-box motif in the proxi-mal ABCA1 promoter mediates transcriptional repression of the ABCA1 gene. J. Lipid Res., 2002, 43(2), 297-306.
[http://dx.doi.org/10.1016/S0022-2275(20)30172-3] [PMID: 11861672]
[120]
Ugocsai, P.; Hohenstatt, A.; Paragh, G.; Liebisch, G.; Langmann, T.; Wolf, Z.; Weiss, T.; Groitl, P.; Dobner, T.; Kasprzak, P.; Göbölös, L.; Falkert, A.; Seelbach-Goebel, B.; Gellhaus, A.; Winterhager, E.; Schmidt, M.; Semenza, G.L.; Schmitz, G. HIF-1beta determines ABCA1 expression under hypoxia in human macrophages. Int. J. Biochem. Cell Biol., 2010, 42(2), 241-252.
[http://dx.doi.org/10.1016/j.biocel.2009.10.002] [PMID: 19828131]
[121]
Zeng, L.; Liao, H.; Liu, Y.; Lee, T.S.; Zhu, M.; Wang, X.; Stemerman, M.B.; Zhu, Y.; Shyy, J.Y. Sterol-responsive element-binding protein (SREBP) 2 down-regulates ATP-binding cassette transporter A1 in vascular endothelial cells: A novel role of SREBP in regulating choles-terol metabolism. J. Biol. Chem., 2004, 279(47), 48801-48807.
[http://dx.doi.org/10.1074/jbc.M407817200] [PMID: 15358760]
[122]
Wong, J.; Quinn, C.M.; Brown, A.J. SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxys-terol ligands for LXR. Biochem. J., 2006, 400(3), 485-491.
[http://dx.doi.org/10.1042/BJ20060914] [PMID: 16901265]
[123]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[124]
Khovidhunkit, W.; Moser, A.H.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. Endotoxin down-regulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages: Differential role of LXR. J. Lipid Res., 2003, 44(9), 1728-1736.
[http://dx.doi.org/10.1194/jlr.M300100-JLR200] [PMID: 12777468]
[125]
Tang, X.E.; Li, H.; Chen, L.Y.; Xia, X.D.; Zhao, Z.W.; Zheng, X.L.; Zhao, G.J.; Tang, C.K. IL-8 negatively regulates ABCA1 expression and cholesterol efflux via upregulating miR-183 in THP-1 macrophage-derived foam cells. Cytokine, 2019, 122, 154385.
[PMID: 29703573]
[126]
Yu, X.H.; Jiang, H.L.; Chen, W.J.; Yin, K.; Zhao, G.J.; Mo, Z.C.; Ouyang, X.P.; Lv, Y.C.; Jiang, Z.S.; Zhang, D.W.; Tang, C.K. Interleukin-18 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18R/nuclear factor-κB signaling pathway in THP-1 macrophage-derived foam cells. Circ. J., 2012, 76(7), 1780-1791.
[http://dx.doi.org/10.1253/circj.CJ-11-1338] [PMID: 22498566]
[127]
Frisdal, E.; Lesnik, P.; Olivier, M.; Robillard, P.; Chapman, M.J.; Huby, T.; Guerin, M.; Le Goff, W. Interleukin-6 protects human macro-phages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem., 2011, 286(35), 30926-30936.
[http://dx.doi.org/10.1074/jbc.M111.264325] [PMID: 21757719]
[128]
Damen, M.S.M.A.; Dos Santos, J.C.; Hermsen, R.; Adam van der Vliet, J.; Netea, M.G.; Riksen, N.P.; Dinarello, C.A.; Joosten, L.A.B.; Heinhuis, B. Interleukin-32 upregulates the expression of ABCA1 and ABCG1 resulting in reduced intracellular lipid concentrations in primary human hepatocytes. Atherosclerosis, 2018, 271, 193-202.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.027] [PMID: 29524862]
[129]
Wang, X.Q.; Panousis, C.G.; Alfaro, M.L.; Evans, G.F.; Zuckerman, S.H. Interferon-gamma-mediated downregulation of cholesterol efflux and ABC1 expression is by the Stat1 pathway. Arterioscler. Thromb. Vasc. Biol., 2002, 22(5), e5-e9.
[http://dx.doi.org/10.1161/01.ATV.0000018287.03856.DD] [PMID: 12006410]
[130]
Ma, A.Z.; Zhang, Q.; Song, Z.Y. TNFa alter cholesterol metabolism in human macrophages via PKC-θ-dependent pathway. BMC Biochem., 2013, 14(1), 20.
[http://dx.doi.org/10.1186/1471-2091-14-20] [PMID: 23914732]
[131]
Gerbod-Giannone, M.C.; Li, Y.; Holleboom, A.; Han, S.; Hsu, L.C.; Tabas, I.; Tall, A.R. TNFalpha induces ABCA1 through NF-kappaB in macrophages and in phagocytes ingesting apoptotic cells. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3112-3117.
[http://dx.doi.org/10.1073/pnas.0510345103] [PMID: 16492740]
[132]
Edgel, K.A.; Leboeuf, R.C.; Oram, J.F. Tumor necrosis factor-alpha and lymphotoxin-alpha increase macrophage ABCA1 by gene expres-sion and protein stabilization via different receptors. Atherosclerosis, 2010, 209(2), 387-392.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.019] [PMID: 19913791]
[133]
Srivastava, R.A. Estrogen-induced regulation of the ATP-binding cassette transporter A1 (ABCA1) in mice: A possible mechanism of atheroprotection by estrogen. Mol. Cell. Biochem., 2002, 240(1-2), 67-73.
[http://dx.doi.org/10.1023/A:1020604610873] [PMID: 12487373]
[134]
Fukuchi, J.; Hiipakka, R.A.; Kokontis, J.M.; Hsu, S.; Ko, A.L.; Fitzgerald, M.L.; Liao, S. Androgenic suppression of ATP-binding cassette transporter A1 expression in LNCaP human prostate cancer cells. Cancer Res., 2004, 64(21), 7682-7685.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2647] [PMID: 15520169]
[135]
Fan, J.; Shimizu, Y.; Chan, J.; Wilkinson, A.; Ito, A.; Tontonoz, P.; Dullaghan, E.; Galea, L.A.; Pfeifer, T.; Wellington, C.L. Hormonal modulators of glial ABCA1 and apoE levels. J. Lipid Res., 2013, 54(11), 3139-3150.
[http://dx.doi.org/10.1194/jlr.M042473] [PMID: 23999864]
[136]
Chen, H.Y.; Xu, Z.; Chen, L.F.; Wang, W.; Fang, Q.; Yan, X.W. Valsartan and telmisartan abrogate angiotensin II-induced downregulation of ABCA1 expression via AT1 receptor, rather than AT2 receptor or PPARγ activation. J. Cardiovasc. Pharmacol., 2012, 59(6), 570-575.
[http://dx.doi.org/10.1097/FJC.0b013e31824fc5e3] [PMID: 22392065]
[137]
Liang, B.; Wang, X.; Yan, F.; Bian, Y.F.; Liu, M.; Bai, R.; Yang, H.Y.; Zhang, N.N.; Yang, Z.M.; Xiao, C.S. Angiotensin-(1-7) upregulates (ATP-binding cassette transporter A1) ABCA1 expression through cyclic AMP signaling pathway in RAW 264.7 macrophages. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(7), 985-991.
[PMID: 24763878]
[138]
Liang, B.; Wang, X.; Bian, Y.; Yang, H.; Liu, M.; Bai, R.; Yang, Z.; Xiao, C. Angiotensin-(1-7) upregulates expression of adenosine tri-phosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette transporter G1 through the Mas receptor through the liver X receptor alpha signalling pathway in THP-1 macrophages treated with angiotensin-II. Clin. Exp. Pharmacol. Physiol., 2014, 41(12), 1023-1030.
[http://dx.doi.org/10.1111/1440-1681.12312] [PMID: 25225013]
[139]
Mostafa, A.M.; Hamdy, N.M.; El-Mesallamy, H.O.; Abdel-Rahman, S.Z. Glucagon-like peptide 1 (GLP-1)-based therapy upregulates LXR-ABCA1/ABCG1 cascade in adipocytes. Biochem. Biophys. Res. Commun., 2015, 468(4), 900-905.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.054] [PMID: 26603933]
[140]
Yao, Y.; Li, Q.; Gao, P.; Wang, W.; Chen, L.; Zhang, J.; Xu, Y. Glucagon-like peptide-1 contributes to increases ABCA1 expression by downregulating miR-758 to regulate cholesterol homeostasis. Biochem. Biophys. Res. Commun., 2018, 497(2), 652-658.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.126] [PMID: 29453982]
[141]
Yin, Q.H.; Zhang, R.; Li, L.; Wang, Y.T.; Liu, J.P.; Zhang, J.; Bai, L.; Cheng, J.Q.; Fu, P.; Liu, F. Exendin-4 ameliorates lipotoxicity-induced glomerular endothelial cell injury by improving abc transporter A1-mediated cholesterol Efflux in diabetic apoE knockout mice. J. Biol. Chem., 2016, 291(51), 26487-26501.
[http://dx.doi.org/10.1074/jbc.M116.730564] [PMID: 27784780]
[142]
Hu, Y.W.; Yang, J.Y.; Ma, X.; Chen, Z.P.; Hu, Y.R.; Zhao, J.Y.; Li, S.F.; Qiu, Y.R.; Lu, J.B.; Wang, Y.C.; Gao, J.J.; Sha, Y.H.; Zheng, L.; Wang, Q. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cho-lesterol homeostasis. J. Lipid Res., 2014, 55(4), 681-697.
[http://dx.doi.org/10.1194/jlr.M044669] [PMID: 24493833]
[143]
Lyu, J.; Imachi, H.; Iwama, H.; Zhang, H.; Murao, K. Insulin-like growth factor 1 regulates the expression of ATP-binding cassette trans-porter A1 in pancreatic beta cells. Horm. Metab. Res., 2016, 48(5), 338-344.
[http://dx.doi.org/10.1055/s-0035-1569272] [PMID: 26743528]
[144]
Fukunaga, K.; Imachi, H.; Lyu, J.; Dong, T.; Sato, S.; Ibata, T.; Kobayashi, T.; Yoshimoto, T.; Yonezaki, K.; Matsunaga, T.; Murao, K. IGF1 suppresses cholesterol accumulation in the liver of growth hormone-deficient mice via the activation of ABCA1. Am. J. Physiol. Endocrinol. Metab., 2018, 315(6), E1232-E1241.
[http://dx.doi.org/10.1152/ajpendo.00134.2018] [PMID: 30130150]
[145]
Tang, S.L.; Chen, W.J.; Yin, K.; Zhao, G.J.; Mo, Z.C.; Lv, Y.C.; Ouyang, X.P.; Yu, X.H.; Kuang, H.J.; Jiang, Z.S.; Fu, Y.C.; Tang, C.K. PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRα through the IGF-I-mediated signaling pathway. Atherosclerosis, 2012, 222(2), 344-354.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.03.005] [PMID: 22503545]
[146]
Hu, Y.W.; Wang, Q.; Ma, X.; Li, X.X.; Liu, X.H.; Xiao, J.; Liao, D.F.; Xiang, J.; Tang, C.K. TGF-beta1 up-regulates expression of ABCA1, ABCG1 and SR-BI through liver X receptor alpha signaling pathway in THP-1 macrophage-derived foam cells. J. Atheroscler. Thromb., 2010, 17(5), 493-502.
[http://dx.doi.org/10.5551/jat.3152] [PMID: 20057170]
[147]
Uehara, Y.; Engel, T.; Li, Z.; Goepfert, C.; Rust, S.; Zhou, X.; Langer, C.; Schachtrup, C.; Wiekowski, J.; Lorkowski, S.; Assmann, G.; von Eckardstein, A. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1. Diabetes, 2002, 51(10), 2922-2928.
[http://dx.doi.org/10.2337/diabetes.51.10.2922] [PMID: 12351428]
[148]
Ou, J.; Tu, H.; Shan, B.; Luk, A.; DeBose-Boyd, R.A.; Bashmakov, Y.; Goldstein, J.L.; Brown, M.S. Unsaturated fatty acids inhibit tran-scription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6027-6032.
[http://dx.doi.org/10.1073/pnas.111138698] [PMID: 11371634]
[149]
Ku, C.S.; Park, Y.; Coleman, S.L.; Lee, J. Unsaturated fatty acids repress expression of ATP binding cassette transporter A1 and G1 in RAW 264.7 macrophages. J. Nutr. Biochem., 2012, 23(10), 1271-1276.
[http://dx.doi.org/10.1016/j.jnutbio.2011.07.007] [PMID: 22209005]
[150]
Gan, X.; Kaplan, R.; Menke, J.G.; MacNaul, K.; Chen, Y.; Sparrow, C.P.; Zhou, G.; Wright, S.D.; Cai, T.Q. Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J. Biol. Chem., 2001, 276(52), 48702-48708.
[http://dx.doi.org/10.1074/jbc.M109402200] [PMID: 11641412]
[151]
Vaidya, M.; Jentsch, J.A.; Peters, S.; Keul, P.; Weske, S.; Gräler, M.H.; Mladenov, E.; Iliakis, G.; Heusch, G.; Levkau, B. Regulation of ABCA1-mediated cholesterol efflux by sphingosine-1-phosphate signaling in macrophages. J. Lipid Res., 2019, 60(3), 506-515.
[http://dx.doi.org/10.1194/jlr.M088443] [PMID: 30655318]
[152]
Kawashima, R.L.; Medh, J.D. Down-regulation of lipoprotein lipase increases ABCA1-mediated cholesterol efflux in THP-1 macrophages. Biochem. Biophys. Res. Commun., 2014, 450(4), 1416-1421.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.015] [PMID: 25017912]
[153]
Shrestha, E.; Hussein, M.A.; Savas, J.N.; Ouimet, M.; Barrett, T.J.; Leone, S.; Yates, J.R., III; Moore, K.J.; Fisher, E.A.; Garabedian, M.J. Poly(ADP-ribose) polymerase 1 represses liver X receptor-mediated ABCA1 expression and cholesterol efflux in macrophages. J. Biol. Chem., 2016, 291(21), 11172-11184.
[http://dx.doi.org/10.1074/jbc.M116.726729] [PMID: 27026705]
[154]
Luu, W.; Sharpe, L.J.; Brown, A.J. Protein tyrosine phosphatase inhibition down-regulates ligand-induced ABCA1 expression. Atherosclerosis, 2013, 228(2), 362-369.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.03.016] [PMID: 23582768]
[155]
Tsou, C.Y.; Chen, C.Y.; Zhao, J.F.; Su, K.H.; Lee, H.T.; Lin, S.J.; Shyue, S.K.; Hsiao, S.H.; Lee, T.S. Activation of soluble guanylyl cyclase prevents foam cell formation and atherosclerosis. Acta Physiol. (Oxf.), 2014, 210(4), 799-810.
[http://dx.doi.org/10.1111/apha.12210] [PMID: 24299003]
[156]
Kiss, R.S.; Maric, J.; Marcel, Y.L. Lipid efflux in human and mouse macrophagic cells: Evidence for differential regulation of phospholip-id and cholesterol efflux. J. Lipid Res., 2005, 46(9), 1877-1887.
[http://dx.doi.org/10.1194/jlr.M400482-JLR200] [PMID: 15995179]
[157]
Oram, J.F.; Lawn, R.M.; Garvin, M.R.; Wade, D.P. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secre-tion from macrophages. J. Biol. Chem., 2000, 275(44), 34508-34511.
[http://dx.doi.org/10.1074/jbc.M006738200] [PMID: 10918070]
[158]
Denis, M.; Bissonnette, R.; Haidar, B.; Krimbou, L.; Bouvier, M.; Genest, J. Expression, regulation, and activity of ABCA1 in human cell lines. Mol. Genet. Metab., 2003, 78(4), 265-274.
[http://dx.doi.org/10.1016/S1096-7192(03)00020-9] [PMID: 12706378]
[159]
Le Goff, W.; Zheng, P.; Brubaker, G.; Smith, J.D. Identification of the cAMP-responsive enhancer of the murine ABCA1 gene: Require-ment for CREB1 and STAT3/4 elements. Arterioscler. Thromb. Vasc. Biol., 2006, 26(3), 527-533.
[http://dx.doi.org/10.1161/01.ATV.0000201042.00725.84] [PMID: 16373613]
[160]
Park, D.W.; Lee, H.K.; Lyu, J.H.; Chin, H.; Kang, S.W.; Kim, Y.J.; Bae, Y.S.; Baek, S.H. TLR2 stimulates ABCA1 expression via PKC-η and PLD2 pathway. Biochem. Biophys. Res. Commun., 2013, 430(3), 933-937.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.135] [PMID: 23261454]
[161]
Suzuki, K.; Kawakami, Y.; Yamauchi, K. Impact of TLR 2, TLR 4-activation on the Expression of ABCA1 and ABCG1 in Raw Cells. Ann. Clin. Lab. Sci., 2017, 47(4), 436-446.
[PMID: 28801370]
[162]
Kuang, H.J.; Zhao, G.J.; Chen, W.J.; Zhang, M.; Zeng, G.F.; Zheng, X.L.; Tang, C.K. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages. Eur. J. Pharmacol., 2017, 810, 57-62.
[http://dx.doi.org/10.1016/j.ejphar.2017.06.015] [PMID: 28610841]
[163]
Pulakazhi Venu, V.K.; Adijiang, A.; Seibert, T.; Chen, Y.X.; Shi, C.; Batulan, Z.; O’Brien, E.R. Heat shock protein 27-derived atheropro-tection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice. FASEB J., 2017, 31(6), 2364-2379.
[http://dx.doi.org/10.1096/fj.201601188R] [PMID: 28232480]
[164]
Suzuki, S.; Nishimaki-Mogami, T.; Tamehiro, N.; Inoue, K.; Arakawa, R.; Abe-Dohmae, S.; Tanaka, A.R.; Ueda, K.; Yokoyama, S. Vera-pamil increases the apolipoprotein-mediated release of cellular cholesterol by induction of ABCA1 expression via Liver X receptor-independent mechanism. Arterioscler. Thromb. Vasc. Biol., 2004, 24(3), 519-525.
[http://dx.doi.org/10.1161/01.ATV.0000117178.94087.ba] [PMID: 14726413]
[165]
Fu, Y.; Zhao, Y.; Huang, B. Tribbles homolog 1 enhances cholesterol efflux from oxidized low-density lipoprotein-loaded THP-1 macro-phages. Exp. Ther. Med., 2017, 14(1), 862-866.
[http://dx.doi.org/10.3892/etm.2017.4551] [PMID: 28673011]
[166]
Pan, X.; Jiang, X.C.; Hussain, M.M. Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice. Circulation, 2013, 128(16), 1758-1769.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002885] [PMID: 24014832]
[167]
Liang, Y.; Yang, X.; Ma, L.; Cai, X.; Wang, L.; Yang, C.; Li, G.; Zhang, M.; Sun, W.; Jiang, Y. Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(3), 220-228.
[http://dx.doi.org/10.1093/abbs/gms119] [PMID: 23305686]
[168]
Mauerer, R.; Ebert, S.; Langmann, T. High glucose, unsaturated and saturated fatty acids differentially regulate expression of ATP-binding cassette transporters ABCA1 and ABCG1 in human macrophages. Exp. Mol. Med., 2009, 41(2), 126-132.
[http://dx.doi.org/10.3858/emm.2009.41.2.015] [PMID: 19287193]
[169]
Spartano, N.L.; Lamon-Fava, S.; Matthan, N.R.; Ronxhi, J.; Greenberg, A.S.; Obin, M.S.; Lichtenstein, A.H. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages. Exp. Clin. Endocrinol. Diabetes, 2014, 122(8), 463-468.
[http://dx.doi.org/10.1055/s-0034-1374600] [PMID: 24838154]
[170]
Kim, M.Y.; Ilyosbek, S.; Lee, B.H.; Yi, K.Y.; Jung, Y.S. A novel urotensin II receptor antagonist, KR-36676, prevents ABCA1 repression via ERK/IL-1β pathway. Eur. J. Pharmacol., 2017, 803, 174-178.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.056] [PMID: 28363746]
[171]
Yan, J.Q.; Tan, C.Z.; Wu, J.H.; Zhang, D.C.; Chen, J.L.; Zeng, B.Y.; Jiang, Y.P.; Nie, J.; Liu, W.; Liu, Q.; Dai, H. Neopterin negatively regu-lates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells. Mol. Cell. Biochem., 2013, 379(1-2), 123-131.
[http://dx.doi.org/10.1007/s11010-013-1634-6] [PMID: 23564066]
[172]
Llaverias, G.; Lacasa, D.; Vázquez-Carrera, M.; Sánchez, R.M.; Laguna, J.C.; Alegret, M. Cholesterol regulation of genes involved in sterol trafficking in human THP-1 macrophages. Mol. Cell. Biochem., 2005, 273(1-2), 185-191.
[http://dx.doi.org/10.1007/s11010-005-0624-8] [PMID: 16013454]
[173]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[174]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[175]
D’Amore, S.; Härdfeldt, J.; Cariello, M.; Graziano, G.; Copetti, M.; Di Tullio, G.; Piglionica, M.; Scialpi, N.; Sabbà, C.; Palasciano, G.; Vacca, M.; Moschetta, A. Identification of miR-9-5p as direct regulator of ABCA1 and HDL-driven reverse cholesterol transport in circu-lating CD14+ cells of patients with metabolic syndrome. Cardiovasc. Res., 2018, 114(8), 1154-1164.
[http://dx.doi.org/10.1093/cvr/cvy077] [PMID: 29584810]
[176]
Wang, D.; Xia, M.; Yan, X.; Li, D.; Wang, L.; Xu, Y.; Jin, T.; Ling, W. Gut microbiota metabolism of anthocyanin promotes reverse cho-lesterol transport in mice via repressing miRNA-10b. Circ. Res., 2012, 111(8), 967-981.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266502] [PMID: 22821931]
[177]
Lv, Y.C.; Tang, Y.Y.; Peng, J.; Zhao, G.J.; Yang, J.; Yao, F.; Ouyang, X.P.; He, P.P.; Xie, W.; Tan, Y.L.; Zhang, M.; Liu, D.; Tang, D.P.; Cayabyab, F.S.; Zheng, X.L.; Zhang, D.W.; Tian, G.P.; Tang, C.K. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis, 2014, 236(1), 215-226.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.07.005] [PMID: 25084135]
[178]
Liang, B.; Wang, X.; Song, X.; Bai, R.; Yang, H.; Yang, Z.; Xiao, C.; Bian, Y. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(9), 929-938.
[http://dx.doi.org/10.1016/j.bbalip.2017.06.002] [PMID: 28602962]
[179]
Sun, D.; Zhang, J.; Xie, J.; Wei, W.; Chen, M.; Zhao, X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett., 2012, 586(10), 1472-1479.
[http://dx.doi.org/10.1016/j.febslet.2012.03.068] [PMID: 22673513]
[180]
Shirasaki, T.; Honda, M.; Shimakami, T.; Horii, R.; Yamashita, T.; Sakai, Y.; Sakai, A.; Okada, H.; Watanabe, R.; Murakami, S.; Yi, M.; Lemon, S.M.; Kaneko, S. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J. Virol., 2013, 87(9), 5270-5286.
[http://dx.doi.org/10.1128/JVI.03022-12] [PMID: 23449803]
[181]
Goedeke, L.; Rotllan, N.; Ramírez, C.M.; Aranda, J.F.; Canfrán-Duque, A.; Araldi, E.; Fernández-Hernando, A.; Langhi, C.; de Cabo, R.; Baldán, Á.; Suárez, Y.; Fernández-Hernando, C. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepat-ic lipid levels in mice. Atherosclerosis, 2015, 243(2), 499-509.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.033] [PMID: 26520906]
[182]
Rayner, K.J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A.; Moore, K.J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573.
[http://dx.doi.org/10.1126/science.1189862] [PMID: 20466885]
[183]
Kim, J.; Yoon, H.; Ramírez, C.M.; Lee, S.M.; Hoe, H.S.; Fernández-Hernando, C.; Kim, J. MiR-106b impairs cholesterol efflux and in-creases Aβ levels by repressing ABCA1 expression. Exp. Neurol., 2012, 235(2), 476-483.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.010] [PMID: 22119192]
[184]
Adlakha, Y.K.; Khanna, S.; Singh, R.; Singh, V.P.; Agrawal, A.; Saini, N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis., 2013, 4(8), e780.
[http://dx.doi.org/10.1038/cddis.2013.301] [PMID: 23990020]
[185]
Kang, M.H.; Zhang, L.H.; Wijesekara, N.; de Haan, W.; Butland, S.; Bhattacharjee, A.; Hayden, M.R. Regulation of ABCA1 protein expres-sion and function in hepatic and pancreatic islet cells by miR-145. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2724-2732.
[http://dx.doi.org/10.1161/ATVBAHA.113.302004] [PMID: 24135019]
[186]
Goedeke, L.; Rotllan, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; Horton, J.D.; Lasunción, M.A.; Näär, A.M.; Suárez, Y.; Fernández-Hernando, C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med., 2015, 21(11), 1280-1289.
[http://dx.doi.org/10.1038/nm.3949] [PMID: 26437365]
[187]
Sarver, A.L.; Li, L.; Subramanian, S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and pro-moting tumor cell migration. Cancer Res., 2010, 70(23), 9570-9580.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2074] [PMID: 21118966]
[188]
Ramirez, C.M.; Dávalos, A.; Goedeke, L.; Salerno, A.G.; Warrier, N.; Cirera-Salinas, D.; Suárez, Y.; Fernández-Hernando, C. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2707-2714.
[http://dx.doi.org/10.1161/ATVBAHA.111.232066] [PMID: 21885853]
[189]
Yang, S.; Ye, Z.M.; Chen, S.; Luo, X.Y.; Chen, S.L.; Mao, L.; Li, Y.; Jin, H.; Yu, C.; Xiang, F.X.; Xie, M.X.; Chang, J.; Xia, Y.P.; Hu, B. MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J. Mol. Cell. Cardiol., 2018, 123, 139-149.
[http://dx.doi.org/10.1016/j.yjmcc.2018.09.004] [PMID: 30227118]
[190]
Gerin, I.; Clerbaux, L.A.; Haumont, O.; Lanthier, N.; Das, A.K.; Burant, C.F.; Leclercq, I.A.; MacDougald, O.A.; Bommer, G.T. Expres-sion of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem., 2010, 285(44), 33652-33661.
[http://dx.doi.org/10.1074/jbc.M110.152090] [PMID: 20732877]
[191]
Wijesekara, N.; Zhang, L.H.; Kang, M.H.; Abraham, T.; Bhattacharjee, A.; Warnock, G.L.; Verchere, C.B.; Hayden, M.R. miR-33a modu-lates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes, 2012, 61(3), 653-658.
[http://dx.doi.org/10.2337/db11-0944] [PMID: 22315319]
[192]
Mandolini, C.; Santovito, D.; Marcantonio, P.; Buttitta, F.; Bucci, M.; Ucchino, S.; Mezzetti, A.; Cipollone, F. Identification of microRNAs 758 and 33b as potential modulators of ABCA1 expression in human atherosclerotic plaques. Nutr. Metab. Cardiovasc. Dis., 2015, 25(2), 202-209.
[http://dx.doi.org/10.1016/j.numecd.2014.09.005] [PMID: 25445880]
[193]
Vega-Badillo, J.; Gutierrez-Vidal, R.; Hernandez-Perez, H.A.; Villamil-Ramirez, H.; Leon-Mimila, P.; Sanchez-Munoz, F.; Moran-Ramos, S.; Larrieta-Carrasco, E.; Fernandez-Silva, I.; Mendez-Sanchez, N.; Tovar, A.R.; Campos-Perez, F.; Villarreal-Molina, T.; Hernandez-Pando, R.; Aguilar-Salinas, C.A.; Canizales-Quinteros, S. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with stea-tohepatitis in morbidly obese subjects. Liver Int., 2016, 36(9), 1383-1391.
[194]
Sala, F.; Aranda, J.F.; Rotllan, N.; Ramírez, C.M.; Aryal, B.; Elia, L.; Condorelli, G.; Catapano, A.L.; Fernández-Hernando, C.; Norata, G.D. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice. Thromb. Haemost., 2014, 112(4), 796-802.
[http://dx.doi.org/10.1160/TH13-11-0905] [PMID: 25008143]
[195]
Wang, C.; Yu, J.; Huo, L.; Wang, L.; Feng, W.; Wang, C.C. Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a′. J. Biol. Chem., 2012, 287(2), 1139-1149.
[http://dx.doi.org/10.1074/jbc.M111.303149] [PMID: 22090031]
[196]
Lan, X.; Yan, J.; Ren, J.; Zhong, B.; Li, J.; Li, Y.; Liu, L.; Yi, J.; Sun, Q.; Yang, X.; Sun, J.; Meng, L.; Zhu, W.; Holmdahl, R.; Li, D.; Lu, S. A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metab-olism. Hepatology, 2016, 64(1), 58-72.
[http://dx.doi.org/10.1002/hep.28391] [PMID: 26663205]
[197]
Hu, Y.W.; Zhao, J.Y.; Li, S.F.; Huang, J.L.; Qiu, Y.R.; Ma, X.; Wu, S.G.; Chen, Z.P.; Hu, Y.R.; Yang, J.Y.; Wang, Y.C.; Gao, J.J.; Sha, Y.H.; Zheng, L.; Wang, Q. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cho-lesterol homeostasis and inflammatory reaction. Arterioscler. Thromb. Vasc. Biol., 2015, 35(1), 87-101.
[http://dx.doi.org/10.1161/ATVBAHA.114.304296] [PMID: 25265644]
[198]
Sallam, T.; Jones, M.; Thomas, B.J.; Wu, X.; Gilliland, T.; Qian, K.; Eskin, A.; Casero, D.; Zhang, Z.; Sandhu, J.; Salisbury, D.; Rajbhandari, P.; Civelek, M.; Hong, C.; Ito, A.; Liu, X.; Daniel, B.; Lusis, A.J.; Whitelegge, J.; Nagy, L.; Castrillo, A.; Smale, S.; Tontonoz, P. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat. Med., 2018, 24(3), 304-312.
[http://dx.doi.org/10.1038/nm.4479] [PMID: 29431742]
[199]
Pulido-Capiz, A.; Díaz-Molina, R.; Martínez-Navarro, I.; Guevara-Olaya, L.A.; Casanueva-Pérez, E.; Mas-Oliva, J.; Rivero, I.A.; García-González, V. Modulation of amyloidogenesis controlled by the c-terminal domain of islet amyloid polypeptide shows new functions on hepatocyte cholesterol metabolism. Front. Endocrinol. (Lausanne), 2018, 9, 331.
[http://dx.doi.org/10.3389/fendo.2018.00331] [PMID: 29988450]
[200]
Ramírez, C.M.; Lin, C.S.; Abdelmohsen, K.; Goedeke, L.; Yoon, J.H.; Madrigal-Matute, J.; Martin-Ventura, J.L.; Vo, D.T.; Uren, P.J.; Penalva, L.O.; Gorospe, M.; Fernández-Hernando, C. RNA binding protein HuR regulates the expression of ABCA1. J. Lipid Res., 2014, 55(6), 1066-1076.
[http://dx.doi.org/10.1194/jlr.M044925] [PMID: 24729624]
[201]
Li, Y.; Jiang, B.; Liang, P.; Tong, Z.; Liu, M.; Lv, Q.; Liu, Y.; Liu, X.; Tang, Y.; Xiao, X. Nucleolin protects macrophages from oxLDL-induced foam cell formation through up-regulating ABCA1 expression. Biochem. Biophys. Res. Commun., 2017, 486(2), 364-371.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.047] [PMID: 28315324]
[202]
Hsieh, V.; Kim, M.J.; Gelissen, I.C.; Brown, A.J.; Sandoval, C.; Hallab, J.C.; Kockx, M.; Traini, M.; Jessup, W.; Kritharides, L. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J. Biol. Chem., 2014, 289(11), 7524-7536.
[http://dx.doi.org/10.1074/jbc.M113.515890] [PMID: 24500716]
[203]
Aleidi, S.M.; Howe, V.; Sharpe, L.J.; Yang, A.; Rao, G.; Brown, A.J.; Gelissen, I.C. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters. J. Biol. Chem., 2015, 290(40), 24604-24613.
[http://dx.doi.org/10.1074/jbc.M115.675579] [PMID: 26296893]
[204]
Ogura, M.; Ayaori, M.; Terao, Y.; Hisada, T.; Iizuka, M.; Takiguchi, S.; Uto-Kondo, H.; Yakushiji, E.; Nakaya, K.; Sasaki, M.; Komatsu, T.; Ozasa, H.; Ohsuzu, F.; Ikewaki, K. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 ex-pression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9), 1980-1987.
[http://dx.doi.org/10.1161/ATVBAHA.111.228478] [PMID: 21817095]
[205]
Yokoyama, S.; Arakawa, R.; Wu, C.A.; Iwamoto, N.; Lu, R.; Tsujita, M.; Abe-Dohmae, S. Calpain-mediated ABCA1 degradation: Post-translational regulation of ABCA1 for HDL biogenesis. Biochim. Biophys. Acta, 2012, 1821(3), 547-551.
[http://dx.doi.org/10.1016/j.bbalip.2011.07.017] [PMID: 21835264]
[206]
Yamauchi, Y.; Hayashi, M.; Abe-Dohmae, S.; Yokoyama, S. Apolipoprotein A-I activates protein kinase C alpha signaling to phosphory-late and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. J. Biol. Chem., 2003, 278(48), 47890-47897.
[http://dx.doi.org/10.1074/jbc.M306258200] [PMID: 12952980]
[207]
Arakawa, R.; Yokoyama, S. Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J. Biol. Chem., 2002, 277(25), 22426-22429.
[http://dx.doi.org/10.1074/jbc.M202996200] [PMID: 11950847]
[208]
Wang, N.; Chen, W.; Linsel-Nitschke, P.; Martinez, L.O.; Agerholm-Larsen, B.; Silver, D.L.; Tall, A.R. A PEST sequence in ABCA1 regu-lates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest., 2003, 111(1), 99-107.
[http://dx.doi.org/10.1172/JCI200316808] [PMID: 12511593]
[209]
Martinez, L.O.; Agerholm-Larsen, B.; Wang, N.; Chen, W.; Tall, A.R. Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J. Biol. Chem., 2003, 278(39), 37368-37374.
[http://dx.doi.org/10.1074/jbc.M307161200] [PMID: 12869555]
[210]
Iwamoto, N.; Lu, R.; Tanaka, N.; Abe-Dohmae, S.; Yokoyama, S. Calmodulin interacts with ATP binding cassette transporter A1 to protect from calpain-mediated degradation and upregulates high-density lipoprotein generation. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1446-1452.
[http://dx.doi.org/10.1161/ATVBAHA.110.203927] [PMID: 20395597]
[211]
Zhang, M.; Li, L.; Xie, W.; Wu, J.F.; Yao, F.; Tan, Y.L.; Xia, X.D.; Liu, X.Y.; Liu, D.; Lan, G.; Zeng, M.Y.; Gong, D.; Cheng, H.P.; Huang, C.; Zhao, Z.W.; Zheng, X.L.; Tang, C.K. Apolipoprotein A-1 binding protein promotes macrophage cholesterol efflux by facilitating apolipoprotein A-1 binding to ABCA1 and preventing ABCA1 degradation. Atherosclerosis, 2016, 248, 149-159.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.008] [PMID: 27017521]
[212]
Okoro, E.U.; Guo, Z.; Yang, H. Akt isoform-dependent regulation of ATP-Binding cassette A1 expression by apolipoprotein E. Biochem. Biophys. Res. Commun., 2016, 477(1), 123-128.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.031] [PMID: 27297104]
[213]
Tardy, C.; Goffinet, M.; Boubekeur, N.; Cholez, G.; Ackermann, R.; Sy, G.; Keyserling, C.; Lalwani, N.; Paolini, J.F.; Dasseux, J.L.; Barba-ras, R.; Baron, R. HDL and CER-001 inverse-dose dependent inhibition of atherosclerotic plaque formation in apoe-/- mice: Evidence of ABCA1 down-regulation. PLoS One, 2015, 10(9), e0137584.
[http://dx.doi.org/10.1371/journal.pone.0137584] [PMID: 26335690]
[214]
Mizuno, T.; Hayashi, H.; Naoi, S.; Sugiyama, Y. Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway. Hepatology, 2011, 54(2), 631-643.
[http://dx.doi.org/10.1002/hep.24387] [PMID: 21520210]
[215]
Iborra, R.T.; Machado-Lima, A.; Okuda, L.S.; Pinto, P.R.; Nakandakare, E.R.; Machado, U.F.; Correa-Giannella, M.L.; Pickford, R.; Woods, T.; Brimble, M.A.; Rye, K.A.; Lu, R.; Yokoyama, S.; Passarelli, M. AGE-albumin enhances ABCA1 degradation by ubiquitin-proteasome and lysosomal pathways in macrophages. J. Diabetes Complications, 2018, 32(1), 1-10.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.09.012] [PMID: 29097054]
[216]
Azuma, Y.; Takada, M.; Maeda, M.; Kioka, N.; Ueda, K. The COP9 signalosome controls ubiquitinylation of ABCA1. Biochem. Biophys. Res. Commun., 2009, 382(1), 145-148.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.161] [PMID: 19268428]
[217]
Wang, Y.; Oram, J.F. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cas-sette transporter A1. J. Biol. Chem., 2002, 277(7), 5692-5697.
[http://dx.doi.org/10.1074/jbc.M109977200] [PMID: 11741998]
[218]
Ku, C.S.; Rasmussen, H.E.; Park, Y.; Jesch, E.D.; Lee, J. Unsaturated fatty acids repress the expression of ATP-binding cassette trans-porter A1 in HepG2 and FHs 74 Int cells. Nutr. Res., 2011, 31(4), 278-285.
[http://dx.doi.org/10.1016/j.nutres.2011.03.007] [PMID: 21530801]
[219]
Wang, Y.; Oram, J.F. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a phospholipase D2 pathway. J. Biol. Chem., 2005, 280(43), 35896-35903.
[http://dx.doi.org/10.1074/jbc.M506210200] [PMID: 16118212]
[220]
Montakhab-Yeganeh, H.; Babaahmadi-Rezaei, H.; Doosti, M. Effect of elaidic acid on ABCA1 expression in raw 264.7 cells. Is it through PPAR-gamma? EXCLI J., 2018, 17, 864-870.
[PMID: 30233285]
[221]
Spartano, N.L.; Lamon-Fava, S.; Matthan, N.R.; Obin, M.S.; Greenberg, A.S.; Lichtenstein, A.H. Linoleic acid suppresses cholesterol ef-flux and ATP-binding cassette transporters in murine bone marrow-derived macrophages. Lipids, 2014, 49(5), 415-422.
[http://dx.doi.org/10.1007/s11745-014-3890-y] [PMID: 24595513]
[222]
Munehira, Y.; Ohnishi, T.; Kawamoto, S.; Furuya, A.; Shitara, K.; Imamura, M.; Yokota, T.; Takeda, S.; Amachi, T.; Matsuo, M.; Kioka, N.; Ueda, K. Alpha1-syntrophin modulates turnover of ABCA1. J. Biol. Chem., 2004, 279(15), 15091-15095.
[http://dx.doi.org/10.1074/jbc.M313436200] [PMID: 14722086]
[223]
Okuhira, K.; Fitzgerald, M.L.; Sarracino, D.A.; Manning, J.J.; Bell, S.A.; Goss, J.L.; Freeman, M.W. Purification of ATP-binding cassette transporter A1 and associated binding proteins reveals the importance of beta1-syntrophin in cholesterol efflux. J. Biol. Chem., 2005, 280(47), 39653-39664.
[http://dx.doi.org/10.1074/jbc.M510187200] [PMID: 16192269]
[224]
Zhao, G.J.; Yin, K.; Fu, Y.C.; Tang, C.K. The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Mol. Med., 2012, 18(2), 149-158.
[http://dx.doi.org/10.2119/molmed.2011.00183] [PMID: 22064972]
[225]
Mulay, V.; Wood, P.; Manetsch, M.; Darabi, M.; Cairns, R.; Hoque, M.; Chan, K.C.; Reverter, M.; Alvarez-Guaita, A.; Rye, K.A.; Rentero, C.; Heeren, J.; Enrich, C.; Grewal, T. Inhibition of mitogen-activated protein kinase Erk1/2 promotes protein degradation of ATP binding cassette transporters A1 and G1 in CHO and HuH7 cells. PLoS One, 2013, 8(4), e62667.
[http://dx.doi.org/10.1371/journal.pone.0062667] [PMID: 23634230]
[226]
Li, W.; Wang, D.; Chi, Y.; Wang, R.; Zhang, F.; Ma, G.; Chen, Z.; Li, J.; Liu, Z.; Matsuura, E.; Liu, Q. 7-Ketocholesteryl-9-carboxynonanoate enhances the expression of ATP-binding cassette transporter A1 via CD36. Atherosclerosis, 2013, 226(1), 102-109.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.10.038] [PMID: 23200840]
[227]
Agassandian, M.; Miakotina, O.L.; Andrews, M.; Mathur, S.N.; Mallampalli, R.K. Pseudomonas aeruginosa and sPLA2 IB stimulate ABCA1-mediated phospholipid efflux via ERK-activation of PPARalpha-RXR. Biochem. J., 2007, 403(3), 409-420.
[http://dx.doi.org/10.1042/BJ20061364] [PMID: 17223797]
[228]
Zhou, X.; Yin, Z.; Guo, X.; Hajjar, D.P.; Han, J. Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J. Biol. Chem., 2010, 285(9), 6316-6326.
[http://dx.doi.org/10.1074/jbc.M109.073601] [PMID: 20037141]
[229]
Chang, Y.C.; Sheu, W.H.; Chien, Y.S.; Tseng, P.C.; Lee, W.J.; Chiang, A.N. Hyperglycemia accelerates ATP-binding cassette transporter A1 degradation via an ERK-dependent pathway in macrophages. J. Cell. Biochem., 2013, 114(6), 1364-1373.
[http://dx.doi.org/10.1002/jcb.24478] [PMID: 23239052]
[230]
Mukhamedova, N.; Hoang, A.; Cui, H.L.; Carmichael, I.; Fu, Y.; Bukrinsky, M.; Sviridov, D. Small GTPase ARF6 regulates endocytic pathway leading to degradation of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol., 2016, 36(12), 2292-2303.
[http://dx.doi.org/10.1161/ATVBAHA.116.308418] [PMID: 27758770]
[231]
Nonomura, K.; Arai, Y.; Mitani, H.; Abe-Dohmae, S.; Yokoyama, S. Insulin down-regulates specific activity of ATP-binding cassette transporter A1 for high density lipoprotein biogenesis through its specific phosphorylation. Atherosclerosis, 2011, 216(2), 334-341.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.021] [PMID: 21402379]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy