Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Autophagy in Cancer Cell Transformation: A Potential Novel Therapeutic Strategy

Author(s): Basheer Abdullah Marzoog*

Volume 22, Issue 9, 2022

Published on: 05 July, 2022

Page: [749 - 756] Pages: 8

DOI: 10.2174/1568009622666220428102741

Price: $65

Abstract

Basal autophagy plays a crucial role in maintaining intracellular homeostasis and prevents the cell from escaping the cell cycle regulation mechanisms and being cancerous. Mitophagy and nucleophagy are essential for cell health. Autophagy plays a pivotal role in cancer cell transformation, where upregulated precancerous autophagy induces apoptosis. Impaired autophagy has been shown to upregulate cancer cell transformation. However, tumor cells upregulate autophagy to escape elimination and survive the unfavorable conditions and resistance to chemotherapy. Cancer cells promote autophagy through modulation of autophagy regulation mechanisms and increase expression of the autophagyrelated genes. Whereas, autophagy regulation mechanisms involved microRNAs, transcription factors, and the internalized signaling pathways such as AMPK, mTOR, III PI3K, and ULK-1. Disrupted regulatory mechanisms are various as the cancer cell polymorphism. Targeting a higher level of autophagy regulation is more effective, such as gene expression, transcription factors, or epigenetic modification that are responsible for the up-regulation of autophagy in cancer cells. Currently, the CRISPR-CAS9 technique is available and can be applied to demonstrate the potential effects of autophagy in cancerous cells.

Keywords: Autophagy, metastasis, transformation, tumorigenesis, pathogenesis, nucleophagy, mitophagy, angiogenesis.

Graphical Abstract
[1]
Marinković M.; Šprung, M.; Buljubašić M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid. Med. Cell. Longev., 2018, 2018, 8023821.
[http://dx.doi.org/10.1155/2018/8023821] [PMID: 29643976]
[2]
Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2021, 17(1), 1-382.
[http://dx.doi.org/10.1080/15548627.2020.1797280]
[3]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[4]
Marzoog, B.A.; Vlasova, T.I. Beta-cell autophagy under the scope of hypoglycemic drugs; Possible mechanism as a novel therapeutic target. Obes. Metab., 2022, 18(4), 465-470.
[http://dx.doi.org/10.14341/omet12778]
[5]
Marzoog, B.A.; Vlasova, T.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strat-egy. Egypt. J. Med. Hum. Genet., 2022, 23(1), 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[6]
Poillet-Perez, L.; Despouy, G.; Delage-Mourroux, R.; Boyer-Guittaut, M. Interplay between ROS and autophagy in cancer cells, from tu-mor initiation to cancer therapy. Redox Biol., 2015, 4, 184-192.
[http://dx.doi.org/10.1016/j.redox.2014.12.003] [PMID: 25590798]
[7]
Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ., 2019, 26(2), 199-212.
[http://dx.doi.org/10.1038/s41418-018-0246-9] [PMID: 30538286]
[8]
Gao, W.; Shen, Z.; Shang, L.; Wang, X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ., 2011, 18(10), 1598-1607.
[http://dx.doi.org/10.1038/cdd.2011.33] [PMID: 21475306]
[9]
Bensaad, K.; Cheung, E.C.; Vousden, K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J., 2009, 28(19), 3015-3026.
[http://dx.doi.org/10.1038/emboj.2009.242] [PMID: 19713938]
[10]
Elgendy, M.; Sheridan, C.; Brumatti, G.; Martin, S.J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell, 2011, 42(1), 23-35.
[http://dx.doi.org/10.1016/j.molcel.2011.02.009] [PMID: 21353614]
[11]
Daskalaki, I.; Gkikas, I.; Tavernarakis, N. Hypoxia and selective autophagy in cancer development and therapy. Front. Cell Dev. Biol., 2018, 6(SEP), 104.
[http://dx.doi.org/10.3389/fcell.2018.00104] [PMID: 30250843]
[12]
Mathiassen, S.G.; De Zio, D.; Cecconi, F. Autophagy and the cell cycle: A complex landscape. Front. Oncol., 2017, 7(MAR), 51.
[http://dx.doi.org/10.3389/fonc.2017.00051] [PMID: 28409123]
[13]
Farhan, M.; Silva, M.; Li, S.; Yan, F.; Fang, J.; Peng, T.; Hu, J.; Tsao, M.S.; Little, P.; Zheng, W. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med. Res. Rev., 2020, 40(6), 2089-2113.
[http://dx.doi.org/10.1002/med.21695] [PMID: 32474970]
[14]
Song, T.T.; Cai, R.S.; Hu, R.; Xu, Y.S.; Qi, B.N.; Xiong, Y.A. The important role of TFEB in autophagy-lysosomal pathway and autopha-gy-related diseases: A systematic review. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1641-1649.
[http://dx.doi.org/10.26355/eurrev_202102_24875] [PMID: 33629334]
[15]
Qin, Q.F.; Li, X.J.; Li, Y.S.; Zhang, W.K.; Tian, G.H.; Shang, H.C.; Tang, H.B. AMPK-ERK/CARM1 signaling pathways affect autophagy of hepatic cells in samples of liver cancer patients. Front. Oncol., 2019, 9, 1247.
[http://dx.doi.org/10.3389/fonc.2019.01247] [PMID: 31799198]
[16]
Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol., 2020, 13(1), 113.
[http://dx.doi.org/10.1186/s13045-020-00949-4] [PMID: 32807225]
[17]
Xu, F.; Na, L.; Li, Y.; Chen, L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[18]
Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multi-drug resistance of cancers. Cell Death Dis., 2020, 11(9), 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[19]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[20]
Benesch, M.G.K.; Bursey, S.R.; O’Connell, A.C.; Ryan, M.G.; Howard, C.L.; Stockley, C.C.; Mathieson, A. CDH1 gene mutation heredi-tary diffuse gastric cancer outcomes: Analysis of a large cohort, systematic review of endoscopic surveillance, and secondary cancer risk postulation. Cancers (Basel), 2021, 13(11), 2622.
[http://dx.doi.org/10.3390/cancers13112622] [PMID: 34073553]
[21]
Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med., 2013, 368(7), 651-662.
[http://dx.doi.org/10.1056/NEJMra1205406] [PMID: 23406030]
[22]
Kwon, J.J.; Willy, J.A.; Quirin, K.A.; Wek, R.C.; Korc, M.; Yin, X-M.; Kota, J.; Kwon, J.J.; Willy, J.A.; Quirin, K.A. Novel role of miR-29a in pancreatic cancer autophagy and its therapeutic potential. Oncotarget, 2016, 7(44), 71635-71650.
[http://dx.doi.org/10.18632/oncotarget.11928] [PMID: 27626694]
[23]
Hashimoto, D.; Bläuer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adeno-carcinoma and has a cytoprotective effect against anticancer drugs. Eur. J. Cancer, 2014, 50(7), 1382-1390.
[http://dx.doi.org/10.1016/j.ejca.2014.01.011] [PMID: 24503026]
[24]
He, S.; Zhao, Z.; Yang, Y.; O’Connell, D.; Zhang, X.; Oh, S.; Ma, B.; Lee, J.H.; Zhang, T.; Varghese, B.; Yip, J.; Dolatshahi Pirooz, S.; Li, M.; Zhang, Y.; Li, G.M.; Ellen Martin, S.; Machida, K.; Liang, C. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat. Commun., 2015, 6(1), 7839.
[http://dx.doi.org/10.1038/ncomms8839] [PMID: 26234763]
[25]
Coppola, D.; Khalil, F.; Eschrich, S.A.; Boulware, D.; Yeatman, T.; Wang, H.G. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer, 2008, 113(10), 2665-2670.
[http://dx.doi.org/10.1002/cncr.23892] [PMID: 18833585]
[26]
Shen, Y.; Li, D.D.; Wang, L.L.; Deng, R.; Zhu, X.F. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy, 2008, 4(8), 1067-1068.
[http://dx.doi.org/10.4161/auto.6827] [PMID: 18776739]
[27]
Perera, R.M.; Stoykova, S.; Nicolay, B.N.; Ross, K.N.; Fitamant, J.; Boukhali, M.; Lengrand, J.; Deshpande, V.; Selig, M.K.; Ferrone, C.R.; Settleman, J.; Stephanopoulos, G.; Dyson, N.J.; Zoncu, R.; Ramaswamy, S.; Haas, W.; Bardeesy, N. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature, 2015, 524(7565), 361-365.
[http://dx.doi.org/10.1038/nature14587] [PMID: 26168401]
[28]
Levine, B.; Kroemer, G. Biological functions of autophagy genes: A disease perspective. Cell, 2019, 176(1-2), 11-42.
[http://dx.doi.org/10.1016/j.cell.2018.09.048] [PMID: 30633901]
[29]
Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; Chen, Q. Mitophagy receptor FUNDC1 regu-lates mitochondrial dynamics and mitophagy. Autophagy, 2016, 12(4), 689-702.
[http://dx.doi.org/10.1080/15548627.2016.1151580] [PMID: 27050458]
[30]
Chen, Z.; Siraj, S.; Liu, L.; Chen, Q. MARCH5-FUNDC1 axis fine-tunes hypoxia-induced mitophagy. Autophagy, 2017, 13(7), 1244-1245.
[http://dx.doi.org/10.1080/15548627.2017.1310789] [PMID: 28486049]
[31]
Ney, P.A. Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochim. Biophys. Acta, 2015, 1853(10 Pt B), 2775-2783.
[http://dx.doi.org/10.1016/j.bbamcr.2015.02.022] [PMID: 25753537]
[32]
Vives-Bauza, C.; Zhou, C.; Huang, Y.; Cui, M.; de Vries, R.L.A.; Kim, J.; May, J.; Tocilescu, M.A.; Liu, W.; Ko, H.S.; Magrané, J.; Moore, D.J.; Dawson, V.L.; Grailhe, R.; Dawson, T.M.; Li, C.; Tieu, K.; Przedborski, S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 378-383.
[http://dx.doi.org/10.1073/pnas.0911187107] [PMID: 19966284]
[33]
Yamano, K.; Wang, C.; Sarraf, S.A.; Münch, C.; Kikuchi, R.; Noda, N.N.; Hizukuri, Y.; Kanemaki, M.T.; Harper, W.; Tanaka, K.; Matsuda, N.; Youle, R.J. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife, 2018, 7, e31326.
[http://dx.doi.org/10.7554/eLife.31326] [PMID: 29360040]
[34]
Hammerling, B.C.; Najor, R.H.; Cortez, M.Q.; Shires, S.E.; Leon, L.J.; Gonzalez, E.R.; Boassa, D.; Phan, S.; Thor, A.; Jimenez, R.E.; Li, H.; Kitsis, R.N.; Dorn, G.W., II; Sadoshima, J.; Ellisman, M.H.; Gustafsson, Å.B.A. Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat. Commun., 2017, 8(1), 14050.
[http://dx.doi.org/10.1038/ncomms14050] [PMID: 28134239]
[35]
Bhujabal, Z.; Birgisdottir, Å.B.; Sjøttem, E.; Brenne, H.B.; Øvervatn, A.; Habisov, S.; Kirkin, V.; Lamark, T.; Johansen, T. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep., 2017, 18(6), 947-961.
[http://dx.doi.org/10.15252/embr.201643147] [PMID: 28381481]
[36]
Murakawa, T.; Yamaguchi, O.; Hashimoto, A.; Hikoso, S.; Takeda, T.; Oka, T.; Yasui, H.; Ueda, H.; Akazawa, Y.; Nakayama, H.; Taneike, M.; Misaka, T.; Omiya, S.; Shah, A.M.; Yamamoto, A.; Nishida, K.; Ohsumi, Y.; Okamoto, K.; Sakata, Y.; Otsu, K. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun., 2015, 6(1), 7527.
[http://dx.doi.org/10.1038/ncomms8527] [PMID: 26146385]
[37]
Di Rita, A.; Peschiaroli, A.; D., Acunzo P.; Strobbe, D.; Hu, Z.; Gruber, J.; Nygaard, M.; Lambrughi, M.; Melino, G.; Papaleo, E.; Dengjel, J.; El Alaoui, S.; Campanella, M.; Dötsch, V.; Rogov, V.V.; Strappazzon, F.; Cecconi, F. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα Nat. Commun., 2018, 9(1), 3755.
[http://dx.doi.org/10.1038/s41467-018-05722-3] [PMID: 30217973]
[38]
Eid, N.; Kondo, Y. Parkin in cancer: Mitophagy-related/unrelated tasks. World J. Hepatol., 2017, 9(7), 349-351.
[http://dx.doi.org/10.4254/wjh.v9.i7.349] [PMID: 28321271]
[39]
Kulikov, A.V.; Luchkina, E.A.; Gogvadze, V.; Zhivotovsky, B. Mitophagy: Link to cancer development and therapy. Biochem. Biophys. Res. Commun., 2017, 482(3), 432-439.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.088] [PMID: 28212727]
[40]
Whelan, K.A.; Chandramouleeswaran, P.M.; Tanaka, K.; Natsuizaka, M.; Guha, M.; Srinivasan, S.; Darling, D.S.; Kita, Y.; Natsugoe, S.; Winkler, J.D.; Klein-Szanto, A.J.; Amaravadi, R.K.; Avadhani, N.G.; Rustgi, A.K.; Nakagawa, H. Autophagy supports generation of cells with high CD44 expression via modulation of oxidative stress and Parkin-mediated mitochondrial clearance. Oncogene, 2017, 36(34), 4843-4858.
[http://dx.doi.org/10.1038/onc.2017.102] [PMID: 28414310]
[41]
Liu, K.; Lee, J.; Kim, J.Y.; Wang, L.; Tian, Y.; Chan, S.T.; Cho, C.; Machida, K.; Chen, D.; Ou, J.J. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol. Cell, 2017, 68(2), 281-292.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.09.022] [PMID: 29033320]
[42]
Chang, H.W.; Kim, M.R.; Lee, H.J.; Lee, H.M.; Kim, G.C.; Lee, Y.S.; Nam, H.Y.; Lee, M.; Jang, H.J.; Lee, K.E.; Lee, J.C.; Byun, Y.; Kim, S.W.; Kim, S.Y. p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene, 2019, 38(19), 3729-3742.
[http://dx.doi.org/10.1038/s41388-019-0697-6] [PMID: 30664690]
[43]
Li, C.; Zhang, Y.; Cheng, X.; Yuan, H.; Zhu, S.; Liu, J.; Wen, Q.; Xie, Y.; Liu, J.; Kroemer, G.; Klionsky, D.J.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabo-lism. Dev. Cell, 2018, 46(4), 441-455.e8.
[http://dx.doi.org/10.1016/j.devcel.2018.07.012] [PMID: 30100261]
[44]
Sassano, M.L.; van Vliet, A.R.; Agostinis, P. Mitochondria-associated membranes as networking platforms and regulators of cancer cell fate. Front. Oncol., 2017, 7, 174.
[http://dx.doi.org/10.3389/fonc.2017.00174] [PMID: 28868254]
[45]
Abdrakhmanov, A.; Kulikov, A.V.; Luchkina, E.A.; Zhivotovsky, B.; Gogvadze, V. Involvement of mitophagy in cisplatin-induced cell death regulation. Biol. Chem., 2019, 400(2), 161-170.
[http://dx.doi.org/10.1515/hsz-2018-0210] [PMID: 29924729]
[46]
Wang, K.; Klionsky, D.J. Mitochondria removal by autophagy. Autophagy, 2011, 7(3), 297-300.
[http://dx.doi.org/10.4161/auto.7.3.14502] [PMID: 21252623]
[47]
Hill, S.M.; Wrobel, L.; Rubinsztein, D.C. Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ., 2019, 26(4), 617-629.
[http://dx.doi.org/10.1038/s41418-018-0254-9] [PMID: 30546075]
[48]
Li, Y.; Jiang, X.; Zhang, Y.; Gao, Z.; Liu, Y.; Hu, J.; Hu, X.; Li, L.; Shi, J.; Gao, N. Nuclear accumulation of UBC9 contributes to SUMOylation of lamin A/C and nucleophagy in response to DNA damage 2019, 38(1), 67.
[49]
Dannheisig, D.P.; Schimansky, A.; Donow, C.; Pfister, A.S. Nucleolar stress functions upstream to stimulate expression of autophagy regulators. Cancers, 2021, 13(24), 6220.
[http://dx.doi.org/10.3390/cancers13246220]
[50]
Holmberg Olausson, K.; Nistér, M.; Lindström, M.S. p53 -dependent and -independent nucleolar stress responses. Cells, 2012, 1(4), 774-798.
[http://dx.doi.org/10.3390/cells1040774] [PMID: 24710530]
[51]
Khot, A.; Brajanovski, N.; Cameron, D.P.; Hein, N.; Maclachlan, K.H.; Sanij, E.; Lim, J.; Soong, J.; Link, E.; Blombery, P.; Thompson, E.R.; Fellowes, A.; Sheppard, K.E.; McArthur, G.A.; Pearson, R.B.; Hannan, R.D.; Poortinga, G.; Harrison, S.J. First-in-human RNA pol-ymerase i transcription inhibitor CX-5461 in patients with advanced hematologic cancers: Results of a phase I dose-escalation study. Cancer Discov., 2019, 9(8), 1036-1049.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1455] [PMID: 31092402]
[52]
Burger, K.; Mühl, B.; Harasim, T.; Rohrmoser, M.; Malamoussi, A.; Orban, M.; Kellner, M.; Gruber-Eber, A.; Kremmer, E.; Hölzel, M.; Eick, D. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem., 2010, 285(16), 12416-12425.
[http://dx.doi.org/10.1074/jbc.M109.074211] [PMID: 20159984]
[53]
Gray, J.P.; Uddin, M.N.; Chaudhari, R.; Sutton, M.N.; Yang, H.; Rask, P.; Locke, H.; Engel, B.J.; Batistatou, N.; Wang, J.; Grindel, B.J.; Bhattacharya, P.; Gammon, S.T.; Zhang, S.; Piwnica-Worms, D.; Kritzer, J.A.; Lu, Z.; Bast, R.C., Jr; Millward, S.W. Directed evolution of cyclic peptides for inhibition of autophagy. Chem. Sci. (Camb.), 2021, 12(10), 3526-3543.
[http://dx.doi.org/10.1039/D0SC03603J] [PMID: 34163626]
[54]
Wang, H.; Peng, Y.; Wang, J.; Gu, A.; Li, Q.; Mao, D.; Guo, L. Effect of autophagy on the resveratrol-induced apoptosis of ovarian cancer SKOV3 cells. J. Cell. Biochem., 2018, 120(5), 7788-7793.
[http://dx.doi.org/10.1002/jcb.28053] [PMID: 30450764]
[55]
Zhao, F.; Feng, G.; Zhu, J.; Su, Z.; Guo, R.; Liu, J.; Zhang, H.; Zhai, Y. 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocel-lular carcinoma cells by inhibiting autophagy. Anticancer Drugs, 2021, 32(4), 386-393.
[http://dx.doi.org/10.1097/CAD.0000000000001032] [PMID: 33395067]
[56]
Gornowicz, A.; Szymanowska, A.; Mojzych, M.; Bielawski, K.; Bielawska, A. The effect of novel 7-methyl-5-phenyl-pyrazolo triazine sulfonamide derivatives on apoptosis and autophagy in DLD-1 and HT-29 mdpi.com, 2020, 21(15), 1-18.
[http://dx.doi.org/10.3390/ijms21155221]
[57]
Shao, S.; Li, S.; Qin, Y.; Wang, X.; Yang, Y.; Bai, H.; Zhou, L.; Zhao, C.; Wang, C. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia. Int. J. Oncol., 2014, 44(5), 1661-1668.
[http://dx.doi.org/10.3892/ijo.2014.2313] [PMID: 24585095]
[58]
Correa, R.J.M.; Valdes, Y.R.; Peart, T.M.; Fazio, E.N.; Bertrand, M.; McGee, J.; Préfontaine, M.; Sugimoto, A.; DiMattia, G.E.; Shepherd, T.G. Combination of AKT inhibition with autophagy blockade effectively reduces ascites-derived ovarian cancer cell viability. Carcinogenesis, 2014, 35(9), 1951-1961.
[http://dx.doi.org/10.1093/carcin/bgu049] [PMID: 24562574]
[59]
Liao, Y.; Guo, Z.; Xia, X.; Liu, Y.; Huang, C.; Jiang, L.; Wang, X.; Liu, J.; Huang, H. Inhibition of EGFR signaling with Spautin-1 repre-sents a novel therapeutics for prostate cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 157.
[http://dx.doi.org/10.1186/s13046-019-1165-4] [PMID: 30975171]
[60]
Nawrocki, S.T.; Han, Y.; Visconte, V.; Przychodzen, B.; Espitia, C.M.; Phillips, J.; Anwer, F.; Advani, A.; Carraway, H.E.; Kelly, K.R.; Sekeres, M.A.; Maciejewski, J.P.; Carew, J.S. The novel autophagy inhibitor ROC-325 augments the antileukemic activity of azacitidine. Leukemia, 2019, 33(12), 2971-2974.
[http://dx.doi.org/10.1038/s41375-019-0529-2] [PMID: 31358855]
[61]
Baquero, P.; Dawson, A.; Mukhopadhyay, A.; Kuntz, E.M.; Mitchell, R.; Olivares, O.; Ianniciello, A.; Scott, M.T.; Dunn, K.; Nicastri, M.C.; Winkler, J.D.; Michie, A.M.; Ryan, K.M.; Halsey, C.; Gottlieb, E.; Keaney, E.P.; Murphy, L.O.; Amaravadi, R.K.; Holyoake, T.L.; Helgason, G.V. Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33(4), 981-994.
[http://dx.doi.org/10.1038/s41375-018-0252-4] [PMID: 30185934]
[62]
Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine in-hibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455.
[http://dx.doi.org/10.1080/15548627.2018.1474314] [PMID: 29940786]
[63]
Petroni, G.; Bagni, G.; Iorio, J.; Duranti, C.; Lottini, T.; Stefanini, M.; Kragol, G.; Becchetti, A.; Arcangeli, A. Clarithromycin inhibits au-tophagy in colorectal cancer by regulating the hERG1 potassium channel interaction with PI3K. Cell Death Dis., 2020, 11(3), 161.
[http://dx.doi.org/10.1038/s41419-020-2349-8] [PMID: 32123164]
[64]
Bishop, E.; Bradshaw, T.D. Autophagy modulation: A prudent approach in cancer treatment? Cancer Chemother. Pharmacol., 2018, 82(6), 913-922.
[http://dx.doi.org/10.1007/s00280-018-3669-6] [PMID: 30182146]
[65]
Choi, K.S. Autophagy and cancer. Exp. Mol. Med., 2012, 44(2), 109-120.
[http://dx.doi.org/10.3858/emm.2012.44.2.033] [PMID: 22257886]
[66]
Vainshtein, A.; Grumati, P. Selective autophagy by close encounters of the ubiquitin kind. Cells, 2020, 9(11), E2349.
[http://dx.doi.org/10.3390/cells9112349] [PMID: 33114389]
[67]
Wong, H.H.; Sanyal, S. Manipulation of autophagy by (+) RNA viruses. Semin. Cell Dev. Biol., 2020, 101, 3-11.
[http://dx.doi.org/10.1016/j.semcdb.2019.07.013] [PMID: 31382014]
[68]
Suares, A.; Medina, M.V.; Coso, O. Autophagy in viral development and progression of cancer. Front. Oncol., 2021, 11, 603224.
[http://dx.doi.org/10.3389/fonc.2021.603224] [PMID: 33763351]
[69]
Cirone, M.; Gilardini Montani, M.S.; Granato, M.; Garufi, A.; Faggioni, A.; D’Orazi, G. Autophagy manipulation as a strategy for efficient anticancer therapies: Possible consequences. J. Exp. Clin. Cancer Res., 2019, 38(1), 262.
[http://dx.doi.org/10.1186/s13046-019-1275-z] [PMID: 31200739]
[70]
Marzroog, B.A. Pulmonary fibrosis; risk factors and molecular triggers, insight for neo therapeutic approach Curr. Respir. medicne Rev, 2022, (3)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy