Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Genomic and Bioinformatic Resources for Perennial Fruit Species

Author(s): Jérôme Grimplet*

Volume 23, Issue 4, 2022

Published on: 19 July, 2022

Page: [217 - 233] Pages: 17

DOI: 10.2174/1389202923666220428102632

Price: $65

Abstract

In the post-genomic era, data management and development of bioinformatic tools are critical for the adequate exploitation of genomics data. In this review, we address the actual situation for the subset of crops represented by the perennial fruit species. The agronomical singularity of these species compared to plant and crop model species provides significant challenges on the implementation of good practices generally not addressed in other species. Studies are usually performed over several years in non-controlled environments, usage of rootstock is common, and breeders heavily rely on vegetative propagation. A reference genome is now available for all the major species as well as many members of the economically important genera for breeding purposes. Development of pangenome for these species is beginning to gain momentum which will require a substantial effort in term of bioinformatic tool development. The available tools for genome annotation and functional analysis will also be presented.

Keywords: Fruits, genomics, bioinformatics, metadata, genome, gene annotation, transcriptomics, pangenome.

Next »
[1]
Fadón, E.; Fernandez, E.; Behn, H.; Luedeling, E. A conceptual framework for winter dormancy in deciduous trees. Agronomy (Basel), 2020, 10(2), 241.
[http://dx.doi.org/10.3390/agronomy10020241]
[2]
Brunner, A.M.; Evans, L.M.; Hsu, C-Y.; Sheng, X. Vernalization and the chilling requirement to exit bud dormancy: Shared or separate regulation? Front. Plant Sci., 2014, 5, 732.
[http://dx.doi.org/10.3389/fpls.2014.00732] [PMID: 25566302]
[3]
Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; Bouwman, J.; Brookes, A.J.; Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C.T.; Finkers, R.; Gonzalez-Beltran, A.; Gray, A.J.; Groth, P.; Goble, C.; Grethe, J.S.; Heringa, J.; ’t Hoen, P.A.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.; Lusher, S.J.; Martone, M.E.; Mons, A.; Packer, A.L.; Persson, B.; Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.A.; Schultes, E.; Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M.A.; Thompson, M.; van der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.; Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 2016, 3(1), 160018.
[http://dx.doi.org/10.1038/sdata.2016.18] [PMID: 26978244]
[4]
Wegrzyn, J.L.; Staton, M.A.; Street, N.R.; Main, D.; Grau, E.; Herndon, N.; Buehler, S.; Falk, T.; Zaman, S.; Ramnath, R.; Richter, P.; Sun, L.; Condon, B.; Almsaeed, A.; Chen, M.; Mannapperuma, C.; Jung, S.; Ficklin, S. Cyberinfrastructure to improve forest health and productivity: The role of tree databases in connecting genomes, phenomes, and the environment. Front. Plant Sci., 2019, 10, 813.
[http://dx.doi.org/10.3389/fpls.2019.00813] [PMID: 31293610]
[5]
Karamura, D.; Karamura, E.; Blomme, G. General Plant Morphology of Musa.Banana Breeding; CRC Press: USA, 2011.
[http://dx.doi.org/10.1201/b10514-2]
[6]
Donadio, L.C.; Lederman, I.E.; Roberto, S.R.; Stucchi, E.S. Dwarfing-canopy and rootstock cultivars for fruit trees. Rev. Bras. Frutic., 2019, 41(3), e-997.
[http://dx.doi.org/10.1590/0100-29452019997]
[7]
Barrett, T.; Clark, K.; Gevorgyan, R.; Gorelenkov, V.; Gribov, E.; Karsch-Mizrachi, I.; Kimelman, M.; Pruitt, K.D.; Resenchuk, S.; Tatusova, T.; Yaschenko, E.; Ostell, J. Bioproject and biosample databases at NCBI: Facilitating capture and organization of metadata. Nucleic Acids Res., 2012, 40, D57-D63.
[http://dx.doi.org/10.1093/nar/gkr1163] [PMID: 22139929]
[8]
Blaxter, M.; Danchin, A.; Savakis, B.; Fukami-Kobayashi, K.; Kurokawa, K.; Sugano, S.; Roberts, R. J.; Salzberg, S. L.; Wu, C.-I. Reminder to deposit DNA sequences. Science (80-. ),, 2016, 352(6287), 780.
[http://dx.doi.org/10.1126/science.aaf7672]
[9]
Jaillon, O.; Aury, J-M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C.; Vezzi, A.; Legeai, F.; Hugueney, P.; Dasilva, C.; Horner, D.; Mica, E.; Jublot, D.; Poulain, J.; Bruyère, C.; Billault, A.; Segurens, B.; Gouyvenoux, M.; Ugarte, E.; Cattonaro, F.; Anthouard, V.; Vico, V.; Del Fabbro, C.; Alaux, M.; Di Gaspero, G.; Dumas, V.; Felice, N.; Paillard, S.; Juman, I.; Moroldo, M.; Scalabrin, S.; Canaguier, A.; Le Clainche, I.; Malacrida, G.; Durand, E.; Pesole, G.; Laucou, V.; Chatelet, P.; Merdinoglu, D.; Delledonne, M.; Pezzotti, M.; Lecharny, A.; Scarpelli, C.; Artiguenave, F.; Pè, M.E.; Valle, G.; Morgante, M.; Caboche, M.; Adam-Blondon, A.F.; Weissenbach, J.; Quétier, F.; Wincker, P. French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161), 463-467.
[http://dx.doi.org/10.1038/nature06148] [PMID: 17721507]
[10]
Ballouz, S.; Dobin, A.; Gillis, J.A. Is it time to change the reference genome? Genome Biol., 2019, 20(1), 159.
[http://dx.doi.org/10.1186/s13059-019-1774-4] [PMID: 31399121]
[11]
Tan, Q.; Li, S.; Zhang, Y.; Chen, M.; Wen, B.; Jiang, S.; Chen, X.; Fu, X.; Li, D.; Wu, H.; Wang, Y.; Xiao, W.; Li, L. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach. Hortic. Res., 2021, 8(1), 213.
[http://dx.doi.org/10.1038/s41438-021-00648-2] [PMID: 34593767]
[12]
Lantican, D.V.; Strickler, S.R.; Canama, A.O.; Gardoce, R.R.; Mueller, L.A.; Galvez, H.F. De novo genome sequence assembly of dwarf coconut (Cocos Nucifera L. ‘Catigan Green Dwarf’) provides insights into genomic variation between coconut types and related palm species. G3 Genes Genom Genet, 2019, 9(8), 2377-2393.
[http://dx.doi.org/10.1534/g3.119.400215]
[13]
Wu, H.; Ma, T.; Kang, M.; Ai, F.; Zhang, J.; Dong, G.; Liu, J. A high-quality Actinidia chinensis (kiwifruit) genome. Hortic. Res., 2019, 6(1), 117.
[http://dx.doi.org/10.1038/s41438-019-0202-y] [PMID: 31645971]
[14]
He, N.; Zhang, C.; Qi, X.; Zhao, S.; Tao, Y.; Yang, G.; Lee, T-H.; Wang, X.; Cai, Q.; Li, D.; Lu, M.; Liao, S.; Luo, G.; He, R.; Tan, X.; Xu, Y.; Li, T.; Zhao, A.; Jia, L.; Fu, Q.; Zeng, Q.; Gao, C.; Ma, B.; Liang, J.; Wang, X.; Shang, J.; Song, P.; Wu, H.; Fan, L.; Wang, Q.; Shuai, Q.; Zhu, J.; Wei, C.; Zhu-Salzman, K.; Jin, D.; Wang, J.; Liu, T.; Yu, M.; Tang, C.; Wang, Z.; Dai, F.; Chen, J.; Liu, Y.; Zhao, S.; Lin, T.; Zhang, S.; Wang, J.; Wang, J.; Yang, H.; Yang, G.; Wang, J.; Paterson, A.H.; Xia, Q.; Ji, D.; Xiang, Z. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun., 2013, 4(1), 2445.
[http://dx.doi.org/10.1038/ncomms3445] [PMID: 24048436]
[15]
Unver, T.; Wu, Z.; Sterck, L.; Turktas, M.; Lohaus, R.; Li, Z.; Yang, M.; He, L.; Deng, T.; Escalante, F.J.; Llorens, C.; Roig, F.J.; Parmaksiz, I.; Dundar, E.; Xie, F.; Zhang, B.; Ipek, A.; Uranbey, S.; Erayman, M.; Ilhan, E.; Badad, O.; Ghazal, H.; Lightfoot, D.A.; Kasarla, P.; Colantonio, V.; Tombuloglu, H.; Hernandez, P.; Mete, N.; Cetin, O.; Van Montagu, M.; Yang, H.; Gao, Q.; Dorado, G.; Van de Peer, Y. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl. Acad. Sci. USA, 2017, 114(44), E9413-E9422.
[http://dx.doi.org/10.1073/pnas.1708621114] [PMID: 29078332]
[16]
Hazzouri, K.M.; Gros-Balthazard, M.; Flowers, J.M.; Copetti, D.; Lemansour, A.; Lebrun, M.; Masmoudi, K.; Ferrand, S.; Dhar, M.I.; Fresquez, Z.A.; Rosas, U.; Zhang, J.; Talag, J.; Lee, S.; Kudrna, D.; Powell, R.F.; Leitch, I.J.; Krueger, R.R.; Wing, R.A.; Amiri, K.M.A.; Purugganan, M.D. Genome-wide association mapping of date palm fruit traits. Nat. Commun., 2019, 10(1), 4680.
[http://dx.doi.org/10.1038/s41467-019-12604-9] [PMID: 31615981]
[17]
Wu, C.; Deng, C.; Hilario, E.; Albert, N.W.; Lafferty, D.; Grierson, E.R.P.; Plunkett, B.J.; Elborough, C.; Saei, A.; Günther, C.S. A chromosome‐scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Mol. Ecol. Resour., 2021, 2021, 13467.
[http://dx.doi.org/10.1111/1755-0998.13467]
[18]
Polashock, J.; Zelzion, E.; Fajardo, D.; Zalapa, J.; Georgi, L.; Bhattacharya, D.; Vorsa, N. The American cranberry: First insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol., 2014, 14(1), 165.
[http://dx.doi.org/10.1186/1471-2229-14-165] [PMID: 24927653]
[19]
Gupta, V.; Estrada, A.D.; Blakley, I.; Reid, R.; Patel, K.; Meyer, M.D.; Andersen, S.U.; Brown, A.F.; Lila, M.A.; Loraine, A.E. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. Gigascience, 2015, 4(1), 5.
[http://dx.doi.org/10.1186/s13742-015-0046-9] [PMID: 25830017]
[20]
Martínez-García, P.J.; Crepeau, M.W.; Puiu, D.; Gonzalez-Ibeas, D.; Whalen, J.; Stevens, K.A.; Paul, R.; Butterfield, T.S.; Britton, M.T.; Reagan, R.L.; Chakraborty, S.; Walawage, S.L.; Vasquez-Gross, H.A.; Cardeno, C.; Famula, R.A.; Pratt, K.; Kuruganti, S.; Aradhya, M.K.; Leslie, C.A.; Dandekar, A.M.; Salzberg, S.L.; Wegrzyn, J.L.; Langley, C.H.; Neale, D.B. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J., 2016, 87(5), 507-532.
[http://dx.doi.org/10.1111/tpj.13207] [PMID: 27145194]
[21]
Lucas, S.J.; Kahraman, K. Avşar, B.; Buggs, R.J.A.; Bilge, I. A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. Plant J., 2021, 105(5), 1413-1430.
[http://dx.doi.org/10.1111/tpj.15099] [PMID: 33249676]
[22]
Zeng, L.; Tu, X-L.; Dai, H.; Han, F-M.; Lu, B-S.; Wang, M-S.; Nanaei, H.A.; Tajabadipour, A.; Mansouri, M.; Li, X-L.; Ji, L.L.; Irwin, D.M.; Zhou, H.; Liu, M.; Zheng, H.K.; Esmailizadeh, A.; Wu, D.D. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biol., 2019, 20(1), 79.
[http://dx.doi.org/10.1186/s13059-019-1686-3] [PMID: 30999938]
[23]
Mao, W.; Yao, G.; Wang, S.; Zhou, L.; Chen, G.; Dong, N.; Hu, G. Chromosome-level genomes of seeded and seedless date plum based on third-generation DNA sequencing and Hi-C analysis. For. Res., 2021, 1(1), 1-9.
[http://dx.doi.org/10.48130/FR-2021-0009]
[24]
Usai, G.; Mascagni, F.; Giordani, T.; Vangelisti, A.; Bosi, E.; Zuccolo, A.; Ceccarelli, M.; King, R.; Hassani-Pak, K.; Zambrano, L.S.; Cavallini, A.; Natali, L. Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. Plant J., 2020, 102(3), 600-614.
[http://dx.doi.org/10.1111/tpj.14635] [PMID: 31808196]
[25]
Shirasawa, K.; Yakushiji, H.; Nishimura, R.; Morita, T.; Jikumaru, S.; Ikegami, H.; Toyoda, A.; Hirakawa, H.; Isobe, S. The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica). Plant J., 2020, 102(6), 1313-1322.
[http://dx.doi.org/10.1111/tpj.14703] [PMID: 31978270]
[26]
Soyturk, A.; Sen, F.; Uncu, A.T.; Celik, I.; Uncu, A.O. De novo assembly and characterization of the first draft genome of quince (Cydonia oblonga Mill.). Sci. Rep., 2021, 11(1), 3818.
[http://dx.doi.org/10.1038/s41598-021-83113-3] [PMID: 33589687]
[27]
Ming, R.; VanBuren, R.; Wai, C.M.; Tang, H.; Schatz, M.C.; Bowers, J.E.; Lyons, E.; Wang, M-L.; Chen, J.; Biggers, E.; Zhang, J.; Huang, L.; Zhang, L.; Miao, W.; Zhang, J.; Ye, Z.; Miao, C.; Lin, Z.; Wang, H.; Zhou, H.; Yim, W.C.; Priest, H.D.; Zheng, C.; Woodhouse, M.; Edger, P.P.; Guyot, R.; Guo, H.B.; Guo, H.; Zheng, G.; Singh, R.; Sharma, A.; Min, X.; Zheng, Y.; Lee, H.; Gurtowski, J.; Sedlazeck, F.J.; Harkess, A.; McKain, M.R.; Liao, Z.; Fang, J.; Liu, J.; Zhang, X.; Zhang, Q.; Hu, W.; Qin, Y.; Wang, K.; Chen, L.Y.; Shirley, N.; Lin, Y.R.; Liu, L.Y.; Hernandez, A.G.; Wright, C.L.; Bulone, V.; Tuskan, G.A.; Heath, K.; Zee, F.; Moore, P.H.; Sunkar, R.; Leebens-Mack, J.H.; Mockler, T.; Bennetzen, J.L.; Freeling, M.; Sankoff, D.; Paterson, A.H.; Zhu, X.; Yang, X.; Smith, J.A.; Cushman, J.C.; Paull, R.E.; Yu, Q. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet., 2015, 47(12), 1435-1442.
[http://dx.doi.org/10.1038/ng.3435] [PMID: 26523774]
[28]
Ming, R.; Hou, S.; Feng, Y.; Yu, Q.; Dionne-Laporte, A.; Saw, J.H.; Senin, P.; Wang, W.; Ly, B.V.; Lewis, K.L.T.; Salzberg, S.L.; Feng, L.; Jones, M.R.; Skelton, R.L.; Murray, J.E.; Chen, C.; Qian, W.; Shen, J.; Du, P.; Eustice, M.; Tong, E.; Tang, H.; Lyons, E.; Paull, R.E.; Michael, T.P.; Wall, K.; Rice, D.W.; Albert, H.; Wang, M.L.; Zhu, Y.J.; Schatz, M.; Nagarajan, N.; Acob, R.A.; Guan, P.; Blas, A.; Wai, C.M.; Ackerman, C.M.; Ren, Y.; Liu, C.; Wang, J.; Wang, J.; Na, J.K.; Shakirov, E.V.; Haas, B.; Thimmapuram, J.; Nelson, D.; Wang, X.; Bowers, J.E.; Gschwend, A.R.; Delcher, A.L.; Singh, R.; Suzuki, J.Y.; Tripathi, S.; Neupane, K.; Wei, H.; Irikura, B.; Paidi, M.; Jiang, N.; Zhang, W.; Presting, G.; Windsor, A.; Navajas-Pérez, R.; Torres, M.J.; Feltus, F.A.; Porter, B.; Li, Y.; Burroughs, A.M.; Luo, M.C.; Liu, L.; Christopher, D.A.; Mount, S.M.; Moore, P.H.; Sugimura, T.; Jiang, J.; Schuler, M.A.; Friedman, V.; Mitchell-Olds, T.; Shippen, D.E.; dePamphilis, C.W.; Palmer, J.D.; Freeling, M.; Paterson, A.H.; Gonsalves, D.; Wang, L.; Alam, M. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452(7190), 991-996.
[http://dx.doi.org/10.1038/nature06856] [PMID: 18432245]
[29]
D’Hont, A.; Denoeud, F.; Aury, J-M.; Baurens, F-C.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droc, G.; Rouard, M.; Da Silva, C.; Jabbari, K.; Cardi, C.; Poulain, J.; Souquet, M.; Labadie, K.; Jourda, C.; Lengellé, J.; Rodier-Goud, M.; Alberti, A.; Bernard, M.; Correa, M.; Ayyampalayam, S.; Mckain, M.R.; Leebens-Mack, J.; Burgess, D.; Freeling, M.; Mbéguié-A-Mbéguié, D.; Chabannes, M.; Wicker, T.; Panaud, O.; Barbosa, J.; Hribova, E.; Heslop-Harrison, P.; Habas, R.; Rivallan, R.; Francois, P.; Poiron, C.; Kilian, A.; Burthia, D.; Jenny, C.; Bakry, F.; Brown, S.; Guignon, V.; Kema, G.; Dita, M.; Waalwijk, C.; Joseph, S.; Dievart, A.; Jaillon, O.; Leclercq, J.; Argout, X.; Lyons, E.; Almeida, A.; Jeridi, M.; Dolezel, J.; Roux, N.; Risterucci, A.M.; Weissenbach, J.; Ruiz, M.; Glaszmann, J.C.; Quétier, F.; Yahiaoui, N.; Wincker, P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488(7410), 213-217.
[http://dx.doi.org/10.1038/nature11241] [PMID: 22801500]
[30]
Wang, Z.; Miao, H.; Liu, J.; Xu, B.; Yao, X.; Xu, C.; Zhao, S.; Fang, X.; Jia, C.; Wang, J.; Zhang, J.; Li, J.; Xu, Y.; Wang, J.; Ma, W.; Wu, Z.; Yu, L.; Yang, Y.; Liu, C.; Guo, Y.; Sun, S.; Baurens, F.C.; Martin, G.; Salmon, F.; Garsmeur, O.; Yahiaoui, N.; Hervouet, C.; Rouard, M.; Laboureau, N.; Habas, R.; Ricci, S.; Peng, M.; Guo, A.; Xie, J.; Li, Y.; Ding, Z.; Yan, Y.; Tie, W.; D’Hont, A.; Hu, W.; Jin, Z. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat. Plants, 2019, 5(8), 810-821.
[http://dx.doi.org/10.1038/s41477-019-0452-6] [PMID: 31308504]
[31]
Wu, W.; Yang, Y-L.; He, W-M.; Rouard, M.; Li, W-M.; Xu, M.; Roux, N.; Ge, X-J. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Sci. Rep., 2016, 6(1), 31586.
[http://dx.doi.org/10.1038/srep31586] [PMID: 27531320]
[32]
Luo, X.; Li, H.; Wu, Z.; Yao, W.; Zhao, P.; Cao, D.; Yu, H.; Li, K.; Poudel, K.; Zhao, D.; Zhang, F.; Xia, X.; Chen, L.; Wang, Q.; Jing, D.; Cao, S. The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft- and hard-seeded cultivars. Plant Biotechnol. J., 2020, 18(4), 955-968.
[http://dx.doi.org/10.1111/pbi.13260] [PMID: 31549477]
[33]
Argout, X.; Salse, J.; Aury, J-M.; Guiltinan, M.J.; Droc, G.; Gouzy, J.; Allegre, M.; Chaparro, C.; Legavre, T.; Maximova, S.N.; Abrouk, M.; Murat, F.; Fouet, O.; Poulain, J.; Ruiz, M.; Roguet, Y.; Rodier-Goud, M.; Barbosa-Neto, J.F.; Sabot, F.; Kudrna, D.; Ammiraju, J.S.; Schuster, S.C.; Carlson, J.E.; Sallet, E.; Schiex, T.; Dievart, A.; Kramer, M.; Gelley, L.; Shi, Z.; Bérard, A.; Viot, C.; Boccara, M.; Risterucci, A.M.; Guignon, V.; Sabau, X.; Axtell, M.J.; Ma, Z.; Zhang, Y.; Brown, S.; Bourge, M.; Golser, W.; Song, X.; Clement, D.; Rivallan, R.; Tahi, M.; Akaza, J.M.; Pitollat, B.; Gramacho, K.; D’Hont, A.; Brunel, D.; Infante, D.; Kebe, I.; Costet, P.; Wing, R.; McCombie, W.R.; Guiderdoni, E.; Quetier, F.; Panaud, O.; Wincker, P.; Bocs, S.; Lanaud, C. The genome of Theobroma cacao. Nat. Genet., 2011, 43(2), 101-108.
[http://dx.doi.org/10.1038/ng.736] [PMID: 21186351]
[34]
Rendón-Anaya, M.; Ibarra-Laclette, E.; Méndez-Bravo, A.; Lan, T.; Zheng, C.; Carretero-Paulet, L.; Perez-Torres, C.A.; Chacón-López, A.; Hernandez-Guzmán, G.; Chang, T-H.; Farr, K.M.; Barbazuk, W.B.; Chamala, S.; Mutwil, M.; Shivhare, D.; Alvarez-Ponce, D.; Mitter, N.; Hayward, A.; Fletcher, S.; Rozas, J.; Sánchez Gracia, A.; Kuhn, D.; Barrientos-Priego, A.F.; Salojärvi, J.; Librado, P.; Sankoff, D.; Herrera-Estrella, A.; Albert, V.A.; Herrera-Estrella, L. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc. Natl. Acad. Sci. USA, 2019, 116(34), 17081-17089.
[http://dx.doi.org/10.1073/pnas.1822129116] [PMID: 31387975]
[35]
Wang, P.; Luo, Y.; Huang, J.; Gao, S.; Zhu, G.; Dang, Z.; Gai, J.; Yang, M.; Zhu, M.; Zhang, H.; Ye, X.; Gao, A.; Tan, X.; Wang, S.; Wu, S.; Cahoon, E.B.; Bai, B.; Zhao, Z.; Li, Q.; Wei, J.; Chen, H.; Luo, R.; Gong, D.; Tang, K.; Zhang, B.; Ni, Z.; Huang, G.; Hu, S.; Chen, Y. The genome evolution and domestication of tropical fruit mango. Genome Biol., 2020, 21(1), 60.
[http://dx.doi.org/10.1186/s13059-020-01959-8] [PMID: 32143734]
[36]
Wu, G.A.; Prochnik, S.; Jenkins, J.; Salse, J.; Hellsten, U.; Murat, F.; Perrier, X.; Ruiz, M.; Scalabrin, S.; Terol, J.; Takita, M.A.; Labadie, K.; Poulain, J.; Couloux, A.; Jabbari, K.; Cattonaro, F.; Del Fabbro, C.; Pinosio, S.; Zuccolo, A.; Chapman, J.; Grimwood, J.; Tadeo, F.R.; Estornell, L.H.; Muñoz-Sanz, J.V.; Ibanez, V.; Herrero-Ortega, A.; Aleza, P.; Pérez-Pérez, J.; Ramón, D.; Brunel, D.; Luro, F.; Chen, C.; Farmerie, W.G.; Desany, B.; Kodira, C.; Mohiuddin, M.; Harkins, T.; Fredrikson, K.; Burns, P.; Lomsadze, A.; Borodovsky, M.; Reforgiato, G.; Freitas-Astúa, J.; Quetier, F.; Navarro, L.; Roose, M.; Wincker, P.; Schmutz, J.; Morgante, M.; Machado, M.A.; Talon, M.; Jaillon, O.; Ollitrault, P.; Gmitter, F.; Rokhsar, D. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotechnol., 2014, 32(7), 656-662.
[http://dx.doi.org/10.1038/nbt.2906] [PMID: 24908277]
[37]
Xu, Q.; Chen, L-L.; Ruan, X.; Chen, D.; Zhu, A.; Chen, C.; Bertrand, D.; Jiao, W-B.; Hao, B-H.; Lyon, M.P.; Chen, J.; Gao, S.; Xing, F.; Lan, H.; Chang, J.W.; Ge, X.; Lei, Y.; Hu, Q.; Miao, Y.; Wang, L.; Xiao, S.; Biswas, M.K.; Zeng, W.; Guo, F.; Cao, H.; Yang, X.; Xu, X.W.; Cheng, Y.J.; Xu, J.; Liu, J.H.; Luo, O.J.; Tang, Z.; Guo, W.W.; Kuang, H.; Zhang, H.Y.; Roose, M.L.; Nagarajan, N.; Deng, X.X.; Ruan, Y. The draft genome of sweet orange (Citrus sinensis). Nat. Genet., 2013, 45(1), 59-66.
[http://dx.doi.org/10.1038/ng.2472] [PMID: 23179022]
[38]
Wang, X.; Xu, Y.; Zhang, S.; Cao, L.; Huang, Y.; Cheng, J.; Wu, G.; Tian, S.; Chen, C.; Liu, Y.; Yu, H.; Yang, X.; Lan, H.; Wang, N.; Wang, L.; Xu, J.; Jiang, X.; Xie, Z.; Tan, M.; Larkin, R.M.; Chen, L.L.; Ma, B.G.; Ruan, Y.; Deng, X.; Xu, Q. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet., 2017, 49(5), 765-772.
[http://dx.doi.org/10.1038/ng.3839] [PMID: 28394353]
[39]
Huang, Y.; Xu, Y.; Jiang, X.; Yu, H.; Jia, H.; Tan, C.; Hu, G.; Hu, Y.; Rao, M.J.; Deng, X.; Xu, Q. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Hortic. Res., 2021, 8(1), 69.
[http://dx.doi.org/10.1038/s41438-021-00505-2] [PMID: 33790260]
[40]
Wang, L.; He, F.; Huang, Y.; He, J.; Yang, S.; Zeng, J.; Deng, C.; Jiang, X.; Fang, Y.; Wen, S.; Xu, R.; Yu, H.; Yang, X.; Zhong, G.; Chen, C.; Yan, X.; Zhou, C.; Zhang, H.; Xie, Z.; Larkin, R.M.; Deng, X.; Xu, Q. Genome of wild mandarin and domestication history of mandarin. Mol. Plant, 2018, 11(8), 1024-1037.
[http://dx.doi.org/10.1016/j.molp.2018.06.001] [PMID: 29885473]
[41]
Shimizu, T.; Tanizawa, Y.; Mochizuki, T.; Nagasaki, H.; Yoshioka, T.; Toyoda, A.; Fujiyama, A.; Kaminuma, E.; Nakamura, Y. Draft sequencing of the heterozygous diploid genome of satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front. Genet., 2017, 8, 180.
[http://dx.doi.org/10.3389/fgene.2017.00180] [PMID: 29259619]
[42]
Zhu, C.; Zheng, X.; Huang, Y.; Ye, J.; Chen, P.; Zhang, C.; Zhao, F.; Xie, Z.; Zhang, S.; Wang, N.; Li, H.; Wang, L.; Tang, X.; Chai, L.; Xu, Q.; Deng, X. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnol. J., 2019, 17(11), 2199-2210.
[http://dx.doi.org/10.1111/pbi.13132] [PMID: 31004551]
[43]
Zhang, Y.; Barthe, G.; Grosser, J.W.; Wang, N. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome. BMC Genomics, 2016, 17(1), 485.
[http://dx.doi.org/10.1186/s12864-016-2779-y] [PMID: 27391971]
[44]
Lee, H-E.; Manivannan, A.; Lee, S.Y.; Han, K.; Yeum, J-G.; Jo, J.; Kim, J.; Rho, I.R.; Lee, Y-R.; Lee, E.S.; Kang, B.C.; Kim, D.S. Chromosome level assembly of homozygous inbred line ‘Wongyo 3115’ facilitates the construction of a high-density linkage map and identification of QTLs associated with fruit firmness in octoploid strawberry (Fragaria × ananassa). Front. Plant Sci., 2021, 12, 696229.
[http://dx.doi.org/10.3389/fpls.2021.696229] [PMID: 34335662]
[45]
Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L.; Jaiswal, P.; Mockaitis, K.; Liston, A.; Mane, S.P.; Burns, P.; Davis, T.M.; Slovin, J.P.; Bassil, N.; Hellens, R.P.; Evans, C.; Harkins, T.; Kodira, C.; Desany, B.; Crasta, O.R.; Jensen, R.V.; Allan, A.C.; Michael, T.P.; Setubal, J.C.; Celton, J.M.; Rees, D.J.; Williams, K.P.; Holt, S.H.; Ruiz Rojas, J.J.; Chatterjee, M.; Liu, B.; Silva, H.; Meisel, L.; Adato, A.; Filichkin, S.A.; Troggio, M.; Viola, R.; Ashman, T.L.; Wang, H.; Dharmawardhana, P.; Elser, J.; Raja, R.; Priest, H.D.; Bryant, D.W., Jr; Fox, S.E.; Givan, S.A.; Wilhelm, L.J.; Naithani, S.; Christoffels, A.; Salama, D.Y.; Carter, J.; Lopez Girona, E.; Zdepski, A.; Wang, W.; Kerstetter, R.A.; Schwab, W.; Korban, S.S.; Davik, J.; Monfort, A.; Denoyes-Rothan, B.; Arus, P.; Mittler, R.; Flinn, B.; Aharoni, A.; Bennetzen, J.L.; Salzberg, S.L.; Dickerman, A.W.; Velasco, R.; Borodovsky, M.; Veilleux, R.E.; Folta, K.M. The genome of woodland strawberry (Fragaria vesca). Nat. Genet., 2011, 43(2), 109-116.
[http://dx.doi.org/10.1038/ng.740] [PMID: 21186353]
[46]
VanBuren, R.; Wai, C.M.; Colle, M.; Wang, J.; Sullivan, S.; Bushakra, J.M.; Liachko, I.; Vining, K.J.; Dossett, M.; Finn, C.E.; Jibran, R.; Chagné, D.; Childs, K.; Edger, P.P.; Mockler, T.C.; Bassil, N.V. A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience, 2018, 7(8), giy094.
[http://dx.doi.org/10.1093/gigascience/giy094] [PMID: 30107523]
[47]
Daccord, N.; Celton, J-M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; van de Geest, H.; Bianco, L.; Micheletti, D.; Velasco, R.; Di Pierro, E.A.; Gouzy, J.; Rees, D.J.G.; Guérif, P.; Muranty, H.; Durel, C.E.; Laurens, F.; Lespinasse, Y.; Gaillard, S.; Aubourg, S.; Quesneville, H.; Weigel, D.; van de Weg, E.; Troggio, M.; Bucher, E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet., 2017, 49(7), 1099-1106.
[http://dx.doi.org/10.1038/ng.3886] [PMID: 28581499]
[48]
Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H.; Chen, N.J.; Nishio, T.; Xu, X.; Cong, L.; Qi, K.; Huang, X.; Wang, Y.; Zhao, X.; Wu, J.; Deng, C.; Gou, C.; Zhou, W.; Yin, H.; Qin, G.; Sha, Y.; Tao, Y.; Chen, H.; Yang, Y.; Song, Y.; Zhan, D.; Wang, J.; Li, L.; Dai, M.; Gu, C.; Wang, Y.; Shi, D.; Wang, X.; Zhang, H.; Zeng, L.; Zheng, D.; Wang, C.; Chen, M.; Wang, G.; Xie, L.; Sovero, V.; Sha, S.; Huang, W.; Zhang, S.; Zhang, M.; Sun, J.; Xu, L.; Li, Y.; Liu, X.; Li, Q.; Shen, J.; Wang, J.; Paull, R.E.; Bennetzen, J.L.; Wang, J.; Zhang, S. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res., 2013, 23(2), 396-408.
[http://dx.doi.org/10.1101/gr.144311.112] [PMID: 23149293]
[49]
Shirasawa, K.; Isuzugawa, K.; Ikenaga, M.; Saito, Y.; Yamamoto, T.; Hirakawa, H.; Isobe, S. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res., 2017, 24(5), 499-508.
[http://dx.doi.org/10.1093/dnares/dsx020] [PMID: 28541388]
[50]
Alioto, T.; Alexiou, K.G.; Bardil, A.; Barteri, F.; Castanera, R.; Cruz, F.; Dhingra, A.; Duval, H.; Fernández, I. Martí, Á.; Frias, L.; Galán, B.; García, J.L.; Howad, W.; Gómez-Garrido, J.; Gut, M.; Julca, I.; Morata, J.; Puigdomènech, P.; Ribeca, P.; Rubio Cabetas, M.J.; Vlasova, A.; Wirthensohn, M.; Garcia-Mas, J.; Gabaldón, T.; Casacuberta, J.M.; Arús, P. Transposons played a major role in the diversification between the closely related almond and peach genomes: Results from the almond genome sequence. Plant J., 2020, 101(2), 455-472.
[http://dx.doi.org/10.1111/tpj.14538] [PMID: 31529539]
[51]
Zhang, Q.; Chen, W.; Sun, L.; Zhao, F.; Huang, B.; Yang, W.; Tao, Y.; Wang, J.; Yuan, Z.; Fan, G.; Xing, Z.; Han, C.; Pan, H.; Zhong, X.; Shi, W.; Liang, X.; Du, D.; Sun, F.; Xu, Z.; Hao, R.; Lv, T.; Lv, Y.; Zheng, Z.; Sun, M.; Luo, L.; Cai, M.; Gao, Y.; Wang, J.; Yin, Y.; Xu, X.; Cheng, T.; Wang, J. The genome of Prunus mume. Nat. Commun., 2012, 3(1), 1318.
[http://dx.doi.org/10.1038/ncomms2290] [PMID: 23271652]
[52]
Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F.; Zuccolo, A.; Rossini, L.; Jenkins, J.; Vendramin, E.; Meisel, L.A.; Decroocq, V.; Sosinski, B.; Prochnik, S.; Mitros, T.; Policriti, A.; Cipriani, G.; Dondini, L.; Ficklin, S.; Goodstein, D.M.; Xuan, P.; Del Fabbro, C.; Aramini, V.; Copetti, D.; Gonzalez, S.; Horner, D.S.; Falchi, R.; Lucas, S.; Mica, E.; Maldonado, J.; Lazzari, B.; Bielenberg, D.; Pirona, R.; Miculan, M.; Barakat, A.; Testolin, R.; Stella, A.; Tartarini, S.; Tonutti, P.; Arús, P.; Orellana, A.; Wells, C.; Main, D.; Vizzotto, G.; Silva, H.; Salamini, F.; Schmutz, J.; Morgante, M.; Rokhsar, D.S. International Peach Genome Initiative. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet., 2013, 45(5), 487-494.
[http://dx.doi.org/10.1038/ng.2586] [PMID: 23525075]
[53]
Shirasawa, K.; Esumi, T.; Hirakawa, H.; Tanaka, H.; Itai, A.; Ghelfi, A.; Nagasaki, H.; Isobe, S. Phased genome sequence of an interspecific hybrid flowering cherry, ‘Somei-Yoshino’ (Cerasus × yedoensis). DNA Res., 2019, 26(5), 379-389.
[http://dx.doi.org/10.1093/dnares/dsz016] [PMID: 31334758]
[54]
Shirasawa, K.; Itai, A.; Isobe, S. Chromosome-scale genome assembly of Japanese pear (Pyrus pyrifolia) variety ‘Nijisseiki’. DNA Res., 2021, 28(2), dsab001.
[http://dx.doi.org/10.1093/dnares/dsab001] [PMID: 33638981]
[55]
Girollet, N.; Rubio, B.; Lopez-Roques, C.; Valière, S.; Ollat, N.; Bert, P-F. De novo phased assembly of the Vitis riparia grape genome. Sci. Data, 2019, 6(1), 127.
[http://dx.doi.org/10.1038/s41597-019-0133-3] [PMID: 31324816]
[56]
van Straalen, N.M.; Roelofs, D. An Introduction to Ecological Genomics; Oxford University Press: USA, 2011.
[http://dx.doi.org/10.1093/acprof:oso/9780199594689.001.0001]
[57]
Gnomon The NCBI eukaryotic gene prediction tool Available from: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon (Accessed on: Oct 18, 2021)
[58]
Jung, S.; Lee, T.; Cheng, C-H.; Buble, K.; Zheng, P.; Yu, J.; Humann, J.; Ficklin, S.P.; Gasic, K.; Scott, K.; Frank, M.; Ru, S.; Hough, H.; Evans, K.; Peace, C.; Olmstead, M.; DeVetter, L.W.; McFerson, J.; Coe, M.; Wegrzyn, J.L.; Staton, M.E.; Abbott, A.G.; Main, D. 15 years of GDR: New data and functionality in the genome database for rosaceae. Nucleic Acids Res., 2019, 47, D1137-D1145.
[http://dx.doi.org/10.1093/nar/gky1000] [PMID: 30357347]
[59]
Spoor, S.; Cheng, C-H.; Sanderson, L-A.; Condon, B.; Almsaeed, A.; Chen, M.; Bretaudeau, A.; Rasche, H.; Jung, S.; Main, D.; Bett, K.; Staton, M.; Wegrzyn, J.L.; Feltus, F.A.; Ficklin, S.P. Tripal v3: An ontology-based toolkit for construction of FAIR biological community databases. Database (Oxford), 2019, 2019, baz077.
[http://dx.doi.org/10.1093/database/baz077] [PMID: 31328773]
[60]
Citrus genome database Available from:. https://www.citrusgenomedb.org// (Accessed on: Oct 19, 2021)
[61]
Genome database for vaccinium Available from: https://www.vaccinium.org(Accessed on: Oct 19, 2021)
[62]
South Green collaborators. The south green portal: A comprehensive resource for tropical and mediterranean crop genomics. Curr. Plant Biol., 2016, 2016, 7-8.
[http://dx.doi.org/10.1016/j.cpb.2016.12.002]
[63]
Rouard, M.; Guignon, V.; Aluome, C.; Laporte, M.A.; Droc, G.; Walde, C.; Zmasek, C.M.; Périn, C.; Conte, M.G. GreenPhylDB v2.0: Comparative and functional genomics in plants. Nucleic Acids Res., 2011, 39(Suppl. 1), D1095-D1102.
[http://dx.doi.org/10.1093/nar/gkq811] [PMID: 20864446]
[64]
Dereeper, A.; Homa, F.; Andres, G.; Sempere, G.; Sarah, G.; Hueber, Y.; Dufayard, J.F.; Ruiz, M. SNiPlay3: A web-based application for exploration and large scale analyses of genomic variations. Nucleic Acids Res., 2015, 43(W1), W295-300.
[http://dx.doi.org/10.1093/nar/gkv351] [PMID: 26040700]
[65]
Sempéré, G.; Pétel, A.; Rouard, M.; Frouin, J.; Hueber, Y.; De Bellis, F.; Larmande, P. Gigwa v2-extended and improved genotype investigator. Gigascience, 2019, 8(5), giz051.
[http://dx.doi.org/10.1093/gigascience/giz051] [PMID: 31077313]
[66]
Venkatesan, A.; Tagny Ngompe, G.; Hassouni, N.E.; Chentli, I.; Guignon, V.; Jonquet, C.; Ruiz, M.; Larmande, P. Agronomic Linked Data (AgroLD): A knowledge-based system to enable integrative biology in agronomy. PLoS One, 2018, 13(11), e0198270.
[http://dx.doi.org/10.1371/journal.pone.0198270] [PMID: 30500839]
[67]
Goecks, J.; Nekrutenko, A.; Taylor, J.; Afgan, E.; Ananda, G.; Baker, D.; Blankenberg, D.; Chakrabarty, R.; Coraor, N.; Goecks, J. Galaxy Team. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol., 2010, 11(8), R86.
[http://dx.doi.org/10.1186/gb-2010-11-8-r86] [PMID: 20738864]
[68]
Monat, C.; Tranchant-Dubreuil, C.; Kougbeadjo, A.; Farcy, C.; Ortega-Abboud, E.; Amanzougarene, S.; Ravel, S.; Agbessi, M.; Orjuela-Bouniol, J.; Summo, M.; Sabot, F. TOGGLE: Toolbox for generic NGS analyses. BMC Bioinformatics, 2015, 16(1), 374.
[http://dx.doi.org/10.1186/s12859-015-0795-6] [PMID: 26552596]
[69]
Integrape - Data integration to maximise the power of omics for grapevine improvement News Available from:. https://integrape.eu/ (Accessed on: Oct 19, 2021)
[70]
Adam-Blondon, A-F.; Alaux, M.; Pommier, C.; Cantu, D.; Cheng, Z-M.; Cramer, G.R.; Davies, C.; Delrot, S.; Deluc, L.; Di Gaspero, G.; Grimplet, J.; Fennell, A.; Londo, J.P.; Kersey, P.; Mattivi, F.; Naithani, S.; Neveu, P.; Nikolski, M.; Pezzotti, M.; Reisch, B.I.; Töpfer, R.; Vivier, M.A.; Ware, D.; Quesneville, H. Towards an open grapevine information system. Hortic. Res., 2016, 3(1), 16056.
[http://dx.doi.org/10.1038/hortres.2016.56] [PMID: 27917288]
[71]
Vitis international variety catalogue VIVC Available from: https://www.vivc.de/(Accessed on: Oct 19, 2021)
[72]
Duitama, J.; Silva, A.; Sanabria, Y.; Cruz, D.F.; Quintero, C.; Ballen, C.; Lorieux, M.; Scheffler, B.; Farmer, A.; Torres, E.; Oard, J.; Tohme, J. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection. PLoS One, 2015, 10(4), e0124617.
[http://dx.doi.org/10.1371/journal.pone.0124617] [PMID: 25923345]
[73]
Montenegro, J.D.; Golicz, A.A.; Bayer, P.E.; Hurgobin, B.; Lee, H.; Chan, C.K.; Visendi, P.; Lai, K.; Doležel, J.; Batley, J.; Edwards, D. The pangenome of hexaploid bread wheat. Plant J., 2017, 90(5), 1007-1013.
[http://dx.doi.org/10.1111/tpj.13515] [PMID: 28231383]
[74]
Hufford, M. B.; Seetharam, A. S.; Woodhouse, M. R.; Chougule, K. M.; Ou, S.; Liu, J.; Ricci, W. A.; Guo, T.; Olson, A.; Qiu, Y. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science (80-.),, 2021, 373(6555), 655-662.
[http://dx.doi.org/10.1126/science.abg5289]
[75]
Jayakodi, M.; Schreiber, M.; Stein, N.; Mascher, M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res., 2021, 28(1), dsaa030.
[http://dx.doi.org/10.1093/dnares/dsaa030] [PMID: 33484244]
[76]
Tello-Ruiz, M.K.; Naithani, S.; Gupta, P.; Olson, A.; Wei, S.; Preece, J.; Jiao, Y.; Wang, B.; Chougule, K.; Garg, P.; Elser, J.; Kumari, S.; Kumar, V.; Contreras-Moreira, B.; Naamati, G.; George, N.; Cook, J.; Bolser, D.; D’Eustachio, P.; Stein, L.D.; Gupta, A.; Xu, W.; Regala, J.; Papatheodorou, I.; Kersey, P.J.; Flicek, P.; Taylor, C.; Jaiswal, P.; Ware, D. Gramene 2021: Harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res., 2021, 49(D1), D1452-D1463.
[http://dx.doi.org/10.1093/nar/gkaa979] [PMID: 33170273]
[77]
Sun, X.; Jiao, C.; Schwaninger, H.; Chao, C.T.; Ma, Y.; Duan, N.; Khan, A.; Ban, S.; Xu, K.; Cheng, L.; Zhong, G.Y.; Fei, Z. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet., 2020, 52(12), 1423-1432.
[http://dx.doi.org/10.1038/s41588-020-00723-9] [PMID: 33139952]
[78]
Wang, X.; Liu, S.; Zuo, H.; Zheng, W.; Zhang, S.; Huang, Y.; Pingcuo, G.; Ying, H.; Zhao, F.; Li, Y.; Liu, J.; Yi, T.S.; Zan, Y.; Larkin, R.M.; Deng, X.; Zeng, X.; Xu, Q. Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr. Biol., 2021, 31(17), 3848-3860.e8.
[http://dx.doi.org/10.1016/j.cub.2021.06.062] [PMID: 34314676]
[79]
Rijzaani, H.; Bayer, P.E.; Rouard, M.; Doležel, J.; Batley, J.; Edwards, D. The pangenome of banana highlights differences between genera and genomes. Plant Genome, 2021, e20100.
[http://dx.doi.org/10.1002/tpg2.20100] [PMID: 34227250]
[80]
Trouern-Trend, A.J.; Falk, T.; Zaman, S.; Caballero, M.; Neale, D.B.; Langley, C.H.; Dandekar, A.M.; Stevens, K.A.; Wegrzyn, J.L. Comparative genomics of six Juglans species reveals disease-associated gene family contractions. Plant J., 2020, 102(2), 410-423.
[http://dx.doi.org/10.1111/tpj.14630] [PMID: 31823432]
[81]
Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol., 2019, 20(1), 238.
[http://dx.doi.org/10.1186/s13059-019-1832-y] [PMID: 31727128]
[82]
Contreras-Moreira, B.; Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol., 2013, 79(24), 7696-7701.
[http://dx.doi.org/10.1128/AEM.02411-13] [PMID: 24096415]
[83]
Pfeiffer, F.; Oesterhelt, D. A manual curation strategy to improve genome annotation: Application to a set of haloarchael genomes. Life (Basel), 2015, 5(2), 1427-1444.
[http://dx.doi.org/10.3390/life5021427] [PMID: 26042526]
[84]
Schnoes, A.M.; Brown, S.D.; Dodevski, I.; Babbitt, P.C. Annotation error in public databases: Misannotation of molecular function in enzyme superfamilies. PLOS Comput. Biol., 2009, 5(12), e1000605.
[http://dx.doi.org/10.1371/journal.pcbi.1000605] [PMID: 20011109]
[85]
Ejigu, G.F.; Jung, J. Review on the computational genome annotation of sequences obtained by next-generation sequencing. Biology (Basel), 2020, 9(9), 295.
[http://dx.doi.org/10.3390/biology9090295] [PMID: 32962098]
[86]
Tello-Ruiz, M.K.; Marco, C.F.; Hsu, F-M.; Khangura, R.S.; Qiao, P.; Sapkota, S.; Stitzer, M.C.; Wasikowski, R.; Wu, H.; Zhan, J.; Chougule, K.; Barone, L.C.; Ghiban, C.; Muna, D.; Olson, A.C.; Wang, L.; Ware, D.; Micklos, D.A. Double triage to identify poorly annotated genes in maize: The missing link in community curation. PLoS One, 2019, 14(10), e0224086.
[http://dx.doi.org/10.1371/journal.pone.0224086] [PMID: 31658277]
[87]
Stein, L. Genome annotation: From sequence to biology. Nat. Rev. Genet., 2001, 2(7), 493-503.
[http://dx.doi.org/10.1038/35080529] [PMID: 11433356]
[88]
Loveland, J.E.; Gilbert, J.G.R.; Griffiths, E.; Harrow, J.L. Community gene annotation in practice. Database (Oxford), 2012, 2012, bas009-bas009.
[http://dx.doi.org/10.1093/database/bas009] [PMID: 22434843]
[89]
Hosmani, P.S.; Shippy, T.; Miller, S.; Benoit, J.B.; Munoz-Torres, M.; Flores-Gonzalez, M.; Mueller, L.A.; Wiersma-Koch, H.; D’Elia, T.; Brown, S.J.; Saha, S. A quick guide for student-driven community genome annotation. PLOS Comput. Biol., 2019, 15(4), e1006682.
[http://dx.doi.org/10.1371/journal.pcbi.1006682] [PMID: 30943207]
[90]
Liu, T.; Li, M.; Liu, Z.; Ai, X.; Li, Y. Reannotation of the cultivated strawberry genome and establishment of a strawberry genome database. Hortic. Res., 2021, 8(1), 41.
[http://dx.doi.org/10.1038/s41438-021-00476-4] [PMID: 33642572]
[91]
Pilkington, S.M.; Crowhurst, R.; Hilario, E.; Nardozza, S.; Fraser, L.; Peng, Y.; Gunaseelan, K.; Simpson, R.; Tahir, J.; Deroles, S.C.; Templeton, K.; Luo, Z.; Davy, M.; Cheng, C.; McNeilage, M.; Scaglione, D.; Liu, Y.; Zhang, Q.; Datson, P.; De Silva, N.; Gardiner, S.E.; Bassett, H.; Chagné, D.; McCallum, J.; Dzierzon, H.; Deng, C.; Wang, Y.Y.; Barron, L.; Manako, K.; Bowen, J.; Foster, T.M.; Erridge, Z.A.; Tiffin, H.; Waite, C.N.; Davies, K.M.; Grierson, E.P.; Laing, W.A.; Kirk, R.; Chen, X.; Wood, M.; Montefiori, M.; Brummell, D.A.; Schwinn, K.E.; Catanach, A.; Fullerton, C.; Li, D.; Meiyalaghan, S.; Nieuwenhuizen, N.; Read, N.; Prakash, R.; Hunter, D.; Zhang, H.; McKenzie, M.; Knäbel, M.; Harris, A.; Allan, A.C.; Gleave, A.; Chen, A.; Janssen, B.J.; Plunkett, B.; Ampomah-Dwamena, C.; Voogd, C.; Leif, D.; Lafferty, D.; Souleyre, E.J.F.; Varkonyi-Gasic, E.; Gambi, F.; Hanley, J.; Yao, J.L.; Cheung, J.; David, K.M.; Warren, B.; Marsh, K.; Snowden, K.C.; Lin-Wang, K.; Brian, L.; Martinez-Sanchez, M.; Wang, M.; Ileperuma, N.; Macnee, N.; Campin, R.; McAtee, P.; Drummond, R.S.M.; Espley, R.V.; Ireland, H.S.; Wu, R.; Atkinson, R.G.; Karunairetnam, S.; Bulley, S.; Chunkath, S.; Hanley, Z.; Storey, R.; Thrimawithana, A.H.; Thomson, S.; David, C.; Testolin, R.; Huang, H.; Hellens, R.P.; Schaffer, R.J. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19(1), 257.
[http://dx.doi.org/10.1186/s12864-018-4656-3] [PMID: 29661190]
[92]
Grimplet, J.; Van Hemert, J.; Carbonell-Bejerano, P.; Díaz-Riquelme, J.; Dickerson, J.; Fennell, A.; Pezzotti, M.; Martínez-Zapater, J.M. Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res. Notes, 2012, 5(1), 213.
[http://dx.doi.org/10.1186/1756-0500-5-213] [PMID: 22554261]
[93]
Canaguier, A.; Grimplet, J.; Di Gaspero, G.; Scalabrin, S.; Duchêne, E.; Choisne, N.; Mohellibi, N.; Guichard, C.; Rombauts, S.; Le Clainche, I.; Bérard, A.; Chauveau, A.; Bounon, R.; Rustenholz, C.; Morgante, M.; Le Paslier, M.C.; Brunel, D.; Adam-Blondon, A.F. A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom. Data, 2017, 14, 56-62.
[http://dx.doi.org/10.1016/j.gdata.2017.09.002] [PMID: 28971018]
[94]
Grimplet, J.; Adam-Blondon, A-F.; Bert, P-F.; Bitz, O.; Cantu, D.; Davies, C.; Delrot, S.; Pezzotti, M.; Rombauts, S.; Cramer, G.R. The grapevine gene nomenclature system. BMC Genomics, 2014, 15(1), 1077.
[http://dx.doi.org/10.1186/1471-2164-15-1077] [PMID: 25481684]
[95]
Guidelines for grapevine data management Available from: https://doi.org/https://integrape.eu/resources/data-management/
[96]
Navarro-Payá, D.; Santiago, A.; Orduña, L.; Zhang, C.; Amato, A.; D’Inca, E.; Fattorini, C.; Pezzotti, M.; Tornielli, G.B.; Zenoni, S.; Rustenholz, C.; Matus, J.T. The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Front. Plant Sci., 2022, 12, 803977.
[http://dx.doi.org/10.3389/fpls.2021.803977] [PMID: 35111182]
[97]
Winter, D.; Vinegar, B.; Nahal, H.; Ammar, R.; Wilson, G.V.; Provart, N.J. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One, 2007, 2(8), e718.
[http://dx.doi.org/10.1371/journal.pone.0000718] [PMID: 17684564]
[98]
Bio-analytic resource for plant biology Available from: http://bar.utoronto.ca/(Accessed on: Oct 19, 2021)
[99]
Fasoli, M.; Dal Santo, S.; Zenoni, S.; Tornielli, G.B.; Farina, L.; Zamboni, A.; Porceddu, A.; Venturini, L.; Bicego, M.; Murino, V.; Ferrarini, A.; Delledonne, M.; Pezzotti, M. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell, 2012, 24(9), 3489-3505.
[http://dx.doi.org/10.1105/tpc.112.100230] [PMID: 22948079]
[100]
Brian, L.; Warren, B.; McAtee, P.; Rodrigues, J.; Nieuwenhuizen, N.; Pasha, A.; David, K.M.; Richardson, A.; Provart, N.J.; Allan, A.C.; Varkonyi-Gasic, E.; Schaffer, R.J. A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biol., 2021, 21(1), 121.
[http://dx.doi.org/10.1186/s12870-021-02894-x] [PMID: 33639842]
[101]
Koshimizu, S.; Nakamura, Y.; Nishitani, C.; Kobayashi, M.; Ohyanagi, H.; Yamamoto, T.; Yano, K. TRANSNAP: A web database providing comprehensive information on Japanese pear transcriptome. Sci. Rep., 2019, 9(1), 18922.
[http://dx.doi.org/10.1038/s41598-019-55287-4] [PMID: 31831861]
[102]
Japanese pear transcriptome database Available from: http://plantomics.mind.meiji.ac.jp/nashi (Accessed on: Oct 19,2021)
[103]
Carmona, R.; Zafra, A.; Seoane, P.; Castro, A.J.; Guerrero-Fernández, D.; Castillo-Castillo, T.; Medina-García, A.; Cánovas, F.M.; Aldana-Montes, J.F.; Navas-Delgado, I.; Alché, J.D.; Claros, M.G. ReprOlive: A database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Front. Plant Sci., 2015, 6, 625.
[http://dx.doi.org/10.3389/fpls.2015.00625] [PMID: 26322066]
[104]
ReprOlive. Available from: http://reprolive.eez.csic.es(Accessed on: Oct 19, 2021)
[105]
Moretto, M.; Sonego, P.; Pilati, S.; Malacarne, G.; Costantini, L.; Grzeskowiak, L.; Bagagli, G.; Grando, M.S.; Moser, C.; Engelen, K. VESPUCCI: Exploring patterns of gene expression in grapevine. Front. Plant Sci., 2016, 7, 633.
[http://dx.doi.org/10.3389/fpls.2016.00633] [PMID: 27242836]
[106]
VESPUCCI. Available from: http://vespucci.colombos.fmach.it/(Accessed on: Oct 19, 2021)
[107]
Wong, D.C.J. Network aggregation improves gene function prediction of grapevine gene co-expression networks. Plant Mol. Biol., 2020, 103(4-5), 425-441.
[http://dx.doi.org/10.1007/s11103-020-01001-2] [PMID: 32266646]
[108]
Aggregate and correlation rank grapevine gene co-expression networks Available from: https://sites.google.com/view/vtc-agg(Accessed on: Oct 19, 2021)
[109]
GRapevine expression atlas Available from: https://great. colmar.inrae.fr/ (Accessed on: Oct 19, 2021)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy